]> git.proxmox.com Git - mirror_qemu.git/blob - target/ppc/mmu-hash64.c
target/ppc: Remove the function ppc_hash64_set_sdr1()
[mirror_qemu.git] / target / ppc / mmu-hash64.c
1 /*
2 * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 * Copyright (c) 2013 David Gibson, IBM Corporation
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 */
20 #include "qemu/osdep.h"
21 #include "qapi/error.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/helper-proto.h"
25 #include "qemu/error-report.h"
26 #include "sysemu/hw_accel.h"
27 #include "kvm_ppc.h"
28 #include "mmu-hash64.h"
29 #include "exec/log.h"
30 #include "hw/hw.h"
31
32 //#define DEBUG_SLB
33
34 #ifdef DEBUG_SLB
35 # define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
36 #else
37 # define LOG_SLB(...) do { } while (0)
38 #endif
39
40 /*
41 * SLB handling
42 */
43
44 static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
45 {
46 CPUPPCState *env = &cpu->env;
47 uint64_t esid_256M, esid_1T;
48 int n;
49
50 LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
51
52 esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
53 esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
54
55 for (n = 0; n < env->slb_nr; n++) {
56 ppc_slb_t *slb = &env->slb[n];
57
58 LOG_SLB("%s: slot %d %016" PRIx64 " %016"
59 PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
60 /* We check for 1T matches on all MMUs here - if the MMU
61 * doesn't have 1T segment support, we will have prevented 1T
62 * entries from being inserted in the slbmte code. */
63 if (((slb->esid == esid_256M) &&
64 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
65 || ((slb->esid == esid_1T) &&
66 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
67 return slb;
68 }
69 }
70
71 return NULL;
72 }
73
74 void dump_slb(FILE *f, fprintf_function cpu_fprintf, PowerPCCPU *cpu)
75 {
76 CPUPPCState *env = &cpu->env;
77 int i;
78 uint64_t slbe, slbv;
79
80 cpu_synchronize_state(CPU(cpu));
81
82 cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
83 for (i = 0; i < env->slb_nr; i++) {
84 slbe = env->slb[i].esid;
85 slbv = env->slb[i].vsid;
86 if (slbe == 0 && slbv == 0) {
87 continue;
88 }
89 cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
90 i, slbe, slbv);
91 }
92 }
93
94 void helper_slbia(CPUPPCState *env)
95 {
96 int n;
97
98 /* XXX: Warning: slbia never invalidates the first segment */
99 for (n = 1; n < env->slb_nr; n++) {
100 ppc_slb_t *slb = &env->slb[n];
101
102 if (slb->esid & SLB_ESID_V) {
103 slb->esid &= ~SLB_ESID_V;
104 /* XXX: given the fact that segment size is 256 MB or 1TB,
105 * and we still don't have a tlb_flush_mask(env, n, mask)
106 * in QEMU, we just invalidate all TLBs
107 */
108 env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
109 }
110 }
111 }
112
113 static void __helper_slbie(CPUPPCState *env, target_ulong addr,
114 target_ulong global)
115 {
116 PowerPCCPU *cpu = ppc_env_get_cpu(env);
117 ppc_slb_t *slb;
118
119 slb = slb_lookup(cpu, addr);
120 if (!slb) {
121 return;
122 }
123
124 if (slb->esid & SLB_ESID_V) {
125 slb->esid &= ~SLB_ESID_V;
126
127 /* XXX: given the fact that segment size is 256 MB or 1TB,
128 * and we still don't have a tlb_flush_mask(env, n, mask)
129 * in QEMU, we just invalidate all TLBs
130 */
131 env->tlb_need_flush |=
132 (global == false ? TLB_NEED_LOCAL_FLUSH : TLB_NEED_GLOBAL_FLUSH);
133 }
134 }
135
136 void helper_slbie(CPUPPCState *env, target_ulong addr)
137 {
138 __helper_slbie(env, addr, false);
139 }
140
141 void helper_slbieg(CPUPPCState *env, target_ulong addr)
142 {
143 __helper_slbie(env, addr, true);
144 }
145
146 int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
147 target_ulong esid, target_ulong vsid)
148 {
149 CPUPPCState *env = &cpu->env;
150 ppc_slb_t *slb = &env->slb[slot];
151 const struct ppc_one_seg_page_size *sps = NULL;
