]> git.proxmox.com Git - mirror_qemu.git/blob - target/riscv/cpu_helper.c
target/arm: Add FEAT_NV2 to max, neoverse-n2, neoverse-v1 CPUs
[mirror_qemu.git] / target / riscv / cpu_helper.c
1 /*
2 * RISC-V CPU helpers for qemu.
3 *
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "internals.h"
25 #include "pmu.h"
26 #include "exec/exec-all.h"
27 #include "instmap.h"
28 #include "tcg/tcg-op.h"
29 #include "trace.h"
30 #include "semihosting/common-semi.h"
31 #include "sysemu/cpu-timers.h"
32 #include "cpu_bits.h"
33 #include "debug.h"
34 #include "tcg/oversized-guest.h"
35
36 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
37 {
38 #ifdef CONFIG_USER_ONLY
39 return 0;
40 #else
41 bool virt = env->virt_enabled;
42 int mode = env->priv;
43
44 /* All priv -> mmu_idx mapping are here */
45 if (!ifetch) {
46 uint64_t status = env->mstatus;
47
48 if (mode == PRV_M && get_field(status, MSTATUS_MPRV)) {
49 mode = get_field(env->mstatus, MSTATUS_MPP);
50 virt = get_field(env->mstatus, MSTATUS_MPV) &&
51 (mode != PRV_M);
52 if (virt) {
53 status = env->vsstatus;
54 }
55 }
56 if (mode == PRV_S && get_field(status, MSTATUS_SUM)) {
57 mode = MMUIdx_S_SUM;
58 }
59 }
60
61 return mode | (virt ? MMU_2STAGE_BIT : 0);
62 #endif
63 }
64
65 void cpu_get_tb_cpu_state(CPURISCVState *env, vaddr *pc,
66 uint64_t *cs_base, uint32_t *pflags)
67 {
68 RISCVCPU *cpu = env_archcpu(env);
69 RISCVExtStatus fs, vs;
70 uint32_t flags = 0;
71
72 *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
73 *cs_base = 0;
74
75 if (cpu->cfg.ext_zve32f) {
76 /*
77 * If env->vl equals to VLMAX, we can use generic vector operation
78 * expanders (GVEC) to accerlate the vector operations.
79 * However, as LMUL could be a fractional number. The maximum
80 * vector size can be operated might be less than 8 bytes,
81 * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
82 * only when maxsz >= 8 bytes.
83 */
84 uint32_t vlmax = vext_get_vlmax(cpu, env->vtype);
85 uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
86 uint32_t maxsz = vlmax << sew;
87 bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
88 (maxsz >= 8);
89 flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
90 flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
91 flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
92 FIELD_EX64(env->vtype, VTYPE, VLMUL));
93 flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
94 flags = FIELD_DP32(flags, TB_FLAGS, VTA,
95 FIELD_EX64(env->vtype, VTYPE, VTA));
96 flags = FIELD_DP32(flags, TB_FLAGS, VMA,
97 FIELD_EX64(env->vtype, VTYPE, VMA));
98 flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0);
99 } else {
100 flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
101 }
102
103 #ifdef CONFIG_USER_ONLY
104 fs = EXT_STATUS_DIRTY;
105 vs = EXT_STATUS_DIRTY;
106 #else
107 flags = FIELD_DP32(flags, TB_FLAGS, PRIV, env->priv);
108
109 flags |= cpu_mmu_index(env, 0);
110 fs = get_field(env->mstatus, MSTATUS_FS);
111 vs = get_field(env->mstatus, MSTATUS_VS);
112
113 if (env->virt_enabled) {
114 flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1);
115 /*
116 * Merge DISABLED and !DIRTY states using MIN.
117 * We will set both fields when dirtying.
118 */
119 fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS));
120 vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS));
121 }
122
123 /* With Zfinx, floating point is enabled/disabled by Smstateen. */
124 if (!riscv_has_ext(env, RVF)) {
125 fs = (smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR) == RISCV_EXCP_NONE)
126 ? EXT_STATUS_DIRTY : EXT_STATUS_DISABLED;
127 }
128
129 if (cpu->cfg.debug && !icount_enabled()) {
130 flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled);
131 }
132 #endif
133
134 flags = FIELD_DP32(flags, TB_FLAGS, FS, fs);
135 flags = FIELD_DP32(flags, TB_FLAGS, VS, vs);
136 flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
137 flags = FIELD_DP32(flags, TB_FLAGS, AXL, cpu_address_xl(env));
138 if (env->cur_pmmask != 0) {
139 flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
140 }
141 if (env->cur_pmbase != 0) {
142 flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
143 }
144
145 *pflags = flags;
146 }
147
148 void riscv_cpu_update_mask(CPURISCVState *env)
149 {
150 target_ulong mask = 0, base = 0;
151 RISCVMXL xl = env->xl;
152 /*
153 * TODO: Current RVJ spec does not specify
154 * how the extension interacts with XLEN.
