]> git.proxmox.com Git - mirror_qemu.git/blob - target/riscv/cpu_helper.c
5ea5d133aa2bce5fad32c728f60986ae46cc994c
[mirror_qemu.git] / target / riscv / cpu_helper.c
1 /*
2 * RISC-V CPU helpers for qemu.
3 *
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "tcg/tcg-op.h"
26 #include "trace.h"
27
28 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
29 {
30 #ifdef CONFIG_USER_ONLY
31 return 0;
32 #else
33 return env->priv;
34 #endif
35 }
36
37 #ifndef CONFIG_USER_ONLY
38 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
39 {
40 target_ulong irqs;
41
42 target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
43 target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
44 target_ulong hs_mstatus_sie = get_field(env->mstatus_hs, MSTATUS_SIE);
45
46 target_ulong pending = env->mip & env->mie &
47 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
48 target_ulong vspending = (env->mip & env->mie &
49 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) >> 1;
50
51 target_ulong mie = env->priv < PRV_M ||
52 (env->priv == PRV_M && mstatus_mie);
53 target_ulong sie = env->priv < PRV_S ||
54 (env->priv == PRV_S && mstatus_sie);
55 target_ulong hs_sie = env->priv < PRV_S ||
56 (env->priv == PRV_S && hs_mstatus_sie);
57
58 if (riscv_cpu_virt_enabled(env)) {
59 target_ulong pending_hs_irq = pending & -hs_sie;
60
61 if (pending_hs_irq) {
62 riscv_cpu_set_force_hs_excep(env, FORCE_HS_EXCEP);
63 return ctz64(pending_hs_irq);
64 }
65
66 pending = vspending;
67 }
68
69 irqs = (pending & ~env->mideleg & -mie) | (pending & env->mideleg & -sie);
70
71 if (irqs) {
72 return ctz64(irqs); /* since non-zero */
73 } else {
74 return EXCP_NONE; /* indicates no pending interrupt */
75 }
76 }
77 #endif
78
79 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
80 {
81 #if !defined(CONFIG_USER_ONLY)
82 if (interrupt_request & CPU_INTERRUPT_HARD) {
83 RISCVCPU *cpu = RISCV_CPU(cs);
84 CPURISCVState *env = &cpu->env;
85 int interruptno = riscv_cpu_local_irq_pending(env);
86 if (interruptno >= 0) {
87 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
88 riscv_cpu_do_interrupt(cs);
89 return true;
90 }
91 }
92 #endif
93 return false;
94 }
95
96 #if !defined(CONFIG_USER_ONLY)
97
98 /* Return true is floating point support is currently enabled */
99 bool riscv_cpu_fp_enabled(CPURISCVState *env)
100 {
101 if (env->mstatus & MSTATUS_FS) {
102 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
103 return false;
104 }
105 return true;
106 }
107
108 return false;
109 }
110
111 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
112 {
113 target_ulong mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS |
114 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE;
115 bool current_virt = riscv_cpu_virt_enabled(env);
116
117 g_assert(riscv_has_ext(env, RVH));
118
119 #if defined(TARGET_RISCV64)
120 mstatus_mask |= MSTATUS64_UXL;
121 #endif
122
123 if (current_virt) {
124 /* Current V=1 and we are about to change to V=0 */
125 env->vsstatus = env->mstatus & mstatus_mask;
126 env->mstatus &= ~mstatus_mask;
127 env->mstatus |= env->mstatus_hs;
128
129 #if defined(TARGET_RISCV32)
130 env->vsstatush = env->mstatush;
131 env->mstatush |= env->mstatush_hs;
132 #endif
133
134 env->vstvec = env->stvec;
135 env->stvec = env->stvec_hs;
136
137 env->vsscratch = env->sscratch;
138 env->sscratch = env->sscratch_hs;
139
140 env->vsepc = env->sepc;
141 env->sepc = env->sepc_hs;
142
143 env->vscause = env->scause;
144 env->scause = env->scause_hs;
145
146 env->vstval = env->sbadaddr;
147 env->sbadaddr = env->stval_hs;
148
149 env->vsatp = env->satp;
150 env->satp = env->satp_hs;
151 } else {
152 /* Current V=0 and we are about to change to V=1 */
153 env->mstatus_hs = env->mstatus & mstatus_mask;
154 env->mstatus &= ~mstatus_mask;