152 int i;
153
154 if (slot >= env->slb_nr) {
155 return -1; /* Bad slot number */
156 }
157 if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
158 return -1; /* Reserved bits set */
159 }
160 if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
161 return -1; /* Bad segment size */
162 }
163 if ((vsid & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) {
164 return -1; /* 1T segment on MMU that doesn't support it */
165 }
166
167 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
168 const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
169
170 if (!sps1->page_shift) {
171 break;
172 }
173
174 if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
175 sps = sps1;
176 break;
177 }
178 }
179
180 if (!sps) {
181 error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
182 " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
183 slot, esid, vsid);
184 return -1;
185 }
186
187 slb->esid = esid;
188 slb->vsid = vsid;
189 slb->sps = sps;
190
191 LOG_SLB("%s: " TARGET_FMT_lu " " TARGET_FMT_lx " - " TARGET_FMT_lx
192 " => %016" PRIx64 " %016" PRIx64 "\n", __func__, slot, esid, vsid,
193 slb->esid, slb->vsid);
194
195 return 0;
196 }
197
198 static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
199 target_ulong *rt)
200 {
201 CPUPPCState *env = &cpu->env;
202 int slot = rb & 0xfff;
203 ppc_slb_t *slb = &env->slb[slot];
204
205 if (slot >= env->slb_nr) {
206 return -1;
207 }
208
209 *rt = slb->esid;
210 return 0;
211 }
212
213 static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
214 target_ulong *rt)
215 {
216 CPUPPCState *env = &cpu->env;
217 int slot = rb & 0xfff;
218 ppc_slb_t *slb = &env->slb[slot];
219
220 if (slot >= env->slb_nr) {
221 return -1;
222 }
223
224 *rt = slb->vsid;
225 return 0;
226 }
227
228 static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
229 target_ulong *rt)
230 {
231 CPUPPCState *env = &cpu->env;
232 ppc_slb_t *slb;
233
234 if (!msr_is_64bit(env, env->msr)) {
235 rb &= 0xffffffff;
236 }
237 slb = slb_lookup(cpu, rb);
238 if (slb == NULL) {
239 *rt = (target_ulong)-1ul;
240 } else {
241 *rt = slb->vsid;
242 }
243 return 0;
244 }
245
246 void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
247 {
248 PowerPCCPU *cpu = ppc_env_get_cpu(env);
249
250 if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
251 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
252 POWERPC_EXCP_INVAL, GETPC());
253 }
254 }
255
256 target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
257 {
258 PowerPCCPU *cpu = ppc_env_get_cpu(env);
259 target_ulong rt = 0;
260
261 if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
262 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
263 POWERPC_EXCP_INVAL, GETPC());
264 }
265 return rt;
266 }
267
268 target_ulong helper_find_slb_vsid(CPUPPCState *env, target_ulong rb)
269 {
270 PowerPCCPU *cpu = ppc_env_get_cpu(env);
271 target_ulong rt = 0;
272
273 if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) {
274 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
275 POWERPC_EXCP_INVAL, GETPC());
276 }
277 return rt;
278 }
279
280 target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
281 {
282 PowerPCCPU *cpu = ppc_env_get_cpu(env);
283 target_ulong rt = 0;
284
285 if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
286 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
287 POWERPC_EXCP_INVAL, GETPC());
288 }
289 return rt;
290 }
291
292 static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
293 ppc_slb_t *slb, ppc_hash_pte64_t pte)
294 {
295 CPUPPCState *env = &cpu->env;
296 unsigned pp, key;
297 /* Some pp bit combinations have undefined behaviour, so default
298 * to no access in those cases */
299 int prot = 0;
300
301 key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
302 : (slb->vsid & SLB_VSID_KS));
