]> git.proxmox.com Git - mirror_qemu.git/blob - target/ppc/mmu-hash64.c
Merge remote-tracking branch 'remotes/ericb/tags/pull-nbd-2019-02-25-v2' into staging
[mirror_qemu.git] / target / ppc / mmu-hash64.c
1 /*
2 * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 * Copyright (c) 2013 David Gibson, IBM Corporation
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 */
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
24 #include "qemu/error-report.h"
25 #include "sysemu/hw_accel.h"
26 #include "kvm_ppc.h"
27 #include "mmu-hash64.h"
28 #include "exec/log.h"
29 #include "hw/hw.h"
30 #include "mmu-book3s-v3.h"
31
32 //#define DEBUG_SLB
33
34 #ifdef DEBUG_SLB
35 # define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
36 #else
37 # define LOG_SLB(...) do { } while (0)
38 #endif
39
40 /*
41 * SLB handling
42 */
43
44 static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
45 {
46 CPUPPCState *env = &cpu->env;
47 uint64_t esid_256M, esid_1T;
48 int n;
49
50 LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
51
52 esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
53 esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
54
55 for (n = 0; n < cpu->hash64_opts->slb_size; n++) {
56 ppc_slb_t *slb = &env->slb[n];
57
58 LOG_SLB("%s: slot %d %016" PRIx64 " %016"
59 PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
60 /* We check for 1T matches on all MMUs here - if the MMU
61 * doesn't have 1T segment support, we will have prevented 1T
62 * entries from being inserted in the slbmte code. */
63 if (((slb->esid == esid_256M) &&
64 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
65 || ((slb->esid == esid_1T) &&
66 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
67 return slb;
68 }
69 }
70
71 return NULL;
72 }
73
74 void dump_slb(FILE *f, fprintf_function cpu_fprintf, PowerPCCPU *cpu)
75 {
76 CPUPPCState *env = &cpu->env;
77 int i;
78 uint64_t slbe, slbv;
79
80 cpu_synchronize_state(CPU(cpu));
81
82 cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
83 for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
84 slbe = env->slb[i].esid;
85 slbv = env->slb[i].vsid;
86 if (slbe == 0 && slbv == 0) {
87 continue;
88 }
89 cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
90 i, slbe, slbv);
91 }
92 }
93
94 void helper_slbia(CPUPPCState *env)
95 {
96 PowerPCCPU *cpu = ppc_env_get_cpu(env);
97 int n;
98
99 /* XXX: Warning: slbia never invalidates the first segment */
100 for (n = 1; n < cpu->hash64_opts->slb_size; n++) {
101 ppc_slb_t *slb = &env->slb[n];
102
103 if (slb->esid & SLB_ESID_V) {
104 slb->esid &= ~SLB_ESID_V;
105 /* XXX: given the fact that segment size is 256 MB or 1TB,
106 * and we still don't have a tlb_flush_mask(env, n, mask)
107 * in QEMU, we just invalidate all TLBs
108 */
109 env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
110 }
111 }
112 }
113
114 static void __helper_slbie(CPUPPCState *env, target_ulong addr,
115 target_ulong global)
116 {
117 PowerPCCPU *cpu = ppc_env_get_cpu(env);
118 ppc_slb_t *slb;
119
120 slb = slb_lookup(cpu, addr);
121 if (!slb) {
122 return;
123 }
124
125 if (slb->esid & SLB_ESID_V) {
126 slb->esid &= ~SLB_ESID_V;
127
128 /* XXX: given the fact that segment size is 256 MB or 1TB,
129 * and we still don't have a tlb_flush_mask(env, n, mask)
130 * in QEMU, we just invalidate all TLBs
131 */
132 env->tlb_need_flush |=
133 (global == false ? TLB_NEED_LOCAL_FLUSH : TLB_NEED_GLOBAL_FLUSH);
134 }
135 }
136
137 void helper_slbie(CPUPPCState *env, target_ulong addr)
138 {
139 __helper_slbie(env, addr, false);
140 }
141
142 void helper_slbieg(CPUPPCState *env, target_ulong addr)
143 {
144 __helper_slbie(env, addr, true);
145 }
146
147 int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
148 target_ulong esid, target_ulong vsid)
149 {
150 CPUPPCState *env = &cpu->env;
151 ppc_slb_t *slb = &env->slb[slot];
152 const PPCHash64SegmentPageSizes *sps = NULL;
153 int i;
154
155 if (slot >= cpu->hash64_opts->slb_size) {
156 return -1; /* Bad slot number */
157 }
158 if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
159 return -1; /* Reserved bits set */
160 }
161 if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
162 return -1; /* Bad segment size */
163 }
164 if ((vsid & SLB_VSID_B) && !(ppc_hash64_has(cpu, PPC_HASH64_1TSEG))) {
165 return -1; /* 1T segment on MMU that doesn't support it */
166 }
167
168 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
169 const PPCHash64SegmentPageSizes *sps1 = &cpu->hash64_opts->sps[i];
170
171 if (!sps1->page_shift) {
172 break;
173 }
174
175 if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
176 sps = sps1;
177 break;
178 }
179 }
