]> git.proxmox.com Git - mirror_qemu.git/blob - target/ppc/mmu-hash64.c
Merge remote-tracking branch 'remotes/armbru/tags/pull-misc-2018-02-07-v4' into staging
[mirror_qemu.git] / target / ppc / mmu-hash64.c
1 /*
2 * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 * Copyright (c) 2013 David Gibson, IBM Corporation
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 */
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
24 #include "qemu/error-report.h"
25 #include "sysemu/hw_accel.h"
26 #include "kvm_ppc.h"
27 #include "mmu-hash64.h"
28 #include "exec/log.h"
29 #include "hw/hw.h"
30 #include "mmu-book3s-v3.h"
31
32 //#define DEBUG_SLB
33
34 #ifdef DEBUG_SLB
35 # define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
36 #else
37 # define LOG_SLB(...) do { } while (0)
38 #endif
39
40 /*
41 * SLB handling
42 */
43
44 static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
45 {
46 CPUPPCState *env = &cpu->env;
47 uint64_t esid_256M, esid_1T;
48 int n;
49
50 LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
51
52 esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
53 esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
54
55 for (n = 0; n < env->slb_nr; n++) {
56 ppc_slb_t *slb = &env->slb[n];
57
58 LOG_SLB("%s: slot %d %016" PRIx64 " %016"
59 PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
60 /* We check for 1T matches on all MMUs here - if the MMU
61 * doesn't have 1T segment support, we will have prevented 1T
62 * entries from being inserted in the slbmte code. */
63 if (((slb->esid == esid_256M) &&
64 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
65 || ((slb->esid == esid_1T) &&
66 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
67 return slb;
68 }
69 }
70
71 return NULL;
72 }
73
74 void dump_slb(FILE *f, fprintf_function cpu_fprintf, PowerPCCPU *cpu)
75 {
76 CPUPPCState *env = &cpu->env;
77 int i;
78 uint64_t slbe, slbv;
79
80 cpu_synchronize_state(CPU(cpu));
81
82 cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
83 for (i = 0; i < env->slb_nr; i++) {
84 slbe = env->slb[i].esid;
85 slbv = env->slb[i].vsid;
86 if (slbe == 0 && slbv == 0) {
87 continue;
88 }
89 cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
90 i, slbe, slbv);
91 }
92 }
93
94 void helper_slbia(CPUPPCState *env)
95 {
96 int n;
97
98 /* XXX: Warning: slbia never invalidates the first segment */
99 for (n = 1; n < env->slb_nr; n++) {
100 ppc_slb_t *slb = &env->slb[n];
101
102 if (slb->esid & SLB_ESID_V) {
103 slb->esid &= ~SLB_ESID_V;
104 /* XXX: given the fact that segment size is 256 MB or 1TB,
105 * and we still don't have a tlb_flush_mask(env, n, mask)
106 * in QEMU, we just invalidate all TLBs
107 */
108 env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
109 }
110 }
111 }
112
113 static void __helper_slbie(CPUPPCState *env, target_ulong addr,
114 target_ulong global)
115 {
116 PowerPCCPU *cpu = ppc_env_get_cpu(env);
117 ppc_slb_t *slb;
118
119 slb = slb_lookup(cpu, addr);
120 if (!slb) {
121 return;
122 }
123
124 if (slb->esid & SLB_ESID_V) {
125 slb->esid &= ~SLB_ESID_V;
126
127 /* XXX: given the fact that segment size is 256 MB or 1TB,
128 * and we still don't have a tlb_flush_mask(env, n, mask)
129 * in QEMU, we just invalidate all TLBs
130 */
131 env->tlb_need_flush |=
132 (global == false ? TLB_NEED_LOCAL_FLUSH : TLB_NEED_GLOBAL_FLUSH);
133 }
134 }
135
136 void helper_slbie(CPUPPCState *env, target_ulong addr)
137 {
138 __helper_slbie(env, addr, false);
139 }
140
141 void helper_slbieg(CPUPPCState *env, target_ulong addr)
142 {
143 __helper_slbie(env, addr, true);
144 }
145
146 int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
147 target_ulong esid, target_ulong vsid)
148 {
149 CPUPPCState *env = &cpu->env;
150 ppc_slb_t *slb = &env->slb[slot];