155 */
156 #ifndef CONFIG_USER_ONLY
157 int mode = cpu_address_mode(env);
158 xl = cpu_get_xl(env, mode);
159 if (riscv_has_ext(env, RVJ)) {
160 switch (mode) {
161 case PRV_M:
162 if (env->mmte & M_PM_ENABLE) {
163 mask = env->mpmmask;
164 base = env->mpmbase;
165 }
166 break;
167 case PRV_S:
168 if (env->mmte & S_PM_ENABLE) {
169 mask = env->spmmask;
170 base = env->spmbase;
171 }
172 break;
173 case PRV_U:
174 if (env->mmte & U_PM_ENABLE) {
175 mask = env->upmmask;
176 base = env->upmbase;
177 }
178 break;
179 default:
180 g_assert_not_reached();
181 }
182 }
183 #endif
184 if (xl == MXL_RV32) {
185 env->cur_pmmask = mask & UINT32_MAX;
186 env->cur_pmbase = base & UINT32_MAX;
187 } else {
188 env->cur_pmmask = mask;
189 env->cur_pmbase = base;
190 }
191 }
192
193 #ifndef CONFIG_USER_ONLY
194
195 /*
196 * The HS-mode is allowed to configure priority only for the
197 * following VS-mode local interrupts:
198 *
199 * 0 (Reserved interrupt, reads as zero)
200 * 1 Supervisor software interrupt
201 * 4 (Reserved interrupt, reads as zero)
202 * 5 Supervisor timer interrupt
203 * 8 (Reserved interrupt, reads as zero)
204 * 13 (Reserved interrupt)
205 * 14 "
206 * 15 "
207 * 16 "
208 * 17 "
209 * 18 "
210 * 19 "
211 * 20 "
212 * 21 "
213 * 22 "
214 * 23 "
215 */
216
217 static const int hviprio_index2irq[] = {
218 0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
219 static const int hviprio_index2rdzero[] = {
220 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
221
222 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
223 {
224 if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
225 return -EINVAL;
226 }
227
228 if (out_irq) {
229 *out_irq = hviprio_index2irq[index];
230 }
231
232 if (out_rdzero) {
233 *out_rdzero = hviprio_index2rdzero[index];
234 }
235
236 return 0;
237 }
238
239 /*
240 * Default priorities of local interrupts are defined in the
241 * RISC-V Advanced Interrupt Architecture specification.
242 *
243 * ----------------------------------------------------------------
244 * Default |
245 * Priority | Major Interrupt Numbers
246 * ----------------------------------------------------------------
247 * Highest | 47, 23, 46, 45, 22, 44,
248 * | 43, 21, 42, 41, 20, 40
249 * |
250 * | 11 (0b), 3 (03), 7 (07)
251 * | 9 (09), 1 (01), 5 (05)
252 * | 12 (0c)
253 * | 10 (0a), 2 (02), 6 (06)
254 * |
255 * | 39, 19, 38, 37, 18, 36,
256 * Lowest | 35, 17, 34, 33, 16, 32
257 * ----------------------------------------------------------------
258 */
259 static const uint8_t default_iprio[64] = {
260 /* Custom interrupts 48 to 63 */
261 [63] = IPRIO_MMAXIPRIO,
262 [62] = IPRIO_MMAXIPRIO,
263 [61] = IPRIO_MMAXIPRIO,
264 [60] = IPRIO_MMAXIPRIO,
265 [59] = IPRIO_MMAXIPRIO,
266 [58] = IPRIO_MMAXIPRIO,
267 [57] = IPRIO_MMAXIPRIO,
268 [56] = IPRIO_MMAXIPRIO,
269 [55] = IPRIO_MMAXIPRIO,
270 [54] = IPRIO_MMAXIPRIO,
271 [53] = IPRIO_MMAXIPRIO,
272 [52] = IPRIO_MMAXIPRIO,
273 [51] = IPRIO_MMAXIPRIO,
274 [50] = IPRIO_MMAXIPRIO,
275 [49] = IPRIO_MMAXIPRIO,
276 [48] = IPRIO_MMAXIPRIO,
277
278 /* Custom interrupts 24 to 31 */
279 [31] = IPRIO_MMAXIPRIO,
280 [30] = IPRIO_MMAXIPRIO,
281 [29] = IPRIO_MMAXIPRIO,
282 [28] = IPRIO_MMAXIPRIO,
283 [27] = IPRIO_MMAXIPRIO,
284 [26] = IPRIO_MMAXIPRIO,
285 [25] = IPRIO_MMAXIPRIO,
286 [24] = IPRIO_MMAXIPRIO,
287
288 [47] = IPRIO_DEFAULT_UPPER,
289 [23] = IPRIO_DEFAULT_UPPER + 1,
290 [46] = IPRIO_DEFAULT_UPPER + 2,
291 [45] = IPRIO_DEFAULT_UPPER + 3,
292 [22] = IPRIO_DEFAULT_UPPER + 4,
293 [44] = IPRIO_DEFAULT_UPPER + 5,
294
295 [43] = IPRIO_DEFAULT_UPPER + 6,
296 [21] = IPRIO_DEFAULT_UPPER + 7,
297 [42] = IPRIO_DEFAULT_UPPER + 8,
298 [41] = IPRIO_DEFAULT_UPPER + 9,
299 [20] = IPRIO_DEFAULT_UPPER + 10,
300 [40] = IPRIO_DEFAULT_UPPER + 11,
301
302 [11] = IPRIO_DEFAULT_M,
303 [3] = IPRIO_DEFAULT_M + 1,
304 [7] = IPRIO_DEFAULT_M + 2,
305
306 [9] = IPRIO_DEFAULT_S,
307 [1] = IPRIO_DEFAULT_S + 1,
308 [5] = IPRIO_DEFAULT_S + 2,
309
310 [12] = IPRIO_DEFAULT_SGEXT,
311
312 [10] = IPRIO_DEFAULT_VS,
313 [2] = IPRIO_DEFAULT_VS + 1,
314 [6] = IPRIO_DEFAULT_VS + 2,
315
316 [39] = IPRIO_DEFAULT_LOWER,
317 [19] = IPRIO_DEFAULT_LOWER + 1,
318 [38] = IPRIO_DEFAULT_LOWER + 2,
319 [37] = IPRIO_DEFAULT_LOWER + 3,
320 [18] = IPRIO_DEFAULT_LOWER + 4,
321 [36] = IPRIO_DEFAULT_LOWER + 5,
322
323 [35] = IPRIO_DEFAULT_LOWER + 6,