180
181 if (!sps) {
182 error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
183 " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
184 slot, esid, vsid);
185 return -1;
186 }
187
188 slb->esid = esid;
189 slb->vsid = vsid;
190 slb->sps = sps;
191
192 LOG_SLB("%s: " TARGET_FMT_lu " " TARGET_FMT_lx " - " TARGET_FMT_lx
193 " => %016" PRIx64 " %016" PRIx64 "\n", __func__, slot, esid, vsid,
194 slb->esid, slb->vsid);
195
196 return 0;
197 }
198
199 static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
200 target_ulong *rt)
201 {
202 CPUPPCState *env = &cpu->env;
203 int slot = rb & 0xfff;
204 ppc_slb_t *slb = &env->slb[slot];
205
206 if (slot >= cpu->hash64_opts->slb_size) {
207 return -1;
208 }
209
210 *rt = slb->esid;
211 return 0;
212 }
213
214 static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
215 target_ulong *rt)
216 {
217 CPUPPCState *env = &cpu->env;
218 int slot = rb & 0xfff;
219 ppc_slb_t *slb = &env->slb[slot];
220
221 if (slot >= cpu->hash64_opts->slb_size) {
222 return -1;
223 }
224
225 *rt = slb->vsid;
226 return 0;
227 }
228
229 static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
230 target_ulong *rt)
231 {
232 CPUPPCState *env = &cpu->env;
233 ppc_slb_t *slb;
234
235 if (!msr_is_64bit(env, env->msr)) {
236 rb &= 0xffffffff;
237 }
238 slb = slb_lookup(cpu, rb);
239 if (slb == NULL) {
240 *rt = (target_ulong)-1ul;
241 } else {
242 *rt = slb->vsid;
243 }
244 return 0;
245 }
246
247 void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
248 {
249 PowerPCCPU *cpu = ppc_env_get_cpu(env);
250
251 if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
252 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
253 POWERPC_EXCP_INVAL, GETPC());
254 }
255 }
256
257 target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
258 {
259 PowerPCCPU *cpu = ppc_env_get_cpu(env);
260 target_ulong rt = 0;
261
262 if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
263 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
264 POWERPC_EXCP_INVAL, GETPC());
265 }
266 return rt;
267 }
268
269 target_ulong helper_find_slb_vsid(CPUPPCState *env, target_ulong rb)
270 {
271 PowerPCCPU *cpu = ppc_env_get_cpu(env);
272 target_ulong rt = 0;
273
274 if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) {
275 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
276 POWERPC_EXCP_INVAL, GETPC());
277 }
278 return rt;
279 }
280
281 target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
282 {
283 PowerPCCPU *cpu = ppc_env_get_cpu(env);
284 target_ulong rt = 0;
285
286 if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
287 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
288 POWERPC_EXCP_INVAL, GETPC());
289 }
290 return rt;
291 }
292
293 /* Check No-Execute or Guarded Storage */
294 static inline int ppc_hash64_pte_noexec_guard(PowerPCCPU *cpu,
295 ppc_hash_pte64_t pte)
296 {
297 /* Exec permissions CANNOT take away read or write permissions */
298 return (pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G) ?
299 PAGE_READ | PAGE_WRITE : PAGE_READ | PAGE_WRITE | PAGE_EXEC;
300 }
301
302 /* Check Basic Storage Protection */
303 static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
304 ppc_slb_t *slb, ppc_hash_pte64_t pte)
305 {
306 CPUPPCState *env = &cpu->env;
307 unsigned pp, key;
308 /* Some pp bit combinations have undefined behaviour, so default
309 * to no access in those cases */
310 int prot = 0;
311
312 key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
313 : (slb->vsid & SLB_VSID_KS));
314 pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
315
316 if (key == 0) {
317 switch (pp) {
318 case 0x0:
319 case 0x1:
320 case 0x2:
321 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
322 break;
323
324 case 0x3:
325 case 0x6:
326 prot = PAGE_READ | PAGE_EXEC;
327 break;
328 }
329 } else {
330 switch (pp) {
331 case 0x0:
332 case 0x6:
333 break;
334
335 case 0x1:
336 case 0x3:
337 prot = PAGE_READ | PAGE_EXEC;
338 break;
339
340 case 0x2:
341 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
342 break;
343 }
344 }
345
346 return prot;
347 }
348
349 /* Check the instruction access permissions specified in the IAMR */
350 static int ppc_hash64_iamr_prot(PowerPCCPU *cpu, int key)
351 {
352 CPUPPCState *env = &cpu->env;
353 int iamr_bits = (env->spr[SPR_IAMR] >> 2 * (31 - key)) & 0x3;
354
355 /*
356 * An instruction fetch is permitted if the IAMR bit is 0.
357 * If the bit is set, return PAGE_READ | PAGE_WRITE because this bit
358 * can only take away EXEC permissions not READ or WRITE permissions.
359 * If bit is cleared return PAGE_READ | PAGE_WRITE | PAGE_EXEC since
360 * EXEC permissions are allowed.