151 const struct ppc_one_seg_page_size *sps = NULL;
152 int i;
153
154 if (slot >= env->slb_nr) {
155 return -1; /* Bad slot number */
156 }
157 if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
158 return -1; /* Reserved bits set */
159 }
160 if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
161 return -1; /* Bad segment size */
162 }
163 if ((vsid & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) {
164 return -1; /* 1T segment on MMU that doesn't support it */
165 }
166
167 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
168 const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
169
170 if (!sps1->page_shift) {
171 break;
172 }
173
174 if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
175 sps = sps1;
176 break;
177 }
178 }
179
180 if (!sps) {
181 error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
182 " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
183 slot, esid, vsid);
184 return -1;
185 }
186
187 slb->esid = esid;
188 slb->vsid = vsid;
189 slb->sps = sps;
190
191 LOG_SLB("%s: " TARGET_FMT_lu " " TARGET_FMT_lx " - " TARGET_FMT_lx
192 " => %016" PRIx64 " %016" PRIx64 "\n", __func__, slot, esid, vsid,
193 slb->esid, slb->vsid);
194
195 return 0;
196 }
197
198 static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
199 target_ulong *rt)
200 {
201 CPUPPCState *env = &cpu->env;
202 int slot = rb & 0xfff;
203 ppc_slb_t *slb = &env->slb[slot];
204
205 if (slot >= env->slb_nr) {
206 return -1;
207 }
208
209 *rt = slb->esid;
210 return 0;
211 }
212
213 static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
214 target_ulong *rt)
215 {
216 CPUPPCState *env = &cpu->env;
217 int slot = rb & 0xfff;
218 ppc_slb_t *slb = &env->slb[slot];
219
220 if (slot >= env->slb_nr) {
221 return -1;
222 }
223
224 *rt = slb->vsid;
225 return 0;
226 }
227
228 static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
229 target_ulong *rt)
230 {
231 CPUPPCState *env = &cpu->env;
232 ppc_slb_t *slb;
233
234 if (!msr_is_64bit(env, env->msr)) {
235 rb &= 0xffffffff;
236 }
237 slb = slb_lookup(cpu, rb);
238 if (slb == NULL) {
239 *rt = (target_ulong)-1ul;
240 } else {
241 *rt = slb->vsid;
242 }
243 return 0;
244 }
245
246 void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
247 {
248 PowerPCCPU *cpu = ppc_env_get_cpu(env);
249
250 if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
251 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
252 POWERPC_EXCP_INVAL, GETPC());
253 }
254 }
255
256 target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
257 {
258 PowerPCCPU *cpu = ppc_env_get_cpu(env);
259 target_ulong rt = 0;
260
261 if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
262 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
263 POWERPC_EXCP_INVAL, GETPC());
264 }
265 return rt;
266 }
267
268 target_ulong helper_find_slb_vsid(CPUPPCState *env, target_ulong rb)
269 {
270 PowerPCCPU *cpu = ppc_env_get_cpu(env);
271 target_ulong rt = 0;
272
273 if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) {
274 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
275 POWERPC_EXCP_INVAL, GETPC());
276 }
277 return rt;
278 }
279
280 target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
281 {
282 PowerPCCPU *cpu = ppc_env_get_cpu(env);
283 target_ulong rt = 0;
284
285 if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
286 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
287 POWERPC_EXCP_INVAL, GETPC());
288 }
289 return rt;
290 }
291
292 /* Check No-Execute or Guarded Storage */
293 static inline int ppc_hash64_pte_noexec_guard(PowerPCCPU *cpu,
294 ppc_hash_pte64_t pte)
295 {
296 /* Exec permissions CANNOT take away read or write permissions */
297 return (pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G) ?