324 [17] = IPRIO_DEFAULT_LOWER + 7,
325 [34] = IPRIO_DEFAULT_LOWER + 8,
326 [33] = IPRIO_DEFAULT_LOWER + 9,
327 [16] = IPRIO_DEFAULT_LOWER + 10,
328 [32] = IPRIO_DEFAULT_LOWER + 11,
329 };
330
331 uint8_t riscv_cpu_default_priority(int irq)
332 {
333 if (irq < 0 || irq > 63) {
334 return IPRIO_MMAXIPRIO;
335 }
336
337 return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
338 };
339
340 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
341 int extirq, unsigned int extirq_def_prio,
342 uint64_t pending, uint8_t *iprio)
343 {
344 int irq, best_irq = RISCV_EXCP_NONE;
345 unsigned int prio, best_prio = UINT_MAX;
346
347 if (!pending) {
348 return RISCV_EXCP_NONE;
349 }
350
351 irq = ctz64(pending);
352 if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia :
353 riscv_cpu_cfg(env)->ext_ssaia)) {
354 return irq;
355 }
356
357 pending = pending >> irq;
358 while (pending) {
359 prio = iprio[irq];
360 if (!prio) {
361 if (irq == extirq) {
362 prio = extirq_def_prio;
363 } else {
364 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
365 1 : IPRIO_MMAXIPRIO;
366 }
367 }
368 if ((pending & 0x1) && (prio <= best_prio)) {
369 best_irq = irq;
370 best_prio = prio;
371 }
372 irq++;
373 pending = pending >> 1;
374 }
375
376 return best_irq;
377 }
378
379 /*
380 * Doesn't report interrupts inserted using mvip from M-mode firmware or
381 * using hvip bits 13:63 from HS-mode. Those are returned in
382 * riscv_cpu_sirq_pending() and riscv_cpu_vsirq_pending().
383 */
384 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
385 {
386 uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
387 uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
388 uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
389
390 return (env->mip | vsgein | vstip) & env->mie;
391 }
392
393 int riscv_cpu_mirq_pending(CPURISCVState *env)
394 {
395 uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
396 ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
397
398 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
399 irqs, env->miprio);
400 }
401
402 int riscv_cpu_sirq_pending(CPURISCVState *env)
403 {
404 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
405 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
406 uint64_t irqs_f = env->mvip & env->mvien & ~env->mideleg & env->sie;
407
408 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
409 irqs | irqs_f, env->siprio);
410 }
411
412 int riscv_cpu_vsirq_pending(CPURISCVState *env)
413 {
414 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg & env->hideleg;
415 uint64_t irqs_f_vs = env->hvip & env->hvien & ~env->hideleg & env->vsie;
416 uint64_t vsbits;
417
418 /* Bring VS-level bits to correct position */
419 vsbits = irqs & VS_MODE_INTERRUPTS;
420 irqs &= ~VS_MODE_INTERRUPTS;
421 irqs |= vsbits >> 1;
422
423 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
424 (irqs | irqs_f_vs), env->hviprio);
425 }
426
427 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
428 {
429 uint64_t irqs, pending, mie, hsie, vsie, irqs_f, irqs_f_vs;
430 uint64_t vsbits, irq_delegated;
431 int virq;
432
433 /* Determine interrupt enable state of all privilege modes */
434 if (env->virt_enabled) {
435 mie = 1;
436 hsie = 1;
437 vsie = (env->priv < PRV_S) ||
438 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
439 } else {
440 mie = (env->priv < PRV_M) ||
441 (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
442 hsie = (env->priv < PRV_S) ||
443 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
444 vsie = 0;
445 }
446
447 /* Determine all pending interrupts */
448 pending = riscv_cpu_all_pending(env);
449
450 /* Check M-mode interrupts */
451 irqs = pending & ~env->mideleg & -mie;
452 if (irqs) {
453 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
454 irqs, env->miprio);
455 }
456
457 /* Check for virtual S-mode interrupts. */
458 irqs_f = env->mvip & (env->mvien & ~env->mideleg) & env->sie;
459
460 /* Check HS-mode interrupts */
461 irqs = ((pending & env->mideleg & ~env->hideleg) | irqs_f) & -hsie;
462 if (irqs) {
463 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
464 irqs, env->siprio);
465 }
466
467 /* Check for virtual VS-mode interrupts. */
468 irqs_f_vs = env->hvip & env->hvien & ~env->hideleg & env->vsie;
469
470 /* Check VS-mode interrupts */
471 irq_delegated = pending & env->mideleg & env->hideleg;