361 */
362 return (iamr_bits & 0x1) ? PAGE_READ | PAGE_WRITE :
363 PAGE_READ | PAGE_WRITE | PAGE_EXEC;
364 }
365
366 static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
367 {
368 CPUPPCState *env = &cpu->env;
369 int key, amrbits;
370 int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
371
372 /* Only recent MMUs implement Virtual Page Class Key Protection */
373 if (!ppc_hash64_has(cpu, PPC_HASH64_AMR)) {
374 return prot;
375 }
376
377 key = HPTE64_R_KEY(pte.pte1);
378 amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3;
379
380 /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
381 /* env->spr[SPR_AMR]); */
382
383 /*
384 * A store is permitted if the AMR bit is 0. Remove write
385 * protection if it is set.
386 */
387 if (amrbits & 0x2) {
388 prot &= ~PAGE_WRITE;
389 }
390 /*
391 * A load is permitted if the AMR bit is 0. Remove read
392 * protection if it is set.
393 */
394 if (amrbits & 0x1) {
395 prot &= ~PAGE_READ;
396 }
397
398 switch (env->mmu_model) {
399 /*
400 * MMU version 2.07 and later support IAMR
401 * Check if the IAMR allows the instruction access - it will return
402 * PAGE_EXEC if it doesn't (and thus that bit will be cleared) or 0
403 * if it does (and prot will be unchanged indicating execution support).
404 */
405 case POWERPC_MMU_2_07:
406 case POWERPC_MMU_3_00:
407 prot &= ppc_hash64_iamr_prot(cpu, key);
408 break;
409 default:
410 break;
411 }
412
413 return prot;
414 }
415
416 const ppc_hash_pte64_t *ppc_hash64_map_hptes(PowerPCCPU *cpu,
417 hwaddr ptex, int n)
418 {
419 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
420 hwaddr base;
421 hwaddr plen = n * HASH_PTE_SIZE_64;
422 const ppc_hash_pte64_t *hptes;
423
424 if (cpu->vhyp) {
425 PPCVirtualHypervisorClass *vhc =
426 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
427 return vhc->map_hptes(cpu->vhyp, ptex, n);
428 }
429 base = ppc_hash64_hpt_base(cpu);
430
431 if (!base) {
432 return NULL;
433 }
434
435 hptes = address_space_map(CPU(cpu)->as, base + pte_offset, &plen, false,
436 MEMTXATTRS_UNSPECIFIED);
437 if (plen < (n * HASH_PTE_SIZE_64)) {
438 hw_error("%s: Unable to map all requested HPTEs\n", __func__);
439 }
440 return hptes;
441 }
442
443 void ppc_hash64_unmap_hptes(PowerPCCPU *cpu, const ppc_hash_pte64_t *hptes,
444 hwaddr ptex, int n)
445 {
446 if (cpu->vhyp) {
447 PPCVirtualHypervisorClass *vhc =
448 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
449 vhc->unmap_hptes(cpu->vhyp, hptes, ptex, n);
450 return;
451 }
452
453 address_space_unmap(CPU(cpu)->as, (void *)hptes, n * HASH_PTE_SIZE_64,
454 false, n * HASH_PTE_SIZE_64);
455 }
456
457 static unsigned hpte_page_shift(const PPCHash64SegmentPageSizes *sps,
458 uint64_t pte0, uint64_t pte1)
459 {
460 int i;
461
462 if (!(pte0 & HPTE64_V_LARGE)) {
463 if (sps->page_shift != 12) {
464 /* 4kiB page in a non 4kiB segment */
465 return 0;
466 }
467 /* Normal 4kiB page */
468 return 12;
469 }
470
471 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
472 const PPCHash64PageSize *ps = &sps->enc[i];
473 uint64_t mask;
474
475 if (!ps->page_shift) {
476 break;
477 }
478
479 if (ps->page_shift == 12) {
480 /* L bit is set so this can't be a 4kiB page */
481 continue;
482 }
483
484 mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;
485
486 if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
487 return ps->page_shift;
488 }
489 }
490
491 return 0; /* Bad page size encoding */
492 }
493
494 static void ppc64_v3_new_to_old_hpte(target_ulong *pte0, target_ulong *pte1)
495 {
496 /* Insert B into pte0 */
497 *pte0 = (*pte0 & HPTE64_V_COMMON_BITS) |
498 ((*pte1 & HPTE64_R_3_0_SSIZE_MASK) <<
499 (HPTE64_V_SSIZE_SHIFT - HPTE64_R_3_0_SSIZE_SHIFT));
500
501 /* Remove B from pte1 */
502 *pte1 = *pte1 & ~HPTE64_R_3_0_SSIZE_MASK;
503 }
504
505
506 static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
507 const PPCHash64SegmentPageSizes *sps,
508 target_ulong ptem,
509 ppc_hash_pte64_t *pte, unsigned *pshift)
510 {
511 int i;
512 const ppc_hash_pte64_t *pteg;
513 target_ulong pte0, pte1;
514 target_ulong ptex;
515
516 ptex = (hash & ppc_hash64_hpt_mask(cpu)) * HPTES_PER_GROUP;
517 pteg = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
518 if (!pteg) {
519 return -1;
520 }
521 for (i = 0; i < HPTES_PER_GROUP; i++) {
522 pte0 = ppc_hash64_hpte0(cpu, pteg, i);
523 /*
524 * pte0 contains the valid bit and must be read before pte1,
525 * otherwise we might see an old pte1 with a new valid bit and
526 * thus an inconsistent hpte value
527 */
528 smp_rmb();
529 pte1 = ppc_hash64_hpte1(cpu, pteg, i);
530
531 /* Convert format if necessary */
532 if (cpu->env.mmu_model == POWERPC_MMU_3_00 && !cpu->vhyp) {
533 ppc64_v3_new_to_old_hpte(&pte0, &pte1);
534 }
535
536 /* This compares V, B, H (secondary) and the AVPN */
537 if (HPTE64_V_COMPARE(pte0, ptem)) {
538 *pshift = hpte_page_shift(sps, pte0, pte1);
539 /*
540 * If there is no match, ignore the PTE, it could simply
541 * be for a different segment size encoding and the
542 * architecture specifies we should not match. Linux will
543 * potentially leave behind PTEs for the wrong base page
544 * size when demoting segments.