298 PAGE_READ | PAGE_WRITE : PAGE_READ | PAGE_WRITE | PAGE_EXEC;
299 }
300
301 /* Check Basic Storage Protection */
302 static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
303 ppc_slb_t *slb, ppc_hash_pte64_t pte)
304 {
305 CPUPPCState *env = &cpu->env;
306 unsigned pp, key;
307 /* Some pp bit combinations have undefined behaviour, so default
308 * to no access in those cases */
309 int prot = 0;
310
311 key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
312 : (slb->vsid & SLB_VSID_KS));
313 pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
314
315 if (key == 0) {
316 switch (pp) {
317 case 0x0:
318 case 0x1:
319 case 0x2:
320 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
321 break;
322
323 case 0x3:
324 case 0x6:
325 prot = PAGE_READ | PAGE_EXEC;
326 break;
327 }
328 } else {
329 switch (pp) {
330 case 0x0:
331 case 0x6:
332 break;
333
334 case 0x1:
335 case 0x3:
336 prot = PAGE_READ | PAGE_EXEC;
337 break;
338
339 case 0x2:
340 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
341 break;
342 }
343 }
344
345 return prot;
346 }
347
348 /* Check the instruction access permissions specified in the IAMR */
349 static int ppc_hash64_iamr_prot(PowerPCCPU *cpu, int key)
350 {
351 CPUPPCState *env = &cpu->env;
352 int iamr_bits = (env->spr[SPR_IAMR] >> 2 * (31 - key)) & 0x3;
353
354 /*
355 * An instruction fetch is permitted if the IAMR bit is 0.
356 * If the bit is set, return PAGE_READ | PAGE_WRITE because this bit
357 * can only take away EXEC permissions not READ or WRITE permissions.
358 * If bit is cleared return PAGE_READ | PAGE_WRITE | PAGE_EXEC since
359 * EXEC permissions are allowed.
360 */
361 return (iamr_bits & 0x1) ? PAGE_READ | PAGE_WRITE :
362 PAGE_READ | PAGE_WRITE | PAGE_EXEC;
363 }
364
365 static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
366 {
367 CPUPPCState *env = &cpu->env;
368 int key, amrbits;
369 int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
370
371 /* Only recent MMUs implement Virtual Page Class Key Protection */
372 if (!(env->mmu_model & POWERPC_MMU_AMR)) {
373 return prot;
374 }
375
376 key = HPTE64_R_KEY(pte.pte1);
377 amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3;
378
379 /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
380 /* env->spr[SPR_AMR]); */
381
382 /*
383 * A store is permitted if the AMR bit is 0. Remove write
384 * protection if it is set.
385 */
386 if (amrbits & 0x2) {
387 prot &= ~PAGE_WRITE;
388 }
389 /*
390 * A load is permitted if the AMR bit is 0. Remove read
391 * protection if it is set.
392 */
393 if (amrbits & 0x1) {
394 prot &= ~PAGE_READ;
395 }
396
397 switch (env->mmu_model) {
398 /*
399 * MMU version 2.07 and later support IAMR
400 * Check if the IAMR allows the instruction access - it will return
401 * PAGE_EXEC if it doesn't (and thus that bit will be cleared) or 0
402 * if it does (and prot will be unchanged indicating execution support).
403 */
404 case POWERPC_MMU_2_07:
405 case POWERPC_MMU_3_00:
406 prot &= ppc_hash64_iamr_prot(cpu, key);
407 break;
408 default:
409 break;
410 }
411
412 return prot;
413 }
414
415 const ppc_hash_pte64_t *ppc_hash64_map_hptes(PowerPCCPU *cpu,
416 hwaddr ptex, int n)
417 {
418 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
419 hwaddr base = ppc_hash64_hpt_base(cpu);
420 hwaddr plen = n * HASH_PTE_SIZE_64;
421 const ppc_hash_pte64_t *hptes;
422
423 if (cpu->vhyp) {
424 PPCVirtualHypervisorClass *vhc =
425 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
426 return vhc->map_hptes(cpu->vhyp, ptex, n);
427 }
428
429 if (!base) {
430 return NULL;
431 }
432
433 hptes = address_space_map(CPU(cpu)->as, base + pte_offset, &plen, false);
434 if (plen < (n * HASH_PTE_SIZE_64)) {
435 hw_error("%s: Unable to map all requested HPTEs\n", __func__);
436 }
437 return hptes;
438 }
439
440 void ppc_hash64_unmap_hptes(PowerPCCPU *cpu, const ppc_hash_pte64_t *hptes,
441 hwaddr ptex, int n)
442 {
443 if (cpu->vhyp) {
444 PPCVirtualHypervisorClass *vhc =
445 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
446 vhc->unmap_hptes(cpu->vhyp, hptes, ptex, n);
447 return;
448 }
449
450 address_space_unmap(CPU(cpu)->as, (void *)hptes, n * HASH_PTE_SIZE_64,
451 false, n * HASH_PTE_SIZE_64);
452 }
453
454 static unsigned hpte_page_shift(const struct ppc_one_seg_page_size *sps,
455 uint64_t pte0, uint64_t pte1)
456 {
457 int i;
458
459 if (!(pte0 & HPTE64_V_LARGE)) {
460 if (sps->page_shift != 12) {
461 /* 4kiB page in a non 4kiB segment */
462 return 0;
463 }
464 /* Normal 4kiB page */
465 return 12;
466 }
467