155 env->mstatus |= env->vsstatus;
156
157 #if defined(TARGET_RISCV32)
158 env->mstatush_hs = env->mstatush;
159 env->mstatush |= env->vsstatush;
160 #endif
161
162 env->stvec_hs = env->stvec;
163 env->stvec = env->vstvec;
164
165 env->sscratch_hs = env->sscratch;
166 env->sscratch = env->vsscratch;
167
168 env->sepc_hs = env->sepc;
169 env->sepc = env->vsepc;
170
171 env->scause_hs = env->scause;
172 env->scause = env->vscause;
173
174 env->stval_hs = env->sbadaddr;
175 env->sbadaddr = env->vstval;
176
177 env->satp_hs = env->satp;
178 env->satp = env->vsatp;
179 }
180 }
181
182 bool riscv_cpu_virt_enabled(CPURISCVState *env)
183 {
184 if (!riscv_has_ext(env, RVH)) {
185 return false;
186 }
187
188 return get_field(env->virt, VIRT_ONOFF);
189 }
190
191 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
192 {
193 if (!riscv_has_ext(env, RVH)) {
194 return;
195 }
196
197 /* Flush the TLB on all virt mode changes. */
198 if (get_field(env->virt, VIRT_ONOFF) != enable) {
199 tlb_flush(env_cpu(env));
200 }
201
202 env->virt = set_field(env->virt, VIRT_ONOFF, enable);
203 }
204
205 bool riscv_cpu_force_hs_excep_enabled(CPURISCVState *env)
206 {
207 if (!riscv_has_ext(env, RVH)) {
208 return false;
209 }
210
211 return get_field(env->virt, FORCE_HS_EXCEP);
212 }
213
214 void riscv_cpu_set_force_hs_excep(CPURISCVState *env, bool enable)
215 {
216 if (!riscv_has_ext(env, RVH)) {
217 return;
218 }
219
220 env->virt = set_field(env->virt, FORCE_HS_EXCEP, enable);
221 }
222
223 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
224 {
225 CPURISCVState *env = &cpu->env;
226 if (env->miclaim & interrupts) {
227 return -1;
228 } else {
229 env->miclaim |= interrupts;
230 return 0;
231 }
232 }
233
234 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
235 {
236 CPURISCVState *env = &cpu->env;
237 CPUState *cs = CPU(cpu);
238 uint32_t old = env->mip;
239 bool locked = false;
240
241 if (!qemu_mutex_iothread_locked()) {
242 locked = true;
243 qemu_mutex_lock_iothread();
244 }
245
246 env->mip = (env->mip & ~mask) | (value & mask);
247
248 if (env->mip) {
249 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
250 } else {
251 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
252 }
253
254 if (locked) {
255 qemu_mutex_unlock_iothread();
256 }
257
258 return old;
259 }
260
261 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void))
262 {
263 env->rdtime_fn = fn;
264 }
265
266 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
267 {
268 if (newpriv > PRV_M) {
269 g_assert_not_reached();
270 }
271 if (newpriv == PRV_H) {
272 newpriv = PRV_U;
273 }
274 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
275 env->priv = newpriv;
276
277 /*
278 * Clear the load reservation - otherwise a reservation placed in one
279 * context/process can be used by another, resulting in an SC succeeding
280 * incorrectly. Version 2.2 of the ISA specification explicitly requires
281 * this behaviour, while later revisions say that the kernel "should" use
282 * an SC instruction to force the yielding of a load reservation on a
283 * preemptive context switch. As a result, do both.
284 */
285 env->load_res = -1;
286 }
287
288 /* get_physical_address - get the physical address for this virtual address
289 *
290 * Do a page table walk to obtain the physical address corresponding to a
291 * virtual address. Returns 0 if the translation was successful
292 *
293 * Adapted from Spike's mmu_t::translate and mmu_t::walk
294 *
295 * @env: CPURISCVState
296 * @physical: This will be set to the calculated physical address
297 * @prot: The returned protection attributes
298 * @addr: The virtual address to be translated
299 * @access_type: The type of MMU access
300 * @mmu_idx: Indicates current privilege level
301 * @first_stage: Are we in first stage translation?