545 */
546 if (*pshift == 0) {
547 continue;
548 }
549 /* We don't do anything with pshift yet as qemu TLB only deals
550 * with 4K pages anyway
551 */
552 pte->pte0 = pte0;
553 pte->pte1 = pte1;
554 ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
555 return ptex + i;
556 }
557 }
558 ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
559 /*
560 * We didn't find a valid entry.
561 */
562 return -1;
563 }
564
565 static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
566 ppc_slb_t *slb, target_ulong eaddr,
567 ppc_hash_pte64_t *pte, unsigned *pshift)
568 {
569 CPUPPCState *env = &cpu->env;
570 hwaddr hash, ptex;
571 uint64_t vsid, epnmask, epn, ptem;
572 const PPCHash64SegmentPageSizes *sps = slb->sps;
573
574 /* The SLB store path should prevent any bad page size encodings
575 * getting in there, so: */
576 assert(sps);
577
578 /* If ISL is set in LPCR we need to clamp the page size to 4K */
579 if (env->spr[SPR_LPCR] & LPCR_ISL) {
580 /* We assume that when using TCG, 4k is first entry of SPS */
581 sps = &cpu->hash64_opts->sps[0];
582 assert(sps->page_shift == 12);
583 }
584
585 epnmask = ~((1ULL << sps->page_shift) - 1);
586
587 if (slb->vsid & SLB_VSID_B) {
588 /* 1TB segment */
589 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
590 epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
591 hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift);
592 } else {
593 /* 256M segment */
594 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
595 epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
596 hash = vsid ^ (epn >> sps->page_shift);
597 }
598 ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
599 ptem |= HPTE64_V_VALID;
600
601 /* Page address translation */
602 qemu_log_mask(CPU_LOG_MMU,
603 "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
604 " hash " TARGET_FMT_plx "\n",
605 ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu), hash);
606
607 /* Primary PTEG lookup */
608 qemu_log_mask(CPU_LOG_MMU,
609 "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
610 " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
611 " hash=" TARGET_FMT_plx "\n",
612 ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu),
613 vsid, ptem, hash);
614 ptex = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift);
615
616 if (ptex == -1) {
617 /* Secondary PTEG lookup */
618 ptem |= HPTE64_V_SECONDARY;
619 qemu_log_mask(CPU_LOG_MMU,
620 "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
621 " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
622 " hash=" TARGET_FMT_plx "\n", ppc_hash64_hpt_base(cpu),
623 ppc_hash64_hpt_mask(cpu), vsid, ptem, ~hash);
624
625 ptex = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift);
626 }
627
628 return ptex;
629 }
630
631 unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
632 uint64_t pte0, uint64_t pte1)
633 {
634 int i;
635
636 if (!(pte0 & HPTE64_V_LARGE)) {
637 return 12;
638 }
639
640 /*
641 * The encodings in env->sps need to be carefully chosen so that
642 * this gives an unambiguous result.