303 pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
304
305 if (key == 0) {
306 switch (pp) {
307 case 0x0:
308 case 0x1:
309 case 0x2:
310 prot = PAGE_READ | PAGE_WRITE;
311 break;
312
313 case 0x3:
314 case 0x6:
315 prot = PAGE_READ;
316 break;
317 }
318 } else {
319 switch (pp) {
320 case 0x0:
321 case 0x6:
322 prot = 0;
323 break;
324
325 case 0x1:
326 case 0x3:
327 prot = PAGE_READ;
328 break;
329
330 case 0x2:
331 prot = PAGE_READ | PAGE_WRITE;
332 break;
333 }
334 }
335
336 /* No execute if either noexec or guarded bits set */
337 if (!(pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G)
338 || (slb->vsid & SLB_VSID_N)) {
339 prot |= PAGE_EXEC;
340 }
341
342 return prot;
343 }
344
345 static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
346 {
347 CPUPPCState *env = &cpu->env;
348 int key, amrbits;
349 int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
350
351 /* Only recent MMUs implement Virtual Page Class Key Protection */
352 if (!(env->mmu_model & POWERPC_MMU_AMR)) {
353 return prot;
354 }
355
356 key = HPTE64_R_KEY(pte.pte1);
357 amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3;
358
359 /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
360 /* env->spr[SPR_AMR]); */
361
362 /*
363 * A store is permitted if the AMR bit is 0. Remove write
364 * protection if it is set.
365 */
366 if (amrbits & 0x2) {
367 prot &= ~PAGE_WRITE;
368 }
369 /*
370 * A load is permitted if the AMR bit is 0. Remove read
371 * protection if it is set.
372 */
373 if (amrbits & 0x1) {
374 prot &= ~PAGE_READ;
375 }
376
377 return prot;
378 }
379
380 const ppc_hash_pte64_t *ppc_hash64_map_hptes(PowerPCCPU *cpu,
381 hwaddr ptex, int n)
382 {
383 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
384 hwaddr base = ppc_hash64_hpt_base(cpu);
385 hwaddr plen = n * HASH_PTE_SIZE_64;
386 const ppc_hash_pte64_t *hptes;
387
388 if (cpu->vhyp) {
389 PPCVirtualHypervisorClass *vhc =
390 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
391 return vhc->map_hptes(cpu->vhyp, ptex, n);
392 }
393
394 if (!base) {
395 return NULL;
396 }
397
398 hptes = address_space_map(CPU(cpu)->as, base + pte_offset, &plen, false);
399 if (plen < (n * HASH_PTE_SIZE_64)) {
400 hw_error("%s: Unable to map all requested HPTEs\n", __func__);
401 }
402 return hptes;
403 }
404
405 void ppc_hash64_unmap_hptes(PowerPCCPU *cpu, const ppc_hash_pte64_t *hptes,
406 hwaddr ptex, int n)
407 {
408 if (cpu->vhyp) {
409 PPCVirtualHypervisorClass *vhc =
410 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
411 vhc->unmap_hptes(cpu->vhyp, hptes, ptex, n);
412 return;
413 }
414
415 address_space_unmap(CPU(cpu)->as, (void *)hptes, n * HASH_PTE_SIZE_64,
416 false, n * HASH_PTE_SIZE_64);
417 }
418
419 static unsigned hpte_page_shift(const struct ppc_one_seg_page_size *sps,
420 uint64_t pte0, uint64_t pte1)
421 {
422 int i;
423
424 if (!(pte0 & HPTE64_V_LARGE)) {
425 if (sps->page_shift != 12) {
426 /* 4kiB page in a non 4kiB segment */
427 return 0;
428 }
429 /* Normal 4kiB page */
430 return 12;
431 }
432
433 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
434 const struct ppc_one_page_size *ps = &sps->enc[i];
435 uint64_t mask;
436
437 if (!ps->page_shift) {
438 break;
439 }
440
441 if (ps->page_shift == 12) {
442 /* L bit is set so this can't be a 4kiB page */
443 continue;
444 }
445
446 mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;
447
448 if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
449 return ps->page_shift;
450 }
451 }
452
453 return 0; /* Bad page size encoding */
454 }
455
456 static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
457 const struct ppc_one_seg_page_size *sps,
458 target_ulong ptem,
459 ppc_hash_pte64_t *pte, unsigned *pshift)
460 {
461 int i;
462 const ppc_hash_pte64_t *pteg;
463 target_ulong pte0, pte1;