468 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
469 const struct ppc_one_page_size *ps = &sps->enc[i];
470 uint64_t mask;
471
472 if (!ps->page_shift) {
473 break;
474 }
475
476 if (ps->page_shift == 12) {
477 /* L bit is set so this can't be a 4kiB page */
478 continue;
479 }
480
481 mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;
482
483 if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
484 return ps->page_shift;
485 }
486 }
487
488 return 0; /* Bad page size encoding */
489 }
490
491 static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
492 const struct ppc_one_seg_page_size *sps,
493 target_ulong ptem,
494 ppc_hash_pte64_t *pte, unsigned *pshift)
495 {
496 int i;
497 const ppc_hash_pte64_t *pteg;
498 target_ulong pte0, pte1;
499 target_ulong ptex;
500
501 ptex = (hash & ppc_hash64_hpt_mask(cpu)) * HPTES_PER_GROUP;
502 pteg = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
503 if (!pteg) {
504 return -1;
505 }
506 for (i = 0; i < HPTES_PER_GROUP; i++) {
507 pte0 = ppc_hash64_hpte0(cpu, pteg, i);
508 pte1 = ppc_hash64_hpte1(cpu, pteg, i);
509
510 /* This compares V, B, H (secondary) and the AVPN */
511 if (HPTE64_V_COMPARE(pte0, ptem)) {
512 *pshift = hpte_page_shift(sps, pte0, pte1);
513 /*
514 * If there is no match, ignore the PTE, it could simply
515 * be for a different segment size encoding and the
516 * architecture specifies we should not match. Linux will
517 * potentially leave behind PTEs for the wrong base page
518 * size when demoting segments.
519 */
520 if (*pshift == 0) {
521 continue;
522 }
523 /* We don't do anything with pshift yet as qemu TLB only deals
524 * with 4K pages anyway
525 */
526 pte->pte0 = pte0;
527 pte->pte1 = pte1;
528 ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
529 return ptex + i;
530 }
531 }
532 ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
533 /*
534 * We didn't find a valid entry.
535 */
536 return -1;
537 }
538
539 static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
540 ppc_slb_t *slb, target_ulong eaddr,
541 ppc_hash_pte64_t *pte, unsigned *pshift)
542 {
543 CPUPPCState *env = &cpu->env;
544 hwaddr hash, ptex;
545 uint64_t vsid, epnmask, epn, ptem;
546 const struct ppc_one_seg_page_size *sps = slb->sps;
547
548 /* The SLB store path should prevent any bad page size encodings
549 * getting in there, so: */
550 assert(sps);
551
552 /* If ISL is set in LPCR we need to clamp the page size to 4K */
553 if (env->spr[SPR_LPCR] & LPCR_ISL) {
554 /* We assume that when using TCG, 4k is first entry of SPS */
555 sps = &env->sps.sps[0];
556 assert(sps->page_shift == 12);
557 }
558
559 epnmask = ~((1ULL << sps->page_shift) - 1);
560
561 if (slb->vsid & SLB_VSID_B) {
562 /* 1TB segment */
563 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
564 epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
565 hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift);
566 } else {
567 /* 256M segment */
568 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
569 epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
570 hash = vsid ^ (epn >> sps->page_shift);
571 }
572 ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
573 ptem |= HPTE64_V_VALID;
574
575 /* Page address translation */
576 qemu_log_mask(CPU_LOG_MMU,
577 "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
578 " hash " TARGET_FMT_plx "\n",
579 ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu), hash);
580
581 /* Primary PTEG lookup */
582 qemu_log_mask(CPU_LOG_MMU,
583 "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
584 " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
585 " hash=" TARGET_FMT_plx "\n",
586 ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu),
587 vsid, ptem, hash);
588 ptex = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift);
589
590 if (ptex == -1) {
591 /* Secondary PTEG lookup */
592 ptem |= HPTE64_V_SECONDARY;
593 qemu_log_mask(CPU_LOG_MMU,
594 "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
595 " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
596 " hash=" TARGET_FMT_plx "\n", ppc_hash64_hpt_base(cpu),
597 ppc_hash64_hpt_mask(cpu), vsid, ptem, ~hash);
598
599 ptex = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift);
600 }
601
602 return ptex;
603 }
604
605 unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
606 uint64_t pte0, uint64_t pte1)
607 {
608 CPUPPCState *env = &cpu->env;
609 int i;
610
611 if (!(pte0 & HPTE64_V_LARGE)) {
612 return 12;
613 }
614
615 /*
616 * The encodings in env->sps need to be carefully chosen so that
617 * this gives an unambiguous result.