643 */
644 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
645 const PPCHash64SegmentPageSizes *sps = &cpu->hash64_opts->sps[i];
646 unsigned shift;
647
648 if (!sps->page_shift) {
649 break;
650 }
651
652 shift = hpte_page_shift(sps, pte0, pte1);
653 if (shift) {
654 return shift;
655 }
656 }
657
658 return 0;
659 }
660
661 static void ppc_hash64_set_isi(CPUState *cs, uint64_t error_code)
662 {
663 CPUPPCState *env = &POWERPC_CPU(cs)->env;
664 bool vpm;
665
666 if (msr_ir) {
667 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
668 } else {
669 switch (env->mmu_model) {
670 case POWERPC_MMU_3_00:
671 /* Field deprecated in ISAv3.00 - interrupts always go to hyperv */
672 vpm = true;
673 break;
674 default:
675 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
676 break;
677 }
678 }
679 if (vpm && !msr_hv) {
680 cs->exception_index = POWERPC_EXCP_HISI;
681 } else {
682 cs->exception_index = POWERPC_EXCP_ISI;
683 }
684 env->error_code = error_code;
685 }
686
687 static void ppc_hash64_set_dsi(CPUState *cs, uint64_t dar, uint64_t dsisr)
688 {
689 CPUPPCState *env = &POWERPC_CPU(cs)->env;
690 bool vpm;
691
692 if (msr_dr) {
693 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
694 } else {
695 switch (env->mmu_model) {
696 case POWERPC_MMU_3_00:
697 /* Field deprecated in ISAv3.00 - interrupts always go to hyperv */
698 vpm = true;
699 break;
700 default:
701 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
702 break;
703 }
704 }
705 if (vpm && !msr_hv) {
706 cs->exception_index = POWERPC_EXCP_HDSI;
707 env->spr[SPR_HDAR] = dar;
708 env->spr[SPR_HDSISR] = dsisr;
709 } else {
710 cs->exception_index = POWERPC_EXCP_DSI;
711 env->spr[SPR_DAR] = dar;
712 env->spr[SPR_DSISR] = dsisr;
713 }
714 env->error_code = 0;
715 }
716
717
718 int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
719 int rwx, int mmu_idx)
720 {
721 CPUState *cs = CPU(cpu);
722 CPUPPCState *env = &cpu->env;
723 ppc_slb_t *slb;
724 unsigned apshift;
725 hwaddr ptex;
726 ppc_hash_pte64_t pte;
727 int exec_prot, pp_prot, amr_prot, prot;
728 uint64_t new_pte1;
729 const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
730 hwaddr raddr;
731
732 assert((rwx == 0) || (rwx == 1) || (rwx == 2));
733
734 /* Note on LPCR usage: 970 uses HID4, but our special variant
735 * of store_spr copies relevant fields into env->spr[SPR_LPCR].
736 * Similarily we filter unimplemented bits when storing into
737 * LPCR depending on the MMU version. This code can thus just
738 * use the LPCR "as-is".
739 */
740
741 /* 1. Handle real mode accesses */
742 if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
743 /* Translation is supposedly "off" */
744 /* In real mode the top 4 effective address bits are (mostly) ignored */
745 raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
746
747 /* In HV mode, add HRMOR if top EA bit is clear */
748 if (msr_hv || !env->has_hv_mode) {
749 if (!(eaddr >> 63)) {
750 raddr |= env->spr[SPR_HRMOR];
751 }
752 } else {
753 /* Otherwise, check VPM for RMA vs VRMA */
754 if (env->spr[SPR_LPCR] & LPCR_VPM0) {
755 slb = &env->vrma_slb;
756 if (slb->sps) {
757 goto skip_slb_search;
758 }
759 /* Not much else to do here */
760 cs->exception_index = POWERPC_EXCP_MCHECK;
761 env->error_code = 0;
762 return 1;
763 } else if (raddr < env->rmls) {
764 /* RMA. Check bounds in RMLS */
765 raddr |= env->spr[SPR_RMOR];
766 } else {
767 /* The access failed, generate the approriate interrupt */
768 if (rwx == 2) {
769 ppc_hash64_set_isi(cs, SRR1_PROTFAULT);
770 } else {
771 int dsisr = DSISR_PROTFAULT;
772 if (rwx == 1) {
773 dsisr |= DSISR_ISSTORE;
774 }
775 ppc_hash64_set_dsi(cs, eaddr, dsisr);
776 }
777 return 1;
778 }
779 }
780 tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
781 PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
782 TARGET_PAGE_SIZE);
783 return 0;
784 }
785
786 /* 2. Translation is on, so look up the SLB */
787 slb = slb_lookup(cpu, eaddr);
788 if (!slb) {
789 /* No entry found, check if in-memory segment tables are in use */
790 if (ppc64_use_proc_tbl(cpu)) {
791 /* TODO - Unsupported */
792 error_report("Segment Table Support Unimplemented");
793 exit(1);
794 }