464 target_ulong ptex;
465
466 ptex = (hash & ppc_hash64_hpt_mask(cpu)) * HPTES_PER_GROUP;
467 pteg = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
468 if (!pteg) {
469 return -1;
470 }
471 for (i = 0; i < HPTES_PER_GROUP; i++) {
472 pte0 = ppc_hash64_hpte0(cpu, pteg, i);
473 pte1 = ppc_hash64_hpte1(cpu, pteg, i);
474
475 /* This compares V, B, H (secondary) and the AVPN */
476 if (HPTE64_V_COMPARE(pte0, ptem)) {
477 *pshift = hpte_page_shift(sps, pte0, pte1);
478 /*
479 * If there is no match, ignore the PTE, it could simply
480 * be for a different segment size encoding and the
481 * architecture specifies we should not match. Linux will
482 * potentially leave behind PTEs for the wrong base page
483 * size when demoting segments.
484 */
485 if (*pshift == 0) {
486 continue;
487 }
488 /* We don't do anything with pshift yet as qemu TLB only deals
489 * with 4K pages anyway
490 */
491 pte->pte0 = pte0;
492 pte->pte1 = pte1;
493 ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
494 return ptex + i;
495 }
496 }
497 ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
498 /*
499 * We didn't find a valid entry.
500 */
501 return -1;
502 }
503
504 static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
505 ppc_slb_t *slb, target_ulong eaddr,
506 ppc_hash_pte64_t *pte, unsigned *pshift)
507 {
508 CPUPPCState *env = &cpu->env;
509 hwaddr hash, ptex;
510 uint64_t vsid, epnmask, epn, ptem;
511 const struct ppc_one_seg_page_size *sps = slb->sps;
512
513 /* The SLB store path should prevent any bad page size encodings
514 * getting in there, so: */
515 assert(sps);
516
517 /* If ISL is set in LPCR we need to clamp the page size to 4K */
518 if (env->spr[SPR_LPCR] & LPCR_ISL) {
519 /* We assume that when using TCG, 4k is first entry of SPS */
520 sps = &env->sps.sps[0];
521 assert(sps->page_shift == 12);
522 }
523
524 epnmask = ~((1ULL << sps->page_shift) - 1);
525
526 if (slb->vsid & SLB_VSID_B) {
527 /* 1TB segment */
528 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
529 epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
530 hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift);
531 } else {
532 /* 256M segment */
533 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
534 epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
535 hash = vsid ^ (epn >> sps->page_shift);
536 }
537 ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
538 ptem |= HPTE64_V_VALID;
539
540 /* Page address translation */
541 qemu_log_mask(CPU_LOG_MMU,
542 "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
543 " hash " TARGET_FMT_plx "\n",
544 ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu), hash);
545
546 /* Primary PTEG lookup */
547 qemu_log_mask(CPU_LOG_MMU,
548 "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
549 " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
550 " hash=" TARGET_FMT_plx "\n",
551 ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu),
552 vsid, ptem, hash);
553 ptex = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift);
554
555 if (ptex == -1) {
556 /* Secondary PTEG lookup */
557 ptem |= HPTE64_V_SECONDARY;
558 qemu_log_mask(CPU_LOG_MMU,
559 "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
560 " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
561 " hash=" TARGET_FMT_plx "\n", ppc_hash64_hpt_base(cpu),
562 ppc_hash64_hpt_mask(cpu), vsid, ptem, ~hash);
563
564 ptex = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift);
565 }
566
567 return ptex;
568 }
569
570 unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
571 uint64_t pte0, uint64_t pte1)
572 {
573 CPUPPCState *env = &cpu->env;
574 int i;
575
576 if (!(pte0 & HPTE64_V_LARGE)) {
577 return 12;
578 }
579
580 /*
581 * The encodings in env->sps need to be carefully chosen so that
582 * this gives an unambiguous result.