302 * Second stage is used for hypervisor guest translation
303 * @two_stage: Are we going to perform two stage translation
304 */
305 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
306 int *prot, target_ulong addr,
307 int access_type, int mmu_idx,
308 bool first_stage, bool two_stage)
309 {
310 /* NOTE: the env->pc value visible here will not be
311 * correct, but the value visible to the exception handler
312 * (riscv_cpu_do_interrupt) is correct */
313 MemTxResult res;
314 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
315 int mode = mmu_idx;
316 bool use_background = false;
317
318 /*
319 * Check if we should use the background registers for the two
320 * stage translation. We don't need to check if we actually need
321 * two stage translation as that happened before this function
322 * was called. Background registers will be used if the guest has
323 * forced a two stage translation to be on (in HS or M mode).
324 */
325 if (mode == PRV_M && access_type != MMU_INST_FETCH) {
326 if (get_field(env->mstatus, MSTATUS_MPRV)) {
327 mode = get_field(env->mstatus, MSTATUS_MPP);
328
329 if (riscv_has_ext(env, RVH) &&
330 MSTATUS_MPV_ISSET(env)) {
331 use_background = true;
332 }
333 }
334 }
335
336 if (mode == PRV_S && access_type != MMU_INST_FETCH &&
337 riscv_has_ext(env, RVH) && !riscv_cpu_virt_enabled(env)) {
338 if (get_field(env->hstatus, HSTATUS_SPRV)) {
339 mode = get_field(env->mstatus, SSTATUS_SPP);
340 use_background = true;
341 }
342 }
343
344 if (first_stage == false) {
345 /* We are in stage 2 translation, this is similar to stage 1. */
346 /* Stage 2 is always taken as U-mode */
347 mode = PRV_U;
348 }
349
350 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
351 *physical = addr;
352 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
353 return TRANSLATE_SUCCESS;
354 }
355
356 *prot = 0;
357
358 hwaddr base;
359 int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
360
361 if (first_stage == true) {
362 mxr = get_field(env->mstatus, MSTATUS_MXR);
363 } else {
364 mxr = get_field(env->vsstatus, MSTATUS_MXR);
365 }
366
367 if (env->priv_ver >= PRIV_VERSION_1_10_0) {
368 if (first_stage == true) {
369 if (use_background) {
370 base = (hwaddr)get_field(env->vsatp, SATP_PPN) << PGSHIFT;
371 vm = get_field(env->vsatp, SATP_MODE);
372 } else {
373 base = (hwaddr)get_field(env->satp, SATP_PPN) << PGSHIFT;
374 vm = get_field(env->satp, SATP_MODE);
375 }
376 widened = 0;
377 } else {
378 base = (hwaddr)get_field(env->hgatp, HGATP_PPN) << PGSHIFT;
379 vm = get_field(env->hgatp, HGATP_MODE);
380 widened = 2;
381 }
382 sum = get_field(env->mstatus, MSTATUS_SUM);
383 switch (vm) {
384 case VM_1_10_SV32:
385 levels = 2; ptidxbits = 10; ptesize = 4; break;
386 case VM_1_10_SV39:
387 levels = 3; ptidxbits = 9; ptesize = 8; break;
388 case VM_1_10_SV48:
389 levels = 4; ptidxbits = 9; ptesize = 8; break;
390 case VM_1_10_SV57:
391 levels = 5; ptidxbits = 9; ptesize = 8; break;
392 case VM_1_10_MBARE:
393 *physical = addr;
394 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
395 return TRANSLATE_SUCCESS;
396 default:
397 g_assert_not_reached();
398 }
399 } else {
400 widened = 0;
401 base = (hwaddr)(env->sptbr) << PGSHIFT;
402 sum = !get_field(env->mstatus, MSTATUS_PUM);
403 vm = get_field(env->mstatus, MSTATUS_VM);
404 switch (vm) {
405 case VM_1_09_SV32:
406 levels = 2; ptidxbits = 10; ptesize = 4; break;
407 case VM_1_09_SV39:
408 levels = 3; ptidxbits = 9; ptesize = 8; break;
409 case VM_1_09_SV48:
410 levels = 4; ptidxbits = 9; ptesize = 8; break;
411 case VM_1_09_MBARE:
412 *physical = addr;