618 */
619 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
620 const struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
621 unsigned shift;
622
623 if (!sps->page_shift) {
624 break;
625 }
626
627 shift = hpte_page_shift(sps, pte0, pte1);
628 if (shift) {
629 return shift;
630 }
631 }
632
633 return 0;
634 }
635
636 static void ppc_hash64_set_isi(CPUState *cs, CPUPPCState *env,
637 uint64_t error_code)
638 {
639 bool vpm;
640
641 if (msr_ir) {
642 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
643 } else {
644 switch (env->mmu_model) {
645 case POWERPC_MMU_3_00:
646 /* Field deprecated in ISAv3.00 - interrupts always go to hyperv */
647 vpm = true;
648 break;
649 default:
650 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
651 break;
652 }
653 }
654 if (vpm && !msr_hv) {
655 cs->exception_index = POWERPC_EXCP_HISI;
656 } else {
657 cs->exception_index = POWERPC_EXCP_ISI;
658 }
659 env->error_code = error_code;
660 }
661
662 static void ppc_hash64_set_dsi(CPUState *cs, CPUPPCState *env, uint64_t dar,
663 uint64_t dsisr)
664 {
665 bool vpm;
666
667 if (msr_dr) {
668 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
669 } else {
670 switch (env->mmu_model) {
671 case POWERPC_MMU_3_00:
672 /* Field deprecated in ISAv3.00 - interrupts always go to hyperv */
673 vpm = true;
674 break;
675 default:
676 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
677 break;
678 }
679 }
680 if (vpm && !msr_hv) {
681 cs->exception_index = POWERPC_EXCP_HDSI;
682 env->spr[SPR_HDAR] = dar;
683 env->spr[SPR_HDSISR] = dsisr;
684 } else {
685 cs->exception_index = POWERPC_EXCP_DSI;
686 env->spr[SPR_DAR] = dar;
687 env->spr[SPR_DSISR] = dsisr;
688 }
689 env->error_code = 0;
690 }
691
692
693 int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
694 int rwx, int mmu_idx)
695 {
696 CPUState *cs = CPU(cpu);
697 CPUPPCState *env = &cpu->env;
698 ppc_slb_t *slb;
699 unsigned apshift;
700 hwaddr ptex;
701 ppc_hash_pte64_t pte;
702 int exec_prot, pp_prot, amr_prot, prot;
703 uint64_t new_pte1;
704 const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
705 hwaddr raddr;
706
707 assert((rwx == 0) || (rwx == 1) || (rwx == 2));
708
709 /* Note on LPCR usage: 970 uses HID4, but our special variant
710 * of store_spr copies relevant fields into env->spr[SPR_LPCR].
711 * Similarily we filter unimplemented bits when storing into
712 * LPCR depending on the MMU version. This code can thus just
713 * use the LPCR "as-is".