472
473 /* Bring VS-level bits to correct position */
474 vsbits = irq_delegated & VS_MODE_INTERRUPTS;
475 irq_delegated &= ~VS_MODE_INTERRUPTS;
476 irq_delegated |= vsbits >> 1;
477
478 irqs = (irq_delegated | irqs_f_vs) & -vsie;
479 if (irqs) {
480 virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
481 irqs, env->hviprio);
482 if (virq <= 0 || (virq > 12 && virq <= 63)) {
483 return virq;
484 } else {
485 return virq + 1;
486 }
487 }
488
489 /* Indicate no pending interrupt */
490 return RISCV_EXCP_NONE;
491 }
492
493 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
494 {
495 if (interrupt_request & CPU_INTERRUPT_HARD) {
496 RISCVCPU *cpu = RISCV_CPU(cs);
497 CPURISCVState *env = &cpu->env;
498 int interruptno = riscv_cpu_local_irq_pending(env);
499 if (interruptno >= 0) {
500 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
501 riscv_cpu_do_interrupt(cs);
502 return true;
503 }
504 }
505 return false;
506 }
507
508 /* Return true is floating point support is currently enabled */
509 bool riscv_cpu_fp_enabled(CPURISCVState *env)
510 {
511 if (env->mstatus & MSTATUS_FS) {
512 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) {
513 return false;
514 }
515 return true;
516 }
517
518 return false;
519 }
520
521 /* Return true is vector support is currently enabled */
522 bool riscv_cpu_vector_enabled(CPURISCVState *env)
523 {
524 if (env->mstatus & MSTATUS_VS) {
525 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) {
526 return false;
527 }
528 return true;
529 }
530
531 return false;
532 }
533
534 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
535 {
536 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
537 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
538 MSTATUS64_UXL | MSTATUS_VS;
539
540 if (riscv_has_ext(env, RVF)) {
541 mstatus_mask |= MSTATUS_FS;
542 }
543 bool current_virt = env->virt_enabled;
544
545 g_assert(riscv_has_ext(env, RVH));
546
547 if (current_virt) {
548 /* Current V=1 and we are about to change to V=0 */
549 env->vsstatus = env->mstatus & mstatus_mask;
550 env->mstatus &= ~mstatus_mask;
551 env->mstatus |= env->mstatus_hs;
552
553 env->vstvec = env->stvec;
554 env->stvec = env->stvec_hs;
555
556 env->vsscratch = env->sscratch;
557 env->sscratch = env->sscratch_hs;
558
559 env->vsepc = env->sepc;
560 env->sepc = env->sepc_hs;
561
562 env->vscause = env->scause;
563 env->scause = env->scause_hs;
564
565 env->vstval = env->stval;
566 env->stval = env->stval_hs;
567
568 env->vsatp = env->satp;
569 env->satp = env->satp_hs;
570 } else {
571 /* Current V=0 and we are about to change to V=1 */
572 env->mstatus_hs = env->mstatus & mstatus_mask;
573 env->mstatus &= ~mstatus_mask;
574 env->mstatus |= env->vsstatus;
575
576 env->stvec_hs = env->stvec;
577 env->stvec = env->vstvec;
578
579 env->sscratch_hs = env->sscratch;
580 env->sscratch = env->vsscratch;
581
582 env->sepc_hs = env->sepc;
583 env->sepc = env->vsepc;
584
585 env->scause_hs = env->scause;
586 env->scause = env->vscause;
587
588 env->stval_hs = env->stval;
589 env->stval = env->vstval;
590
591 env->satp_hs = env->satp;
592 env->satp = env->vsatp;
593 }
594 }
595
596 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
597 {
598 if (!riscv_has_ext(env, RVH)) {
599 return 0;
600 }
601
602 return env->geilen;
603 }
604
605 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
606 {
607 if (!riscv_has_ext(env, RVH)) {
608 return;
609 }
610
611 if (geilen > (TARGET_LONG_BITS - 1)) {
612 return;
613 }
614
615 env->geilen = geilen;
616 }
617
618 /* This function can only be called to set virt when RVH is enabled */
619 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
620 {
621 /* Flush the TLB on all virt mode changes. */
622 if (env->virt_enabled != enable) {
623 tlb_flush(env_cpu(env));
624 }
625
626 env->virt_enabled = enable;
627
628 if (enable) {
629 /*
630 * The guest external interrupts from an interrupt controller are
631 * delivered only when the Guest/VM is running (i.e. V=1). This means
632 * any guest external interrupt which is triggered while the Guest/VM
633 * is not running (i.e. V=0) will be missed on QEMU resulting in guest
634 * with sluggish response to serial console input and other I/O events.
635 *
636 * To solve this, we check and inject interrupt after setting V=1.