413 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
414 return TRANSLATE_SUCCESS;
415 default:
416 g_assert_not_reached();
417 }
418 }
419
420 CPUState *cs = env_cpu(env);
421 int va_bits = PGSHIFT + levels * ptidxbits + widened;
422 target_ulong mask, masked_msbs;
423
424 if (TARGET_LONG_BITS > (va_bits - 1)) {
425 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
426 } else {
427 mask = 0;
428 }
429 masked_msbs = (addr >> (va_bits - 1)) & mask;
430
431 if (masked_msbs != 0 && masked_msbs != mask) {
432 return TRANSLATE_FAIL;
433 }
434
435 int ptshift = (levels - 1) * ptidxbits;
436 int i;
437
438 #if !TCG_OVERSIZED_GUEST
439 restart:
440 #endif
441 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
442 target_ulong idx;
443 if (i == 0) {
444 idx = (addr >> (PGSHIFT + ptshift)) &
445 ((1 << (ptidxbits + widened)) - 1);
446 } else {
447 idx = (addr >> (PGSHIFT + ptshift)) &
448 ((1 << ptidxbits) - 1);
449 }
450
451 /* check that physical address of PTE is legal */
452 hwaddr pte_addr;
453
454 if (two_stage && first_stage) {
455 hwaddr vbase;
456
457 /* Do the second stage translation on the base PTE address. */
458 get_physical_address(env, &vbase, prot, base, access_type,
459 mmu_idx, false, true);
460
461 pte_addr = vbase + idx * ptesize;
462 } else {
463 pte_addr = base + idx * ptesize;
464 }
465
466 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
467 !pmp_hart_has_privs(env, pte_addr, sizeof(target_ulong),
468 1 << MMU_DATA_LOAD, PRV_S)) {
469 return TRANSLATE_PMP_FAIL;
470 }
471
472 #if defined(TARGET_RISCV32)
473 target_ulong pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
474 #elif defined(TARGET_RISCV64)
475 target_ulong pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
476 #endif
477 if (res != MEMTX_OK) {
478 return TRANSLATE_FAIL;
479 }
480
481 hwaddr ppn = pte >> PTE_PPN_SHIFT;
482
483 if (!(pte & PTE_V)) {
484 /* Invalid PTE */
485 return TRANSLATE_FAIL;
486 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
487 /* Inner PTE, continue walking */
488 base = ppn << PGSHIFT;
489 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
490 /* Reserved leaf PTE flags: PTE_W */
491 return TRANSLATE_FAIL;
492 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
493 /* Reserved leaf PTE flags: PTE_W + PTE_X */
494 return TRANSLATE_FAIL;
495 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
496 (!sum || access_type == MMU_INST_FETCH))) {
497 /* User PTE flags when not U mode and mstatus.SUM is not set,
498 or the access type is an instruction fetch */
499 return TRANSLATE_FAIL;
500 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
501 /* Supervisor PTE flags when not S mode */
502 return TRANSLATE_FAIL;
503 } else if (ppn & ((1ULL << ptshift) - 1)) {
504 /* Misaligned PPN */
505 return TRANSLATE_FAIL;
506 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
507 ((pte & PTE_X) && mxr))) {
508 /* Read access check failed */
509 return TRANSLATE_FAIL;
510 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
511 /* Write access check failed */
512 return TRANSLATE_FAIL;
513 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
514 /* Fetch access check failed */
515 return TRANSLATE_FAIL;
516 } else {
517 /* if necessary, set accessed and dirty bits. */
518 target_ulong updated_pte = pte | PTE_A |
519 (access_type == MMU_DATA_STORE ? PTE_D : 0);
520
521 /* Page table updates need to be atomic with MTTCG enabled */
522 if (updated_pte != pte) {
523 /*
524 * - if accessed or dirty bits need updating, and the PTE is
525 * in RAM, then we do so atomically with a compare and swap.