795 /* Segment still not found, generate the appropriate interrupt */
796 if (rwx == 2) {
797 cs->exception_index = POWERPC_EXCP_ISEG;
798 env->error_code = 0;
799 } else {
800 cs->exception_index = POWERPC_EXCP_DSEG;
801 env->error_code = 0;
802 env->spr[SPR_DAR] = eaddr;
803 }
804 return 1;
805 }
806
807 skip_slb_search:
808
809 /* 3. Check for segment level no-execute violation */
810 if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
811 ppc_hash64_set_isi(cs, SRR1_NOEXEC_GUARD);
812 return 1;
813 }
814
815 /* 4. Locate the PTE in the hash table */
816 ptex = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
817 if (ptex == -1) {
818 if (rwx == 2) {
819 ppc_hash64_set_isi(cs, SRR1_NOPTE);
820 } else {
821 int dsisr = DSISR_NOPTE;
822 if (rwx == 1) {
823 dsisr |= DSISR_ISSTORE;
824 }
825 ppc_hash64_set_dsi(cs, eaddr, dsisr);
826 }
827 return 1;
828 }
829 qemu_log_mask(CPU_LOG_MMU,
830 "found PTE at index %08" HWADDR_PRIx "\n", ptex);
831
832 /* 5. Check access permissions */
833
834 exec_prot = ppc_hash64_pte_noexec_guard(cpu, pte);
835 pp_prot = ppc_hash64_pte_prot(cpu, slb, pte);
836 amr_prot = ppc_hash64_amr_prot(cpu, pte);
837 prot = exec_prot & pp_prot & amr_prot;
838
839 if ((need_prot[rwx] & ~prot) != 0) {
840 /* Access right violation */
841 qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
842 if (rwx == 2) {
843 int srr1 = 0;
844 if (PAGE_EXEC & ~exec_prot) {
845 srr1 |= SRR1_NOEXEC_GUARD; /* Access violates noexec or guard */
846 } else if (PAGE_EXEC & ~pp_prot) {
847 srr1 |= SRR1_PROTFAULT; /* Access violates access authority */
848 }
849 if (PAGE_EXEC & ~amr_prot) {
850 srr1 |= SRR1_IAMR; /* Access violates virt pg class key prot */
851 }
852 ppc_hash64_set_isi(cs, srr1);
853 } else {
854 int dsisr = 0;
855 if (need_prot[rwx] & ~pp_prot) {
856 dsisr |= DSISR_PROTFAULT;
857 }
858 if (rwx == 1) {
859 dsisr |= DSISR_ISSTORE;
860 }
861 if (need_prot[rwx] & ~amr_prot) {
862 dsisr |= DSISR_AMR;
863 }
864 ppc_hash64_set_dsi(cs, eaddr, dsisr);
865 }
866 return 1;
867 }
868
869 qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
870
871 /* 6. Update PTE referenced and changed bits if necessary */
872
873 new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */
874 if (rwx == 1) {
875 new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */
876 } else {
877 /* Treat the page as read-only for now, so that a later write
878 * will pass through this function again to set the C bit */
879 prot &= ~PAGE_WRITE;
880 }
881
882 if (new_pte1 != pte.pte1) {
883 ppc_hash64_store_hpte(cpu, ptex, pte.pte0, new_pte1);
884 }
885
886 /* 7. Determine the real address from the PTE */
887
888 raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
889
890 tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
891 prot, mmu_idx, 1ULL << apshift);
892
893 return 0;
894 }
895
896 hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
897 {
898 CPUPPCState *env = &cpu->env;
899 ppc_slb_t *slb;
900 hwaddr ptex, raddr;
901 ppc_hash_pte64_t pte;
902 unsigned apshift;
903
904 /* Handle real mode */
905 if (msr_dr == 0) {
906 /* In real mode the top 4 effective address bits are ignored */
907 raddr = addr & 0x0FFFFFFFFFFFFFFFULL;
908
909 /* In HV mode, add HRMOR if top EA bit is clear */
910 if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) {
911 return raddr | env->spr[SPR_HRMOR];
912 }
913
914 /* Otherwise, check VPM for RMA vs VRMA */
915 if (env->spr[SPR_LPCR] & LPCR_VPM0) {
916 slb = &env->vrma_slb;
917 if (!slb->sps) {
918 return -1;
919 }
920 } else if (raddr < env->rmls) {
921 /* RMA. Check bounds in RMLS */
922 return raddr | env->spr[SPR_RMOR];
923 } else {
924 return -1;
925 }
926 } else {
927 slb = slb_lookup(cpu, addr);
928 if (!slb) {
929 return -1;
930 }
931 }
932
933 ptex = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift);
934 if (ptex == -1) {
935 return -1;
936 }
937
938 return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
939 & TARGET_PAGE_MASK;
940 }
941
942 void ppc_hash64_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
943 uint64_t pte0, uint64_t pte1)
944 {
945 hwaddr base;
946 hwaddr offset = ptex * HASH_PTE_SIZE_64;
947
948 if (cpu->vhyp) {
949 PPCVirtualHypervisorClass *vhc =