583 */
584 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
585 const struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
586 unsigned shift;
587
588 if (!sps->page_shift) {
589 break;
590 }
591
592 shift = hpte_page_shift(sps, pte0, pte1);
593 if (shift) {
594 return shift;
595 }
596 }
597
598 return 0;
599 }
600
601 static void ppc_hash64_set_isi(CPUState *cs, CPUPPCState *env,
602 uint64_t error_code)
603 {
604 bool vpm;
605
606 if (msr_ir) {
607 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
608 } else {
609 switch (env->mmu_model) {
610 case POWERPC_MMU_3_00:
611 /* Field deprecated in ISAv3.00 - interrupts always go to hyperv */
612 vpm = true;
613 break;
614 default:
615 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
616 break;
617 }
618 }
619 if (vpm && !msr_hv) {
620 cs->exception_index = POWERPC_EXCP_HISI;
621 } else {
622 cs->exception_index = POWERPC_EXCP_ISI;
623 }
624 env->error_code = error_code;
625 }
626
627 static void ppc_hash64_set_dsi(CPUState *cs, CPUPPCState *env, uint64_t dar,
628 uint64_t dsisr)
629 {
630 bool vpm;
631
632 if (msr_dr) {
633 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
634 } else {
635 switch (env->mmu_model) {
636 case POWERPC_MMU_3_00:
637 /* Field deprecated in ISAv3.00 - interrupts always go to hyperv */
638 vpm = true;
639 break;
640 default:
641 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
642 break;
643 }
644 }
645 if (vpm && !msr_hv) {
646 cs->exception_index = POWERPC_EXCP_HDSI;
647 env->spr[SPR_HDAR] = dar;
648 env->spr[SPR_HDSISR] = dsisr;
649 } else {
650 cs->exception_index = POWERPC_EXCP_DSI;
651 env->spr[SPR_DAR] = dar;
652 env->spr[SPR_DSISR] = dsisr;
653 }
654 env->error_code = 0;
655 }
656
657
658 int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
659 int rwx, int mmu_idx)
660 {
661 CPUState *cs = CPU(cpu);
662 CPUPPCState *env = &cpu->env;
663 ppc_slb_t *slb;
664 unsigned apshift;
665 hwaddr ptex;
666 ppc_hash_pte64_t pte;
667 int pp_prot, amr_prot, prot;
668 uint64_t new_pte1, dsisr;
669 const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
670 hwaddr raddr;
671
672 assert((rwx == 0) || (rwx == 1) || (rwx == 2));
673
674 /* Note on LPCR usage: 970 uses HID4, but our special variant
675 * of store_spr copies relevant fields into env->spr[SPR_LPCR].
676 * Similarily we filter unimplemented bits when storing into
677 * LPCR depending on the MMU version. This code can thus just
678 * use the LPCR "as-is".