637 */
638 riscv_cpu_update_mip(env, 0, 0);
639 }
640 }
641
642 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
643 {
644 CPURISCVState *env = &cpu->env;
645 if (env->miclaim & interrupts) {
646 return -1;
647 } else {
648 env->miclaim |= interrupts;
649 return 0;
650 }
651 }
652
653 void riscv_cpu_interrupt(CPURISCVState *env)
654 {
655 uint64_t gein, vsgein = 0, vstip = 0, irqf = 0;
656 CPUState *cs = env_cpu(env);
657
658 BQL_LOCK_GUARD();
659
660 if (env->virt_enabled) {
661 gein = get_field(env->hstatus, HSTATUS_VGEIN);
662 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
663 irqf = env->hvien & env->hvip & env->vsie;
664 } else {
665 irqf = env->mvien & env->mvip & env->sie;
666 }
667
668 vstip = env->vstime_irq ? MIP_VSTIP : 0;
669
670 if (env->mip | vsgein | vstip | irqf) {
671 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
672 } else {
673 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
674 }
675 }
676
677 uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask, uint64_t value)
678 {
679 uint64_t old = env->mip;
680
681 /* No need to update mip for VSTIP */
682 mask = ((mask == MIP_VSTIP) && env->vstime_irq) ? 0 : mask;
683
684 BQL_LOCK_GUARD();
685
686 env->mip = (env->mip & ~mask) | (value & mask);
687
688 riscv_cpu_interrupt(env);
689
690 return old;
691 }
692
693 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
694 void *arg)
695 {
696 env->rdtime_fn = fn;
697 env->rdtime_fn_arg = arg;
698 }
699
700 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
701 int (*rmw_fn)(void *arg,
702 target_ulong reg,
703 target_ulong *val,
704 target_ulong new_val,
705 target_ulong write_mask),
706 void *rmw_fn_arg)
707 {
708 if (priv <= PRV_M) {
709 env->aia_ireg_rmw_fn[priv] = rmw_fn;
710 env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
711 }
712 }
713
714 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
715 {
716 g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED);
717
718 if (icount_enabled() && newpriv != env->priv) {
719 riscv_itrigger_update_priv(env);
720 }
721 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
722 env->priv = newpriv;
723 env->xl = cpu_recompute_xl(env);
724 riscv_cpu_update_mask(env);
725
726 /*
727 * Clear the load reservation - otherwise a reservation placed in one
728 * context/process can be used by another, resulting in an SC succeeding
729 * incorrectly. Version 2.2 of the ISA specification explicitly requires
730 * this behaviour, while later revisions say that the kernel "should" use
731 * an SC instruction to force the yielding of a load reservation on a
732 * preemptive context switch. As a result, do both.
733 */
734 env->load_res = -1;
735 }
736
737 /*
738 * get_physical_address_pmp - check PMP permission for this physical address
739 *
740 * Match the PMP region and check permission for this physical address and it's
741 * TLB page. Returns 0 if the permission checking was successful
742 *
743 * @env: CPURISCVState
744 * @prot: The returned protection attributes
745 * @addr: The physical address to be checked permission
746 * @access_type: The type of MMU access
747 * @mode: Indicates current privilege level.
748 */
749 static int get_physical_address_pmp(CPURISCVState *env, int *prot, hwaddr addr,
750 int size, MMUAccessType access_type,
751 int mode)
752 {
753 pmp_priv_t pmp_priv;
754 bool pmp_has_privs;
755
756 if (!riscv_cpu_cfg(env)->pmp) {
757 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
758 return TRANSLATE_SUCCESS;
759 }
760
761 pmp_has_privs = pmp_hart_has_privs(env, addr, size, 1 << access_type,
762 &pmp_priv, mode);
763 if (!pmp_has_privs) {
764 *prot = 0;
765 return TRANSLATE_PMP_FAIL;
766 }
767
768 *prot = pmp_priv_to_page_prot(pmp_priv);
769
770 return TRANSLATE_SUCCESS;
771 }
772
773 /*
774 * get_physical_address - get the physical address for this virtual address
775 *
776 * Do a page table walk to obtain the physical address corresponding to a
777 * virtual address. Returns 0 if the translation was successful
778 *
779 * Adapted from Spike's mmu_t::translate and mmu_t::walk
780 *
781 * @env: CPURISCVState
782 * @physical: This will be set to the calculated physical address
783 * @prot: The returned protection attributes
784 * @addr: The virtual address or guest physical address to be translated
785 * @fault_pte_addr: If not NULL, this will be set to fault pte address
786 * when a error occurs on pte address translation.
787 * This will already be shifted to match htval.
788 * @access_type: The type of MMU access
789 * @mmu_idx: Indicates current privilege level
790 * @first_stage: Are we in first stage translation?
791 * Second stage is used for hypervisor guest translation
792 * @two_stage: Are we going to perform two stage translation
793 * @is_debug: Is this access from a debugger or the monitor?
794 */
795 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
796 int *ret_prot, vaddr addr,
797 target_ulong *fault_pte_addr,
798 int access_type, int mmu_idx,
799 bool first_stage, bool two_stage,
800 bool is_debug)
801 {
802 /*
803 * NOTE: the env->pc value visible here will not be
804 * correct, but the value visible to the exception handler
805 * (riscv_cpu_do_interrupt) is correct
806 */
807 MemTxResult res;
808 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
809 int mode = mmuidx_priv(mmu_idx);
810 bool use_background = false;
811 hwaddr ppn;
812 int napot_bits = 0;
813 target_ulong napot_mask;
814
815 /*
816 * Check if we should use the background registers for the two
817 * stage translation. We don't need to check if we actually need
818 * two stage translation as that happened before this function
819 * was called. Background registers will be used if the guest has
820 * forced a two stage translation to be on (in HS or M mode).