714 */
715
716 /* 1. Handle real mode accesses */
717 if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
718 /* Translation is supposedly "off" */
719 /* In real mode the top 4 effective address bits are (mostly) ignored */
720 raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
721
722 /* In HV mode, add HRMOR if top EA bit is clear */
723 if (msr_hv || !env->has_hv_mode) {
724 if (!(eaddr >> 63)) {
725 raddr |= env->spr[SPR_HRMOR];
726 }
727 } else {
728 /* Otherwise, check VPM for RMA vs VRMA */
729 if (env->spr[SPR_LPCR] & LPCR_VPM0) {
730 slb = &env->vrma_slb;
731 if (slb->sps) {
732 goto skip_slb_search;
733 }
734 /* Not much else to do here */
735 cs->exception_index = POWERPC_EXCP_MCHECK;
736 env->error_code = 0;
737 return 1;
738 } else if (raddr < env->rmls) {
739 /* RMA. Check bounds in RMLS */
740 raddr |= env->spr[SPR_RMOR];
741 } else {
742 /* The access failed, generate the approriate interrupt */
743 if (rwx == 2) {
744 ppc_hash64_set_isi(cs, env, SRR1_PROTFAULT);
745 } else {
746 int dsisr = DSISR_PROTFAULT;
747 if (rwx == 1) {
748 dsisr |= DSISR_ISSTORE;
749 }
750 ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
751 }
752 return 1;
753 }
754 }
755 tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
756 PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
757 TARGET_PAGE_SIZE);
758 return 0;
759 }
760
761 /* 2. Translation is on, so look up the SLB */
762 slb = slb_lookup(cpu, eaddr);
763 if (!slb) {
764 /* No entry found, check if in-memory segment tables are in use */
765 if ((env->mmu_model & POWERPC_MMU_V3) && ppc64_use_proc_tbl(cpu)) {
766 /* TODO - Unsupported */
767 error_report("Segment Table Support Unimplemented");
768 exit(1);
769 }
770 /* Segment still not found, generate the appropriate interrupt */
771 if (rwx == 2) {
772 cs->exception_index = POWERPC_EXCP_ISEG;
773 env->error_code = 0;
774 } else {
775 cs->exception_index = POWERPC_EXCP_DSEG;
776 env->error_code = 0;
777 env->spr[SPR_DAR] = eaddr;
778 }
779 return 1;
780 }
781
782 skip_slb_search:
783
784 /* 3. Check for segment level no-execute violation */
785 if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
786 ppc_hash64_set_isi(cs, env, SRR1_NOEXEC_GUARD);
787 return 1;
788 }
789
790 /* 4. Locate the PTE in the hash table */
791 ptex = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
792 if (ptex == -1) {
793 if (rwx == 2) {
794 ppc_hash64_set_isi(cs, env, SRR1_NOPTE);
795 } else {
796 int dsisr = DSISR_NOPTE;
797 if (rwx == 1) {
798 dsisr |= DSISR_ISSTORE;
799 }
800 ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
801 }
802 return 1;
803 }
804 qemu_log_mask(CPU_LOG_MMU,
805 "found PTE at index %08" HWADDR_PRIx "\n", ptex);
806
807 /* 5. Check access permissions */
808
809 exec_prot = ppc_hash64_pte_noexec_guard(cpu, pte);
810 pp_prot = ppc_hash64_pte_prot(cpu, slb, pte);
811 amr_prot = ppc_hash64_amr_prot(cpu, pte);
812 prot = exec_prot & pp_prot & amr_prot;
813
814 if ((need_prot[rwx] & ~prot) != 0) {
815 /* Access right violation */
816 qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
817 if (rwx == 2) {
818 int srr1 = 0;
819 if (PAGE_EXEC & ~exec_prot) {
820 srr1 |= SRR1_NOEXEC_GUARD; /* Access violates noexec or guard */
821 } else if (PAGE_EXEC & ~pp_prot) {
822 srr1 |= SRR1_PROTFAULT; /* Access violates access authority */
823 }
824 if (PAGE_EXEC & ~amr_prot) {
825 srr1 |= SRR1_IAMR; /* Access violates virt pg class key prot */
826 }
827 ppc_hash64_set_isi(cs, env, srr1);
828 } else {
829 int dsisr = 0;
830 if (need_prot[rwx] & ~pp_prot) {
831 dsisr |= DSISR_PROTFAULT;
832 }
833 if (rwx == 1) {
834 dsisr |= DSISR_ISSTORE;
835 }