679 */
680
681 /* 1. Handle real mode accesses */
682 if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
683 /* Translation is supposedly "off" */
684 /* In real mode the top 4 effective address bits are (mostly) ignored */
685 raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
686
687 /* In HV mode, add HRMOR if top EA bit is clear */
688 if (msr_hv || !env->has_hv_mode) {
689 if (!(eaddr >> 63)) {
690 raddr |= env->spr[SPR_HRMOR];
691 }
692 } else {
693 /* Otherwise, check VPM for RMA vs VRMA */
694 if (env->spr[SPR_LPCR] & LPCR_VPM0) {
695 slb = &env->vrma_slb;
696 if (slb->sps) {
697 goto skip_slb_search;
698 }
699 /* Not much else to do here */
700 cs->exception_index = POWERPC_EXCP_MCHECK;
701 env->error_code = 0;
702 return 1;
703 } else if (raddr < env->rmls) {
704 /* RMA. Check bounds in RMLS */
705 raddr |= env->spr[SPR_RMOR];
706 } else {
707 /* The access failed, generate the approriate interrupt */
708 if (rwx == 2) {
709 ppc_hash64_set_isi(cs, env, 0x08000000);
710 } else {
711 dsisr = 0x08000000;
712 if (rwx == 1) {
713 dsisr |= 0x02000000;
714 }
715 ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
716 }
717 return 1;
718 }
719 }
720 tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
721 PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
722 TARGET_PAGE_SIZE);
723 return 0;
724 }
725
726 /* 2. Translation is on, so look up the SLB */
727 slb = slb_lookup(cpu, eaddr);
728 if (!slb) {
729 if (rwx == 2) {
730 cs->exception_index = POWERPC_EXCP_ISEG;
731 env->error_code = 0;
732 } else {
733 cs->exception_index = POWERPC_EXCP_DSEG;
734 env->error_code = 0;
735 env->spr[SPR_DAR] = eaddr;
736 }
737 return 1;
738 }
739
740 skip_slb_search:
741
742 /* 3. Check for segment level no-execute violation */
743 if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
744 ppc_hash64_set_isi(cs, env, 0x10000000);
745 return 1;
746 }
747
748 /* 4. Locate the PTE in the hash table */
749 ptex = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
750 if (ptex == -1) {
751 dsisr = 0x40000000;
752 if (rwx == 2) {
753 ppc_hash64_set_isi(cs, env, dsisr);
754 } else {
755 if (rwx == 1) {
756 dsisr |= 0x02000000;
757 }
758 ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
759 }
760 return 1;
761 }
762 qemu_log_mask(CPU_LOG_MMU,
763 "found PTE at index %08" HWADDR_PRIx "\n", ptex);
764
765 /* 5. Check access permissions */
766
767 pp_prot = ppc_hash64_pte_prot(cpu, slb, pte);
768 amr_prot = ppc_hash64_amr_prot(cpu, pte);
769 prot = pp_prot & amr_prot;
770
771 if ((need_prot[rwx] & ~prot) != 0) {
772 /* Access right violation */
773 qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
774 if (rwx == 2) {
775 ppc_hash64_set_isi(cs, env, 0x08000000);
776 } else {
777 dsisr = 0;
778 if (need_prot[rwx] & ~pp_prot) {
779 dsisr |= 0x08000000;
780 }
781 if (rwx == 1) {
782 dsisr |= 0x02000000;
783 }
784 if (need_prot[rwx] & ~amr_prot) {
785 dsisr |= 0x00200000;
786 }
787 ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
788 }
789 return 1;
790 }
791
792 qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
793
794 /* 6. Update PTE referenced and changed bits if necessary */
795
796 new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */
797 if (rwx == 1) {
798 new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */
799 } else {
800 /* Treat the page as read-only for now, so that a later write