821 */
822 if (!env->virt_enabled && two_stage) {
823 use_background = true;
824 }
825
826 if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) {
827 *physical = addr;
828 *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
829 return TRANSLATE_SUCCESS;
830 }
831
832 *ret_prot = 0;
833
834 hwaddr base;
835 int levels, ptidxbits, ptesize, vm, widened;
836
837 if (first_stage == true) {
838 if (use_background) {
839 if (riscv_cpu_mxl(env) == MXL_RV32) {
840 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
841 vm = get_field(env->vsatp, SATP32_MODE);
842 } else {
843 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
844 vm = get_field(env->vsatp, SATP64_MODE);
845 }
846 } else {
847 if (riscv_cpu_mxl(env) == MXL_RV32) {
848 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
849 vm = get_field(env->satp, SATP32_MODE);
850 } else {
851 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
852 vm = get_field(env->satp, SATP64_MODE);
853 }
854 }
855 widened = 0;
856 } else {
857 if (riscv_cpu_mxl(env) == MXL_RV32) {
858 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
859 vm = get_field(env->hgatp, SATP32_MODE);
860 } else {
861 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
862 vm = get_field(env->hgatp, SATP64_MODE);
863 }
864 widened = 2;
865 }
866
867 switch (vm) {
868 case VM_1_10_SV32:
869 levels = 2; ptidxbits = 10; ptesize = 4; break;
870 case VM_1_10_SV39:
871 levels = 3; ptidxbits = 9; ptesize = 8; break;
872 case VM_1_10_SV48:
873 levels = 4; ptidxbits = 9; ptesize = 8; break;
874 case VM_1_10_SV57:
875 levels = 5; ptidxbits = 9; ptesize = 8; break;
876 case VM_1_10_MBARE:
877 *physical = addr;
878 *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
879 return TRANSLATE_SUCCESS;
880 default:
881 g_assert_not_reached();
882 }
883
884 CPUState *cs = env_cpu(env);
885 int va_bits = PGSHIFT + levels * ptidxbits + widened;
886
887 if (first_stage == true) {
888 target_ulong mask, masked_msbs;
889
890 if (TARGET_LONG_BITS > (va_bits - 1)) {
891 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
892 } else {
893 mask = 0;
894 }
895 masked_msbs = (addr >> (va_bits - 1)) & mask;
896
897 if (masked_msbs != 0 && masked_msbs != mask) {
898 return TRANSLATE_FAIL;
899 }
900 } else {
901 if (vm != VM_1_10_SV32 && addr >> va_bits != 0) {
902 return TRANSLATE_FAIL;
903 }
904 }
905
906 bool pbmte = env->menvcfg & MENVCFG_PBMTE;
907 bool adue = env->menvcfg & MENVCFG_ADUE;
908
909 if (first_stage && two_stage && env->virt_enabled) {
910 pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE);
911 adue = adue && (env->henvcfg & HENVCFG_ADUE);
912 }
913
914 int ptshift = (levels - 1) * ptidxbits;
915 target_ulong pte;
916 hwaddr pte_addr;
917 int i;
918
919 #if !TCG_OVERSIZED_GUEST
920 restart:
921 #endif
922 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
923 target_ulong idx;
924 if (i == 0) {
925 idx = (addr >> (PGSHIFT + ptshift)) &
926 ((1 << (ptidxbits + widened)) - 1);
927 } else {
928 idx = (addr >> (PGSHIFT + ptshift)) &
929 ((1 << ptidxbits) - 1);
930 }
931
932 /* check that physical address of PTE is legal */
933
934 if (two_stage && first_stage) {
935 int vbase_prot;
936 hwaddr vbase;
937
938 /* Do the second stage translation on the base PTE address. */
939 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
940 base, NULL, MMU_DATA_LOAD,
941 MMUIdx_U, false, true,
942 is_debug);
943
944 if (vbase_ret != TRANSLATE_SUCCESS) {
945 if (fault_pte_addr) {
946 *fault_pte_addr = (base + idx * ptesize) >> 2;
947 }
948 return TRANSLATE_G_STAGE_FAIL;
949 }
950
951 pte_addr = vbase + idx * ptesize;
952 } else {
953 pte_addr = base + idx * ptesize;
954 }
955
956 int pmp_prot;
957 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, pte_addr,
958 sizeof(target_ulong),
959 MMU_DATA_LOAD, PRV_S);
960 if (pmp_ret != TRANSLATE_SUCCESS) {
961 return TRANSLATE_PMP_FAIL;
962 }
963
964 if (riscv_cpu_mxl(env) == MXL_RV32) {
965 pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
966 } else {
967 pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
968 }
969
970 if (res != MEMTX_OK) {
971 return TRANSLATE_FAIL;
972 }
973
974 if (riscv_cpu_sxl(env) == MXL_RV32) {
975 ppn = pte >> PTE_PPN_SHIFT;
976 } else {
977 if (pte & PTE_RESERVED) {
978 return TRANSLATE_FAIL;
979 }
980
981 if (!pbmte && (pte & PTE_PBMT)) {
982 return TRANSLATE_FAIL;
983 }
984
985 if (!riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
986 return TRANSLATE_FAIL;
987 }
988
989 ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
990 }
991
992 if (!(pte & PTE_V)) {
993 /* Invalid PTE */
994 return TRANSLATE_FAIL;
995 }
996 if (pte & (PTE_R | PTE_W | PTE_X)) {
997 goto leaf;
998 }
999
1000 /* Inner PTE, continue walking */
1001 if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