950 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
951 vhc->store_hpte(cpu->vhyp, ptex, pte0, pte1);
952 return;
953 }
954 base = ppc_hash64_hpt_base(cpu);
955
956 stq_phys(CPU(cpu)->as, base + offset, pte0);
957 stq_phys(CPU(cpu)->as, base + offset + HASH_PTE_SIZE_64 / 2, pte1);
958 }
959
960 void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu, target_ulong ptex,
961 target_ulong pte0, target_ulong pte1)
962 {
963 /*
964 * XXX: given the fact that there are too many segments to
965 * invalidate, and we still don't have a tlb_flush_mask(env, n,
966 * mask) in QEMU, we just invalidate all TLBs
967 */
968 cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH;
969 }
970
971 static void ppc_hash64_update_rmls(PowerPCCPU *cpu)
972 {
973 CPUPPCState *env = &cpu->env;
974 uint64_t lpcr = env->spr[SPR_LPCR];
975
976 /*
977 * This is the full 4 bits encoding of POWER8. Previous
978 * CPUs only support a subset of these but the filtering
979 * is done when writing LPCR
980 */
981 switch ((lpcr & LPCR_RMLS) >> LPCR_RMLS_SHIFT) {
982 case 0x8: /* 32MB */
983 env->rmls = 0x2000000ull;
984 break;
985 case 0x3: /* 64MB */
986 env->rmls = 0x4000000ull;
987 break;
988 case 0x7: /* 128MB */
989 env->rmls = 0x8000000ull;
990 break;
991 case 0x4: /* 256MB */
992 env->rmls = 0x10000000ull;
993 break;
994 case 0x2: /* 1GB */
995 env->rmls = 0x40000000ull;
996 break;
997 case 0x1: /* 16GB */
998 env->rmls = 0x400000000ull;
999 break;
1000 default:
1001 /* What to do here ??? */
1002 env->rmls = 0;
1003 }
1004 }
1005
1006 static void ppc_hash64_update_vrma(PowerPCCPU *cpu)
1007 {
1008 CPUPPCState *env = &cpu->env;
1009 const PPCHash64SegmentPageSizes *sps = NULL;
1010 target_ulong esid, vsid, lpcr;
1011 ppc_slb_t *slb = &env->vrma_slb;
1012 uint32_t vrmasd;
1013 int i;
1014
1015 /* First clear it */
1016 slb->esid = slb->vsid = 0;
1017 slb->sps = NULL;
1018
1019 /* Is VRMA enabled ? */
1020 lpcr = env->spr[SPR_LPCR];
1021 if (!(lpcr & LPCR_VPM0)) {
1022 return;
1023 }
1024
1025 /* Make one up. Mostly ignore the ESID which will not be
1026 * needed for translation
1027 */
1028 vsid = SLB_VSID_VRMA;
1029 vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT;
1030 vsid |= (vrmasd << 4) & (SLB_VSID_L | SLB_VSID_LP);
1031 esid = SLB_ESID_V;
1032
1033 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
1034 const PPCHash64SegmentPageSizes *sps1 = &cpu->hash64_opts->sps[i];
1035
1036 if (!sps1->page_shift) {
1037 break;
1038 }
1039
1040 if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
1041 sps = sps1;
1042 break;
1043 }
1044 }
1045
1046 if (!sps) {
1047 error_report("Bad page size encoding esid 0x"TARGET_FMT_lx
1048 " vsid 0x"TARGET_FMT_lx, esid, vsid);
1049 return;
1050 }
1051
1052 slb->vsid = vsid;
1053 slb->esid = esid;
1054 slb->sps = sps;
1055 }
1056
1057 void ppc_store_lpcr(PowerPCCPU *cpu, target_ulong val)
1058 {
1059 CPUPPCState *env = &cpu->env;
1060 uint64_t lpcr = 0;
1061
1062 /* Filter out bits */
1063 switch (env->mmu_model) {
1064 case POWERPC_MMU_64B: /* 970 */
1065 if (val & 0x40) {
1066 lpcr |= LPCR_LPES0;
1067 }
1068 if (val & 0x8000000000000000ull) {
1069 lpcr |= LPCR_LPES1;
1070 }
1071 if (val & 0x20) {
1072 lpcr |= (0x4ull << LPCR_RMLS_SHIFT);
1073 }
1074 if (val & 0x4000000000000000ull) {
1075 lpcr |= (0x2ull << LPCR_RMLS_SHIFT);
1076 }
1077 if (val & 0x2000000000000000ull) {
1078 lpcr |= (0x1ull << LPCR_RMLS_SHIFT);
1079 }
1080 env->spr[SPR_RMOR] = ((lpcr >> 41) & 0xffffull) << 26;
1081
1082 /* XXX We could also write LPID from HID4 here
1083 * but since we don't tag any translation on it
1084 * it doesn't actually matter
1085 */
1086 /* XXX For proper emulation of 970 we also need
1087 * to dig HRMOR out of HID5
1088 */
1089 break;
1090 case POWERPC_MMU_2_03: /* P5p */
1091 lpcr = val & (LPCR_RMLS | LPCR_ILE |
1092 LPCR_LPES0 | LPCR_LPES1 |
1093 LPCR_RMI | LPCR_HDICE);
1094 break;
1095 case POWERPC_MMU_2_06: /* P7 */
1096 lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_DPFD |
1097 LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
1098 LPCR_P7_PECE0 | LPCR_P7_PECE1 | LPCR_P7_PECE2 |
1099 LPCR_MER | LPCR_TC |
1100 LPCR_LPES0 | LPCR_LPES1 | LPCR_HDICE);
1101 break;