526 * - if the PTE is in IO space or ROM, then it can't be updated
527 * and we return TRANSLATE_FAIL.
528 * - if the PTE changed by the time we went to update it, then
529 * it is no longer valid and we must re-walk the page table.
530 */
531 MemoryRegion *mr;
532 hwaddr l = sizeof(target_ulong), addr1;
533 mr = address_space_translate(cs->as, pte_addr,
534 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
535 if (memory_region_is_ram(mr)) {
536 target_ulong *pte_pa =
537 qemu_map_ram_ptr(mr->ram_block, addr1);
538 #if TCG_OVERSIZED_GUEST
539 /* MTTCG is not enabled on oversized TCG guests so
540 * page table updates do not need to be atomic */
541 *pte_pa = pte = updated_pte;
542 #else
543 target_ulong old_pte =
544 atomic_cmpxchg(pte_pa, pte, updated_pte);
545 if (old_pte != pte) {
546 goto restart;
547 } else {
548 pte = updated_pte;
549 }
550 #endif
551 } else {
552 /* misconfigured PTE in ROM (AD bits are not preset) or
553 * PTE is in IO space and can't be updated atomically */
554 return TRANSLATE_FAIL;
555 }
556 }
557
558 /* for superpage mappings, make a fake leaf PTE for the TLB's
559 benefit. */
560 target_ulong vpn = addr >> PGSHIFT;
561 if (i == 0) {
562 *physical = (ppn | (vpn & ((1L << (ptshift + widened)) - 1))) <<
563 PGSHIFT;
564 } else {
565 *physical = (ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT;
566 }
567
568 /* set permissions on the TLB entry */
569 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
570 *prot |= PAGE_READ;
571 }
572 if ((pte & PTE_X)) {
573 *prot |= PAGE_EXEC;
574 }
575 /* add write permission on stores or if the page is already dirty,
576 so that we TLB miss on later writes to update the dirty bit */
577 if ((pte & PTE_W) &&
578 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
579 *prot |= PAGE_WRITE;
580 }
581 return TRANSLATE_SUCCESS;
582 }
583 }
584 return TRANSLATE_FAIL;
585 }
586
587 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
588 MMUAccessType access_type, bool pmp_violation,
589 bool first_stage)
590 {
591 CPUState *cs = env_cpu(env);
592 int page_fault_exceptions;
593 if (first_stage) {
594 page_fault_exceptions =
595 (env->priv_ver >= PRIV_VERSION_1_10_0) &&
596 get_field(env->satp, SATP_MODE) != VM_1_10_MBARE &&
597 !pmp_violation;
598 } else {
599 page_fault_exceptions =
600 get_field(env->hgatp, HGATP_MODE) != VM_1_10_MBARE &&
601 !pmp_violation;
602 }
603 switch (access_type) {
604 case MMU_INST_FETCH:
605 if (riscv_cpu_virt_enabled(env) && !first_stage) {
606 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
607 } else {
608 cs->exception_index = page_fault_exceptions ?
609 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
610 }
611 break;
612 case MMU_DATA_LOAD:
613 if (riscv_cpu_virt_enabled(env) && !first_stage) {
614 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
615 } else {
616 cs->exception_index = page_fault_exceptions ?
617 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
618 }
619 break;
620 case MMU_DATA_STORE:
621 if (riscv_cpu_virt_enabled(env) && !first_stage) {
622 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
623 } else {
624 cs->exception_index = page_fault_exceptions ?