836 if (need_prot[rwx] & ~amr_prot) {
837 dsisr |= DSISR_AMR;
838 }
839 ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
840 }
841 return 1;
842 }
843
844 qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
845
846 /* 6. Update PTE referenced and changed bits if necessary */
847
848 new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */
849 if (rwx == 1) {
850 new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */
851 } else {
852 /* Treat the page as read-only for now, so that a later write
853 * will pass through this function again to set the C bit */
854 prot &= ~PAGE_WRITE;
855 }
856
857 if (new_pte1 != pte.pte1) {
858 ppc_hash64_store_hpte(cpu, ptex, pte.pte0, new_pte1);
859 }
860
861 /* 7. Determine the real address from the PTE */
862
863 raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
864
865 tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
866 prot, mmu_idx, 1ULL << apshift);
867
868 return 0;
869 }
870
871 hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
872 {
873 CPUPPCState *env = &cpu->env;
874 ppc_slb_t *slb;
875 hwaddr ptex, raddr;
876 ppc_hash_pte64_t pte;
877 unsigned apshift;
878
879 /* Handle real mode */
880 if (msr_dr == 0) {
881 /* In real mode the top 4 effective address bits are ignored */
882 raddr = addr & 0x0FFFFFFFFFFFFFFFULL;
883
884 /* In HV mode, add HRMOR if top EA bit is clear */
885 if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) {
886 return raddr | env->spr[SPR_HRMOR];
887 }
888
889 /* Otherwise, check VPM for RMA vs VRMA */
890 if (env->spr[SPR_LPCR] & LPCR_VPM0) {
891 slb = &env->vrma_slb;
892 if (!slb->sps) {
893 return -1;
894 }
895 } else if (raddr < env->rmls) {
896 /* RMA. Check bounds in RMLS */
897 return raddr | env->spr[SPR_RMOR];
898 } else {
899 return -1;
900 }
901 } else {
902 slb = slb_lookup(cpu, addr);
903 if (!slb) {
904 return -1;
905 }
906 }
907
908 ptex = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift);
909 if (ptex == -1) {
910 return -1;
911 }
912
913 return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
914 & TARGET_PAGE_MASK;
915 }
916
917 void ppc_hash64_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
918 uint64_t pte0, uint64_t pte1)
919 {
920 hwaddr base = ppc_hash64_hpt_base(cpu);
921 hwaddr offset = ptex * HASH_PTE_SIZE_64;
922
923 if (cpu->vhyp) {
924 PPCVirtualHypervisorClass *vhc =
925 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
926 vhc->store_hpte(cpu->vhyp, ptex, pte0, pte1);
927 return;
928 }
929
930 stq_phys(CPU(cpu)->as, base + offset, pte0);
931 stq_phys(CPU(cpu)->as, base + offset + HASH_PTE_SIZE_64 / 2, pte1);
932 }
933
934 void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu, target_ulong ptex,
935 target_ulong pte0, target_ulong pte1)
936 {
937 /*
938 * XXX: given the fact that there are too many segments to
939 * invalidate, and we still don't have a tlb_flush_mask(env, n,
940 * mask) in QEMU, we just invalidate all TLBs
941 */
942 cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH;
943 }
944
945 void ppc_hash64_update_rmls(CPUPPCState *env)
946 {
947 uint64_t lpcr = env->spr[SPR_LPCR];
948
949 /*
950 * This is the full 4 bits encoding of POWER8. Previous
951 * CPUs only support a subset of these but the filtering
952 * is done when writing LPCR
953 */
954 switch ((lpcr & LPCR_RMLS) >> LPCR_RMLS_SHIFT) {
955 case 0x8: /* 32MB */
956 env->rmls = 0x2000000ull;
957 break;
958 case 0x3: /* 64MB */
959 env->rmls = 0x4000000ull;
960 break;
961 case 0x7: /* 128MB */
962 env->rmls = 0x8000000ull;
963 break;
964 case 0x4: /* 256MB */
965 env->rmls = 0x10000000ull;
966 break;
967 case 0x2: /* 1GB */