1102 case POWERPC_MMU_2_07: /* P8 */
1103 lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_KBV |
1104 LPCR_DPFD | LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
1105 LPCR_AIL | LPCR_ONL | LPCR_P8_PECE0 | LPCR_P8_PECE1 |
1106 LPCR_P8_PECE2 | LPCR_P8_PECE3 | LPCR_P8_PECE4 |
1107 LPCR_MER | LPCR_TC | LPCR_LPES0 | LPCR_HDICE);
1108 break;
1109 case POWERPC_MMU_3_00: /* P9 */
1110 lpcr = val & (LPCR_VPM1 | LPCR_ISL | LPCR_KBV | LPCR_DPFD |
1111 (LPCR_PECE_U_MASK & LPCR_HVEE) | LPCR_ILE | LPCR_AIL |
1112 LPCR_UPRT | LPCR_EVIRT | LPCR_ONL | LPCR_HR |
1113 (LPCR_PECE_L_MASK & (LPCR_PDEE | LPCR_HDEE | LPCR_EEE |
1114 LPCR_DEE | LPCR_OEE)) | LPCR_MER | LPCR_GTSE | LPCR_TC |
1115 LPCR_HEIC | LPCR_LPES0 | LPCR_HVICE | LPCR_HDICE);
1116 /*
1117 * If we have a virtual hypervisor, we need to bring back RMLS. It
1118 * doesn't exist on an actual P9 but that's all we know how to
1119 * configure with softmmu at the moment
1120 */
1121 if (cpu->vhyp) {
1122 lpcr |= (val & LPCR_RMLS);
1123 }
1124 break;
1125 default:
1126 ;
1127 }
1128 env->spr[SPR_LPCR] = lpcr;
1129 ppc_hash64_update_rmls(cpu);
1130 ppc_hash64_update_vrma(cpu);
1131 }
1132
1133 void helper_store_lpcr(CPUPPCState *env, target_ulong val)
1134 {
1135 PowerPCCPU *cpu = ppc_env_get_cpu(env);
1136
1137 ppc_store_lpcr(cpu, val);
1138 }
1139
1140 void ppc_hash64_init(PowerPCCPU *cpu)
1141 {
1142 CPUPPCState *env = &cpu->env;
1143 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1144
1145 if (!pcc->hash64_opts) {
1146 assert(!(env->mmu_model & POWERPC_MMU_64));
1147 return;
1148 }
1149
1150 cpu->hash64_opts = g_memdup(pcc->hash64_opts, sizeof(*cpu->hash64_opts));
1151 }
1152
1153 void ppc_hash64_finalize(PowerPCCPU *cpu)
1154 {
1155 g_free(cpu->hash64_opts);
1156 }
1157
1158 const PPCHash64Options ppc_hash64_opts_basic = {
1159 .flags = 0,
1160 .slb_size = 64,
1161 .sps = {
1162 { .page_shift = 12, /* 4K */
1163 .slb_enc = 0,
1164 .enc = { { .page_shift = 12, .pte_enc = 0 } }
1165 },
1166 { .page_shift = 24, /* 16M */
1167 .slb_enc = 0x100,
1168 .enc = { { .page_shift = 24, .pte_enc = 0 } }
1169 },
1170 },
1171 };
1172
1173 const PPCHash64Options ppc_hash64_opts_POWER7 = {
1174 .flags = PPC_HASH64_1TSEG | PPC_HASH64_AMR | PPC_HASH64_CI_LARGEPAGE,
1175 .slb_size = 32,
1176 .sps = {
1177 {
1178 .page_shift = 12, /* 4K */
1179 .slb_enc = 0,
1180 .enc = { { .page_shift = 12, .pte_enc = 0 },
1181 { .page_shift = 16, .pte_enc = 0x7 },
1182 { .page_shift = 24, .pte_enc = 0x38 }, },
1183 },
1184 {
1185 .page_shift = 16, /* 64K */
1186 .slb_enc = SLB_VSID_64K,
1187 .enc = { { .page_shift = 16, .pte_enc = 0x1 },
1188 { .page_shift = 24, .pte_enc = 0x8 }, },
1189 },
1190 {
1191 .page_shift = 24, /* 16M */
1192 .slb_enc = SLB_VSID_16M,
1193 .enc = { { .page_shift = 24, .pte_enc = 0 }, },
1194 },
1195 {
1196 .page_shift = 34, /* 16G */
1197 .slb_enc = SLB_VSID_16G,
1198 .enc = { { .page_shift = 34, .pte_enc = 0x3 }, },
1199 },
1200 }
1201 };
1202
1203 void ppc_hash64_filter_pagesizes(PowerPCCPU *cpu,
1204 bool (*cb)(void *, uint32_t, uint32_t),
1205 void *opaque)
1206 {
1207 PPCHash64Options *opts = cpu->hash64_opts;
1208 int i;
1209 int n = 0;
1210 bool ci_largepage = false;
1211
1212 assert(opts);
1213
1214 n = 0;
1215 for (i = 0; i < ARRAY_SIZE(opts->sps); i++) {
1216 PPCHash64SegmentPageSizes *sps = &opts->sps[i];
1217 int j;
1218 int m = 0;
1219
1220 assert(n <= i);
1221
1222 if (!sps->page_shift) {
1223 break;
1224 }
1225
1226 for (j = 0; j < ARRAY_SIZE(sps->enc); j++) {
1227 PPCHash64PageSize *ps = &sps->enc[j];
1228
1229 assert(m <= j);
1230 if (!ps->page_shift) {
1231 break;
1232 }
1233
1234 if (cb(opaque, sps->page_shift, ps->page_shift)) {
1235 if (ps->page_shift >= 16) {
1236 ci_largepage = true;
1237 }
1238 sps->enc[m++] = *ps;
1239 }
1240 }
1241
1242 /* Clear rest of the row */
1243 for (j = m; j < ARRAY_SIZE(sps->enc); j++) {
1244 memset(&sps->enc[j], 0, sizeof(sps->enc[j]));
1245 }
1246
1247 if (m) {
1248 n++;
1249 }
1250 }
1251
1252 /* Clear the rest of the table */
1253 for (i = n; i < ARRAY_SIZE(opts->sps); i++) {
1254 memset(&opts->sps[i], 0, sizeof(opts->sps[i]));
1255 }
1256
1257 if (!ci_largepage) {
1258 opts->flags &= ~PPC_HASH64_CI_LARGEPAGE;
1259 }
1260 }