625 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
626 }
627 break;
628 default:
629 g_assert_not_reached();
630 }
631 env->badaddr = address;
632 }
633
634 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
635 {
636 RISCVCPU *cpu = RISCV_CPU(cs);
637 CPURISCVState *env = &cpu->env;
638 hwaddr phys_addr;
639 int prot;
640 int mmu_idx = cpu_mmu_index(&cpu->env, false);
641
642 if (get_physical_address(env, &phys_addr, &prot, addr, 0, mmu_idx,
643 true, riscv_cpu_virt_enabled(env))) {
644 return -1;
645 }
646
647 if (riscv_cpu_virt_enabled(env)) {
648 if (get_physical_address(env, &phys_addr, &prot, phys_addr,
649 0, mmu_idx, false, true)) {
650 return -1;
651 }
652 }
653
654 return phys_addr;
655 }
656
657 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
658 vaddr addr, unsigned size,
659 MMUAccessType access_type,
660 int mmu_idx, MemTxAttrs attrs,
661 MemTxResult response, uintptr_t retaddr)
662 {
663 RISCVCPU *cpu = RISCV_CPU(cs);
664 CPURISCVState *env = &cpu->env;
665
666 if (access_type == MMU_DATA_STORE) {
667 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
668 } else {
669 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
670 }
671
672 env->badaddr = addr;
673 riscv_raise_exception(&cpu->env, cs->exception_index, retaddr);
674 }
675
676 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
677 MMUAccessType access_type, int mmu_idx,
678 uintptr_t retaddr)
679 {
680 RISCVCPU *cpu = RISCV_CPU(cs);
681 CPURISCVState *env = &cpu->env;
682 switch (access_type) {
683 case MMU_INST_FETCH:
684 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
685 break;
686 case MMU_DATA_LOAD:
687 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
688 break;
689 case MMU_DATA_STORE:
690 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
691 break;
692 default:
693 g_assert_not_reached();
694 }
695 env->badaddr = addr;
696 riscv_raise_exception(env, cs->exception_index, retaddr);
697 }
698 #endif
699
700 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
701 MMUAccessType access_type, int mmu_idx,
702 bool probe, uintptr_t retaddr)
703 {
704 RISCVCPU *cpu = RISCV_CPU(cs);
705 CPURISCVState *env = &cpu->env;
706 #ifndef CONFIG_USER_ONLY
707 vaddr im_address;
708 hwaddr pa = 0;
709 int prot;
710 bool pmp_violation = false;
711 bool m_mode_two_stage = false;
712 bool hs_mode_two_stage = false;
713 bool first_stage_error = true;
714 int ret = TRANSLATE_FAIL;
715 int mode = mmu_idx;
716
717 env->guest_phys_fault_addr = 0;
718
719 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
720 __func__, address, access_type, mmu_idx);
721
722 /*
723 * Determine if we are in M mode and MPRV is set or in HS mode and SPRV is
724 * set and we want to access a virtulisation address.
725 */
726 if (riscv_has_ext(env, RVH)) {
727 m_mode_two_stage = env->priv == PRV_M &&
728 access_type != MMU_INST_FETCH &&
729 get_field(env->mstatus, MSTATUS_MPRV) &&
730 MSTATUS_MPV_ISSET(env);
731
732 hs_mode_two_stage = env->priv == PRV_S &&
733 !riscv_cpu_virt_enabled(env) &&
734 access_type != MMU_INST_FETCH &&
735 get_field(env->hstatus, HSTATUS_SPRV) &&
736 get_field(env->hstatus, HSTATUS_SPV);
737 }
738
739 if (mode == PRV_M && access_type != MMU_INST_FETCH) {
740 if (get_field(env->mstatus, MSTATUS_MPRV)) {
741 mode = get_field(env->mstatus, MSTATUS_MPP);
742 }
743 }
744
745 if (riscv_cpu_virt_enabled(env) || m_mode_two_stage || hs_mode_two_stage) {
746 /* Two stage lookup */
747 ret = get_physical_address(env, &pa, &prot, address, access_type,
748 mmu_idx, true, true);
749
750 qemu_log_mask(CPU_LOG_MMU,
751 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
752 TARGET_FMT_plx " prot %d\n",
753 __func__, address, ret, pa, prot);
754
755 if (ret != TRANSLATE_FAIL) {
756 /* Second stage lookup */
757 im_address = pa;
758
759 ret = get_physical_address(env, &pa, &prot, im_address,
760 access_type, mmu_idx, false, true);
761
762 qemu_log_mask(CPU_LOG_MMU,
763 "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
764 TARGET_FMT_plx " prot %d\n",