968 env->rmls = 0x40000000ull;
969 break;
970 case 0x1: /* 16GB */
971 env->rmls = 0x400000000ull;
972 break;
973 default:
974 /* What to do here ??? */
975 env->rmls = 0;
976 }
977 }
978
979 void ppc_hash64_update_vrma(CPUPPCState *env)
980 {
981 const struct ppc_one_seg_page_size *sps = NULL;
982 target_ulong esid, vsid, lpcr;
983 ppc_slb_t *slb = &env->vrma_slb;
984 uint32_t vrmasd;
985 int i;
986
987 /* First clear it */
988 slb->esid = slb->vsid = 0;
989 slb->sps = NULL;
990
991 /* Is VRMA enabled ? */
992 lpcr = env->spr[SPR_LPCR];
993 if (!(lpcr & LPCR_VPM0)) {
994 return;
995 }
996
997 /* Make one up. Mostly ignore the ESID which will not be
998 * needed for translation
999 */
1000 vsid = SLB_VSID_VRMA;
1001 vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT;
1002 vsid |= (vrmasd << 4) & (SLB_VSID_L | SLB_VSID_LP);
1003 esid = SLB_ESID_V;
1004
1005 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
1006 const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
1007
1008 if (!sps1->page_shift) {
1009 break;
1010 }
1011
1012 if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
1013 sps = sps1;
1014 break;
1015 }
1016 }
1017
1018 if (!sps) {
1019 error_report("Bad page size encoding esid 0x"TARGET_FMT_lx
1020 " vsid 0x"TARGET_FMT_lx, esid, vsid);
1021 return;
1022 }
1023
1024 slb->vsid = vsid;
1025 slb->esid = esid;
1026 slb->sps = sps;
1027 }
1028
1029 void helper_store_lpcr(CPUPPCState *env, target_ulong val)
1030 {
1031 uint64_t lpcr = 0;
1032
1033 /* Filter out bits */
1034 switch (POWERPC_MMU_VER(env->mmu_model)) {
1035 case POWERPC_MMU_VER_64B: /* 970 */
1036 if (val & 0x40) {
1037 lpcr |= LPCR_LPES0;
1038 }
1039 if (val & 0x8000000000000000ull) {
1040 lpcr |= LPCR_LPES1;
1041 }
1042 if (val & 0x20) {
1043 lpcr |= (0x4ull << LPCR_RMLS_SHIFT);
1044 }
1045 if (val & 0x4000000000000000ull) {
1046 lpcr |= (0x2ull << LPCR_RMLS_SHIFT);
1047 }
1048 if (val & 0x2000000000000000ull) {
1049 lpcr |= (0x1ull << LPCR_RMLS_SHIFT);
1050 }
1051 env->spr[SPR_RMOR] = ((lpcr >> 41) & 0xffffull) << 26;
1052
1053 /* XXX We could also write LPID from HID4 here
1054 * but since we don't tag any translation on it
1055 * it doesn't actually matter
1056 */
1057 /* XXX For proper emulation of 970 we also need
1058 * to dig HRMOR out of HID5
1059 */
1060 break;
1061 case POWERPC_MMU_VER_2_03: /* P5p */
1062 lpcr = val & (LPCR_RMLS | LPCR_ILE |
1063 LPCR_LPES0 | LPCR_LPES1 |
1064 LPCR_RMI | LPCR_HDICE);
1065 break;
1066 case POWERPC_MMU_VER_2_06: /* P7 */
1067 lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_DPFD |
1068 LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
1069 LPCR_P7_PECE0 | LPCR_P7_PECE1 | LPCR_P7_PECE2 |
1070 LPCR_MER | LPCR_TC |
1071 LPCR_LPES0 | LPCR_LPES1 | LPCR_HDICE);
1072 break;
1073 case POWERPC_MMU_VER_2_07: /* P8 */
1074 lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_KBV |
1075 LPCR_DPFD | LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
1076 LPCR_AIL | LPCR_ONL | LPCR_P8_PECE0 | LPCR_P8_PECE1 |
1077 LPCR_P8_PECE2 | LPCR_P8_PECE3 | LPCR_P8_PECE4 |
1078 LPCR_MER | LPCR_TC | LPCR_LPES0 | LPCR_HDICE);
1079 break;
1080 case POWERPC_MMU_VER_3_00: /* P9 */
1081 lpcr = val & (LPCR_VPM1 | LPCR_ISL | LPCR_KBV | LPCR_DPFD |
1082 (LPCR_PECE_U_MASK & LPCR_HVEE) | LPCR_ILE | LPCR_AIL |
1083 LPCR_UPRT | LPCR_EVIRT | LPCR_ONL |
1084 (LPCR_PECE_L_MASK & (LPCR_PDEE | LPCR_HDEE | LPCR_EEE |
1085 LPCR_DEE | LPCR_OEE)) | LPCR_MER | LPCR_GTSE | LPCR_TC |
1086 LPCR_HEIC | LPCR_LPES0 | LPCR_HVICE | LPCR_HDICE);
1087 break;
1088 default:
1089 ;
1090 }
1091 env->spr[SPR_LPCR] = lpcr;
1092 ppc_hash64_update_rmls(env);
1093 ppc_hash64_update_vrma(env);
1094 }