801 * will pass through this function again to set the C bit */
802 prot &= ~PAGE_WRITE;
803 }
804
805 if (new_pte1 != pte.pte1) {
806 ppc_hash64_store_hpte(cpu, ptex, pte.pte0, new_pte1);
807 }
808
809 /* 7. Determine the real address from the PTE */
810
811 raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
812
813 tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
814 prot, mmu_idx, 1ULL << apshift);
815
816 return 0;
817 }
818
819 hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
820 {
821 CPUPPCState *env = &cpu->env;
822 ppc_slb_t *slb;
823 hwaddr ptex, raddr;
824 ppc_hash_pte64_t pte;
825 unsigned apshift;
826
827 /* Handle real mode */
828 if (msr_dr == 0) {
829 /* In real mode the top 4 effective address bits are ignored */
830 raddr = addr & 0x0FFFFFFFFFFFFFFFULL;
831
832 /* In HV mode, add HRMOR if top EA bit is clear */
833 if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) {
834 return raddr | env->spr[SPR_HRMOR];
835 }
836
837 /* Otherwise, check VPM for RMA vs VRMA */
838 if (env->spr[SPR_LPCR] & LPCR_VPM0) {
839 slb = &env->vrma_slb;
840 if (!slb->sps) {
841 return -1;
842 }
843 } else if (raddr < env->rmls) {
844 /* RMA. Check bounds in RMLS */
845 return raddr | env->spr[SPR_RMOR];
846 } else {
847 return -1;
848 }
849 } else {
850 slb = slb_lookup(cpu, addr);
851 if (!slb) {
852 return -1;
853 }
854 }
855
856 ptex = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift);
857 if (ptex == -1) {
858 return -1;
859 }
860
861 return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
862 & TARGET_PAGE_MASK;
863 }
864
865 void ppc_hash64_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
866 uint64_t pte0, uint64_t pte1)
867 {
868 hwaddr base = ppc_hash64_hpt_base(cpu);
869 hwaddr offset = ptex * HASH_PTE_SIZE_64;
870
871 if (cpu->vhyp) {
872 PPCVirtualHypervisorClass *vhc =
873 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
874 vhc->store_hpte(cpu->vhyp, ptex, pte0, pte1);
875 return;
876 }
877
878 stq_phys(CPU(cpu)->as, base + offset, pte0);
879 stq_phys(CPU(cpu)->as, base + offset + HASH_PTE_SIZE_64 / 2, pte1);
880 }
881
882 void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu, target_ulong ptex,
883 target_ulong pte0, target_ulong pte1)
884 {
885 /*
886 * XXX: given the fact that there are too many segments to
887 * invalidate, and we still don't have a tlb_flush_mask(env, n,
888 * mask) in QEMU, we just invalidate all TLBs
889 */
890 cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH;
891 }
892
893 void ppc_hash64_update_rmls(CPUPPCState *env)
894 {
895 uint64_t lpcr = env->spr[SPR_LPCR];
896
897 /*
898 * This is the full 4 bits encoding of POWER8. Previous
899 * CPUs only support a subset of these but the filtering
900 * is done when writing LPCR
901 */
902 switch ((lpcr & LPCR_RMLS) >> LPCR_RMLS_SHIFT) {
903 case 0x8: /* 32MB */
904 env->rmls = 0x2000000ull;
905 break;
906 case 0x3: /* 64MB */
907 env->rmls = 0x4000000ull;
908 break;
909 case 0x7: /* 128MB */
910 env->rmls = 0x8000000ull;
911 break;
912 case 0x4: /* 256MB */
913 env->rmls = 0x10000000ull;
914 break;
915 case 0x2: /* 1GB */
916 env->rmls = 0x40000000ull;
917 break;
918 case 0x1: /* 16GB */
919 env->rmls = 0x400000000ull;
920 break;
921 default:
922 /* What to do here ??? */
923 env->rmls = 0;
924 }
925 }
926