765 __func__, im_address, ret, pa, prot);
766
767 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
768 (ret == TRANSLATE_SUCCESS) &&
769 !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) {
770 ret = TRANSLATE_PMP_FAIL;
771 }
772
773 if (ret != TRANSLATE_SUCCESS) {
774 /*
775 * Guest physical address translation failed, this is a HS
776 * level exception
777 */
778 first_stage_error = false;
779 env->guest_phys_fault_addr = (im_address |
780 (address &
781 (TARGET_PAGE_SIZE - 1))) >> 2;
782 }
783 }
784 } else {
785 /* Single stage lookup */
786 ret = get_physical_address(env, &pa, &prot, address, access_type,
787 mmu_idx, true, false);
788
789 qemu_log_mask(CPU_LOG_MMU,
790 "%s address=%" VADDR_PRIx " ret %d physical "
791 TARGET_FMT_plx " prot %d\n",
792 __func__, address, ret, pa, prot);
793 }
794
795 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
796 (ret == TRANSLATE_SUCCESS) &&
797 !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) {
798 ret = TRANSLATE_PMP_FAIL;
799 }
800 if (ret == TRANSLATE_PMP_FAIL) {
801 pmp_violation = true;
802 }
803
804 if (ret == TRANSLATE_SUCCESS) {
805 tlb_set_page(cs, address & TARGET_PAGE_MASK, pa & TARGET_PAGE_MASK,
806 prot, mmu_idx, TARGET_PAGE_SIZE);
807 return true;
808 } else if (probe) {
809 return false;
810 } else {
811 raise_mmu_exception(env, address, access_type, pmp_violation, first_stage_error);
812 riscv_raise_exception(env, cs->exception_index, retaddr);
813 }
814
815 return true;
816
817 #else
818 switch (access_type) {
819 case MMU_INST_FETCH:
820 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
821 break;
822 case MMU_DATA_LOAD:
823 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
824 break;
825 case MMU_DATA_STORE:
826 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
827 break;
828 default:
829 g_assert_not_reached();
830 }
831 env->badaddr = address;
832 cpu_loop_exit_restore(cs, retaddr);
833 #endif
834 }
835
836 /*
837 * Handle Traps
838 *
839 * Adapted from Spike's processor_t::take_trap.
840 *
841 */
842 void riscv_cpu_do_interrupt(CPUState *cs)
843 {
844 #if !defined(CONFIG_USER_ONLY)
845
846 RISCVCPU *cpu = RISCV_CPU(cs);
847 CPURISCVState *env = &cpu->env;
848 bool force_hs_execp = riscv_cpu_force_hs_excep_enabled(env);
849 target_ulong s;
850
851 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
852 * so we mask off the MSB and separate into trap type and cause.
853 */
854 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
855 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
856 target_ulong deleg = async ? env->mideleg : env->medeleg;
857 target_ulong tval = 0;
858 target_ulong htval = 0;
859 target_ulong mtval2 = 0;
860
861 if (!async) {
862 /* set tval to badaddr for traps with address information */
863 switch (cause) {
864 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
865 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
866 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
867 force_hs_execp = true;
868 /* fallthrough */
869 case RISCV_EXCP_INST_ADDR_MIS:
870 case RISCV_EXCP_INST_ACCESS_FAULT:
871 case RISCV_EXCP_LOAD_ADDR_MIS:
872 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
873 case RISCV_EXCP_LOAD_ACCESS_FAULT:
874 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
875 case RISCV_EXCP_INST_PAGE_FAULT:
876 case RISCV_EXCP_LOAD_PAGE_FAULT:
877 case RISCV_EXCP_STORE_PAGE_FAULT:
878 tval = env->badaddr;
879 break;
880 default:
881 break;
882 }
883 /* ecall is dispatched as one cause so translate based on mode */
884 if (cause == RISCV_EXCP_U_ECALL) {
885 assert(env->priv <= 3);
886
887 if (env->priv == PRV_M) {
888 cause = RISCV_EXCP_M_ECALL;
889 } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
890 cause = RISCV_EXCP_VS_ECALL;
891 } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
892 cause = RISCV_EXCP_S_ECALL;
893 } else if (env->priv == PRV_U) {
894 cause = RISCV_EXCP_U_ECALL;
895 }
896 }
897 }
898
899 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, cause < 23 ?