1002 return TRANSLATE_FAIL;
1003 }
1004 base = ppn << PGSHIFT;
1005 }
1006
1007 /* No leaf pte at any translation level. */
1008 return TRANSLATE_FAIL;
1009
1010 leaf:
1011 if (ppn & ((1ULL << ptshift) - 1)) {
1012 /* Misaligned PPN */
1013 return TRANSLATE_FAIL;
1014 }
1015 if (!pbmte && (pte & PTE_PBMT)) {
1016 /* Reserved without Svpbmt. */
1017 return TRANSLATE_FAIL;
1018 }
1019
1020 /* Check for reserved combinations of RWX flags. */
1021 switch (pte & (PTE_R | PTE_W | PTE_X)) {
1022 case PTE_W:
1023 case PTE_W | PTE_X:
1024 return TRANSLATE_FAIL;
1025 }
1026
1027 int prot = 0;
1028 if (pte & PTE_R) {
1029 prot |= PAGE_READ;
1030 }
1031 if (pte & PTE_W) {
1032 prot |= PAGE_WRITE;
1033 }
1034 if (pte & PTE_X) {
1035 bool mxr = false;
1036
1037 /*
1038 * Use mstatus for first stage or for the second stage without
1039 * virt_enabled (MPRV+MPV)
1040 */
1041 if (first_stage || !env->virt_enabled) {
1042 mxr = get_field(env->mstatus, MSTATUS_MXR);
1043 }
1044
1045 /* MPRV+MPV case, check VSSTATUS */
1046 if (first_stage && two_stage && !env->virt_enabled) {
1047 mxr |= get_field(env->vsstatus, MSTATUS_MXR);
1048 }
1049
1050 /*
1051 * Setting MXR at HS-level overrides both VS-stage and G-stage
1052 * execute-only permissions
1053 */
1054 if (env->virt_enabled) {
1055 mxr |= get_field(env->mstatus_hs, MSTATUS_MXR);
1056 }
1057
1058 if (mxr) {
1059 prot |= PAGE_READ;
1060 }
1061 prot |= PAGE_EXEC;
1062 }
1063
1064 if (pte & PTE_U) {
1065 if (mode != PRV_U) {
1066 if (!mmuidx_sum(mmu_idx)) {
1067 return TRANSLATE_FAIL;
1068 }
1069 /* SUM allows only read+write, not execute. */
1070 prot &= PAGE_READ | PAGE_WRITE;
1071 }
1072 } else if (mode != PRV_S) {
1073 /* Supervisor PTE flags when not S mode */
1074 return TRANSLATE_FAIL;
1075 }
1076
1077 if (!((prot >> access_type) & 1)) {
1078 /* Access check failed */
1079 return TRANSLATE_FAIL;
1080 }
1081
1082 /* If necessary, set accessed and dirty bits. */
1083 target_ulong updated_pte = pte | PTE_A |
1084 (access_type == MMU_DATA_STORE ? PTE_D : 0);
1085
1086 /* Page table updates need to be atomic with MTTCG enabled */
1087 if (updated_pte != pte && !is_debug) {
1088 if (!adue) {
1089 return TRANSLATE_FAIL;
1090 }
1091
1092 /*
1093 * - if accessed or dirty bits need updating, and the PTE is
1094 * in RAM, then we do so atomically with a compare and swap.
1095 * - if the PTE is in IO space or ROM, then it can't be updated
1096 * and we return TRANSLATE_FAIL.
1097 * - if the PTE changed by the time we went to update it, then
1098 * it is no longer valid and we must re-walk the page table.
1099 */
1100 MemoryRegion *mr;
1101 hwaddr l = sizeof(target_ulong), addr1;
1102 mr = address_space_translate(cs->as, pte_addr, &addr1, &l,
1103 false, MEMTXATTRS_UNSPECIFIED);
1104 if (memory_region_is_ram(mr)) {
1105 target_ulong *pte_pa = qemu_map_ram_ptr(mr->ram_block, addr1);
1106 #if TCG_OVERSIZED_GUEST
1107 /*
1108 * MTTCG is not enabled on oversized TCG guests so
1109 * page table updates do not need to be atomic
1110 */
1111 *pte_pa = pte = updated_pte;
1112 #else
1113 target_ulong old_pte = qatomic_cmpxchg(pte_pa, pte, updated_pte);
1114 if (old_pte != pte) {
1115 goto restart;
1116 }
1117 pte = updated_pte;
1118 #endif
1119 } else {
1120 /*
1121 * Misconfigured PTE in ROM (AD bits are not preset) or
1122 * PTE is in IO space and can't be updated atomically.
1123 */
1124 return TRANSLATE_FAIL;
1125 }
1126 }
1127
1128 /* For superpage mappings, make a fake leaf PTE for the TLB's benefit. */
1129 target_ulong vpn = addr >> PGSHIFT;
1130
1131 if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
1132 napot_bits = ctzl(ppn) + 1;
1133 if ((i != (levels - 1)) || (napot_bits != 4)) {
1134 return TRANSLATE_FAIL;
1135 }
1136 }
1137
1138 napot_mask = (1 << napot_bits) - 1;
1139 *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1140 (vpn & (((target_ulong)1 << ptshift) - 1))
1141 ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1142
1143 /*
1144 * Remove write permission unless this is a store, or the page is
1145 * already dirty, so that we TLB miss on later writes to update
1146 * the dirty bit.
1147 */
1148 if (access_type != MMU_DATA_STORE && !(pte & PTE_D)) {
1149 prot &= ~PAGE_WRITE;
1150 }
1151 *ret_prot = prot;
1152
1153 return TRANSLATE_SUCCESS;
1154 }
1155
1156 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1157 MMUAccessType access_type, bool pmp_violation,
1158 bool first_stage, bool two_stage,
1159 bool two_stage_indirect)
1160 {
1161 CPUState *cs = env_cpu(env);
1162
1163 switch (access_type) {
1164 case MMU_INST_FETCH:
1165 if (env->virt_enabled && !first_stage) {
1166 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1167 } else {
1168 cs->exception_index = pmp_violation ?