927 void ppc_hash64_update_vrma(CPUPPCState *env)
928 {
929 const struct ppc_one_seg_page_size *sps = NULL;
930 target_ulong esid, vsid, lpcr;
931 ppc_slb_t *slb = &env->vrma_slb;
932 uint32_t vrmasd;
933 int i;
934
935 /* First clear it */
936 slb->esid = slb->vsid = 0;
937 slb->sps = NULL;
938
939 /* Is VRMA enabled ? */
940 lpcr = env->spr[SPR_LPCR];
941 if (!(lpcr & LPCR_VPM0)) {
942 return;
943 }
944
945 /* Make one up. Mostly ignore the ESID which will not be
946 * needed for translation
947 */
948 vsid = SLB_VSID_VRMA;
949 vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT;
950 vsid |= (vrmasd << 4) & (SLB_VSID_L | SLB_VSID_LP);
951 esid = SLB_ESID_V;
952
953 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
954 const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
955
956 if (!sps1->page_shift) {
957 break;
958 }
959
960 if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
961 sps = sps1;
962 break;
963 }
964 }
965
966 if (!sps) {
967 error_report("Bad page size encoding esid 0x"TARGET_FMT_lx
968 " vsid 0x"TARGET_FMT_lx, esid, vsid);
969 return;
970 }
971
972 slb->vsid = vsid;
973 slb->esid = esid;
974 slb->sps = sps;
975 }
976
977 void helper_store_lpcr(CPUPPCState *env, target_ulong val)
978 {
979 uint64_t lpcr = 0;
980
981 /* Filter out bits */
982 switch (env->mmu_model) {
983 case POWERPC_MMU_64B: /* 970 */
984 if (val & 0x40) {
985 lpcr |= LPCR_LPES0;
986 }
987 if (val & 0x8000000000000000ull) {
988 lpcr |= LPCR_LPES1;
989 }
990 if (val & 0x20) {
991 lpcr |= (0x4ull << LPCR_RMLS_SHIFT);
992 }
993 if (val & 0x4000000000000000ull) {
994 lpcr |= (0x2ull << LPCR_RMLS_SHIFT);
995 }
996 if (val & 0x2000000000000000ull) {
997 lpcr |= (0x1ull << LPCR_RMLS_SHIFT);
998 }
999 env->spr[SPR_RMOR] = ((lpcr >> 41) & 0xffffull) << 26;
1000
1001 /* XXX We could also write LPID from HID4 here
1002 * but since we don't tag any translation on it
1003 * it doesn't actually matter
1004 */
1005 /* XXX For proper emulation of 970 we also need
1006 * to dig HRMOR out of HID5
1007 */
1008 break;
1009 case POWERPC_MMU_2_03: /* P5p */
1010 lpcr = val & (LPCR_RMLS | LPCR_ILE |
1011 LPCR_LPES0 | LPCR_LPES1 |
1012 LPCR_RMI | LPCR_HDICE);
1013 break;
1014 case POWERPC_MMU_2_06: /* P7 */
1015 lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_DPFD |
1016 LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
1017 LPCR_P7_PECE0 | LPCR_P7_PECE1 | LPCR_P7_PECE2 |
1018 LPCR_MER | LPCR_TC |
1019 LPCR_LPES0 | LPCR_LPES1 | LPCR_HDICE);
1020 break;
1021 case POWERPC_MMU_2_07: /* P8 */
1022 lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_KBV |
1023 LPCR_DPFD | LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
1024 LPCR_AIL | LPCR_ONL | LPCR_P8_PECE0 | LPCR_P8_PECE1 |
1025 LPCR_P8_PECE2 | LPCR_P8_PECE3 | LPCR_P8_PECE4 |
1026 LPCR_MER | LPCR_TC | LPCR_LPES0 | LPCR_HDICE);
1027 break;
1028 case POWERPC_MMU_3_00: /* P9 */
1029 lpcr = val & (LPCR_VPM1 | LPCR_ISL | LPCR_KBV | LPCR_DPFD |
1030 (LPCR_PECE_U_MASK & LPCR_HVEE) | LPCR_ILE | LPCR_AIL |
1031 LPCR_UPRT | LPCR_EVIRT | LPCR_ONL |
1032 (LPCR_PECE_L_MASK & (LPCR_PDEE | LPCR_HDEE | LPCR_EEE |
1033 LPCR_DEE | LPCR_OEE)) | LPCR_MER | LPCR_GTSE | LPCR_TC |
1034 LPCR_HEIC | LPCR_LPES0 | LPCR_HVICE | LPCR_HDICE);
1035 break;
1036 default:
1037 ;
1038 }
1039 env->spr[SPR_LPCR] = lpcr;
1040 ppc_hash64_update_rmls(env);
1041 ppc_hash64_update_vrma(env);
1042 }