900 (async ? riscv_intr_names : riscv_excp_names)[cause] : "(unknown)");
901
902 if (env->priv <= PRV_S &&
903 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
904 /* handle the trap in S-mode */
905 if (riscv_has_ext(env, RVH)) {
906 target_ulong hdeleg = async ? env->hideleg : env->hedeleg;
907
908 if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1) &&
909 !force_hs_execp) {
910 /* Trap to VS mode */
911 } else if (riscv_cpu_virt_enabled(env)) {
912 /* Trap into HS mode, from virt */
913 riscv_cpu_swap_hypervisor_regs(env);
914 env->hstatus = set_field(env->hstatus, HSTATUS_SP2V,
915 get_field(env->hstatus, HSTATUS_SPV));
916 env->hstatus = set_field(env->hstatus, HSTATUS_SP2P,
917 get_field(env->mstatus, SSTATUS_SPP));
918 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
919 riscv_cpu_virt_enabled(env));
920
921 htval = env->guest_phys_fault_addr;
922
923 riscv_cpu_set_virt_enabled(env, 0);
924 riscv_cpu_set_force_hs_excep(env, 0);
925 } else {
926 /* Trap into HS mode */
927 env->hstatus = set_field(env->hstatus, HSTATUS_SP2V,
928 get_field(env->hstatus, HSTATUS_SPV));
929 env->hstatus = set_field(env->hstatus, HSTATUS_SP2P,
930 get_field(env->mstatus, SSTATUS_SPP));
931 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
932 riscv_cpu_virt_enabled(env));
933
934 htval = env->guest_phys_fault_addr;
935 }
936 }
937
938 s = env->mstatus;
939 s = set_field(s, MSTATUS_SPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
940 get_field(s, MSTATUS_SIE) : get_field(s, MSTATUS_UIE << env->priv));
941 s = set_field(s, MSTATUS_SPP, env->priv);
942 s = set_field(s, MSTATUS_SIE, 0);
943 env->mstatus = s;
944 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
945 env->sepc = env->pc;
946 env->sbadaddr = tval;
947 env->htval = htval;
948 env->pc = (env->stvec >> 2 << 2) +
949 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
950 riscv_cpu_set_mode(env, PRV_S);
951 } else {
952 /* handle the trap in M-mode */
953 if (riscv_has_ext(env, RVH)) {
954 if (riscv_cpu_virt_enabled(env)) {
955 riscv_cpu_swap_hypervisor_regs(env);
956 }
957 #ifdef TARGET_RISCV32
958 env->mstatush = set_field(env->mstatush, MSTATUS_MPV,
959 riscv_cpu_virt_enabled(env));
960 env->mstatush = set_field(env->mstatush, MSTATUS_MTL,
961 riscv_cpu_force_hs_excep_enabled(env));
962 #else
963 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
964 riscv_cpu_virt_enabled(env));
965 env->mstatus = set_field(env->mstatus, MSTATUS_MTL,
966 riscv_cpu_force_hs_excep_enabled(env));
967 #endif
968
969 mtval2 = env->guest_phys_fault_addr;
970
971 /* Trapping to M mode, virt is disabled */
972 riscv_cpu_set_virt_enabled(env, 0);
973 riscv_cpu_set_force_hs_excep(env, 0);
974 }
975
976 s = env->mstatus;
977 s = set_field(s, MSTATUS_MPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
978 get_field(s, MSTATUS_MIE) : get_field(s, MSTATUS_UIE << env->priv));
979 s = set_field(s, MSTATUS_MPP, env->priv);
980 s = set_field(s, MSTATUS_MIE, 0);
981 env->mstatus = s;
982 env->mcause = cause | ~(((target_ulong)-1) >> async);
983 env->mepc = env->pc;
984 env->mbadaddr = tval;
985 env->mtval2 = mtval2;
986 env->pc = (env->mtvec >> 2 << 2) +
987 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
988 riscv_cpu_set_mode(env, PRV_M);
989 }
990
991 /* NOTE: it is not necessary to yield load reservations here. It is only
992 * necessary for an SC from "another hart" to cause a load reservation
993 * to be yielded. Refer to the memory consistency model section of the
994 * RISC-V ISA Specification.
995 */
996
997 #endif
998 cs->exception_index = EXCP_NONE; /* mark handled to qemu */
999 }