1169 RISCV_EXCP_INST_ACCESS_FAULT : RISCV_EXCP_INST_PAGE_FAULT;
1170 }
1171 break;
1172 case MMU_DATA_LOAD:
1173 if (two_stage && !first_stage) {
1174 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1175 } else {
1176 cs->exception_index = pmp_violation ?
1177 RISCV_EXCP_LOAD_ACCESS_FAULT : RISCV_EXCP_LOAD_PAGE_FAULT;
1178 }
1179 break;
1180 case MMU_DATA_STORE:
1181 if (two_stage && !first_stage) {
1182 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1183 } else {
1184 cs->exception_index = pmp_violation ?
1185 RISCV_EXCP_STORE_AMO_ACCESS_FAULT :
1186 RISCV_EXCP_STORE_PAGE_FAULT;
1187 }
1188 break;
1189 default:
1190 g_assert_not_reached();
1191 }
1192 env->badaddr = address;
1193 env->two_stage_lookup = two_stage;
1194 env->two_stage_indirect_lookup = two_stage_indirect;
1195 }
1196
1197 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1198 {
1199 RISCVCPU *cpu = RISCV_CPU(cs);
1200 CPURISCVState *env = &cpu->env;
1201 hwaddr phys_addr;
1202 int prot;
1203 int mmu_idx = cpu_mmu_index(&cpu->env, false);
1204
1205 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1206 true, env->virt_enabled, true)) {
1207 return -1;
1208 }
1209
1210 if (env->virt_enabled) {
1211 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1212 0, mmu_idx, false, true, true)) {
1213 return -1;
1214 }
1215 }
1216
1217 return phys_addr & TARGET_PAGE_MASK;
1218 }
1219
1220 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1221 vaddr addr, unsigned size,
1222 MMUAccessType access_type,
1223 int mmu_idx, MemTxAttrs attrs,
1224 MemTxResult response, uintptr_t retaddr)
1225 {
1226 RISCVCPU *cpu = RISCV_CPU(cs);
1227 CPURISCVState *env = &cpu->env;
1228
1229 if (access_type == MMU_DATA_STORE) {
1230 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1231 } else if (access_type == MMU_DATA_LOAD) {
1232 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1233 } else {
1234 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1235 }
1236
1237 env->badaddr = addr;
1238 env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1239 env->two_stage_indirect_lookup = false;
1240 cpu_loop_exit_restore(cs, retaddr);
1241 }
1242
1243 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1244 MMUAccessType access_type, int mmu_idx,
1245 uintptr_t retaddr)
1246 {
1247 RISCVCPU *cpu = RISCV_CPU(cs);
1248 CPURISCVState *env = &cpu->env;
1249 switch (access_type) {
1250 case MMU_INST_FETCH:
1251 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1252 break;
1253 case MMU_DATA_LOAD:
1254 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1255 break;
1256 case MMU_DATA_STORE:
1257 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1258 break;
1259 default:
1260 g_assert_not_reached();
1261 }
1262 env->badaddr = addr;
1263 env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1264 env->two_stage_indirect_lookup = false;
1265 cpu_loop_exit_restore(cs, retaddr);
1266 }
1267
1268
1269 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1270 {
1271 enum riscv_pmu_event_idx pmu_event_type;
1272
1273 switch (access_type) {
1274 case MMU_INST_FETCH:
1275 pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1276 break;
1277 case MMU_DATA_LOAD:
1278 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1279 break;
1280 case MMU_DATA_STORE:
1281 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1282 break;
1283 default:
1284 return;
1285 }
1286
1287 riscv_pmu_incr_ctr(cpu, pmu_event_type);
1288 }
1289
1290 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1291 MMUAccessType access_type, int mmu_idx,
1292 bool probe, uintptr_t retaddr)
1293 {
1294 RISCVCPU *cpu = RISCV_CPU(cs);
1295 CPURISCVState *env = &cpu->env;
1296 vaddr im_address;
1297 hwaddr pa = 0;
1298 int prot, prot2, prot_pmp;
1299 bool pmp_violation = false;
1300 bool first_stage_error = true;
1301 bool two_stage_lookup = mmuidx_2stage(mmu_idx);
1302 bool two_stage_indirect_error = false;
1303 int ret = TRANSLATE_FAIL;
1304 int mode = mmu_idx;
1305 /* default TLB page size */
1306 target_ulong tlb_size = TARGET_PAGE_SIZE;
1307
1308 env->guest_phys_fault_addr = 0;
1309
1310 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1311 __func__, address, access_type, mmu_idx);
1312
1313 pmu_tlb_fill_incr_ctr(cpu, access_type);
1314 if (two_stage_lookup) {
1315 /* Two stage lookup */
1316 ret = get_physical_address(env, &pa, &prot, address,
1317 &env->guest_phys_fault_addr, access_type,
1318 mmu_idx, true, true, false);
1319
1320 /*
1321 * A G-stage exception may be triggered during two state lookup.
1322 * And the env->guest_phys_fault_addr has already been set in
1323 * get_physical_address().
1324 */
1325 if (ret == TRANSLATE_G_STAGE_FAIL) {
1326 first_stage_error = false;
1327 two_stage_indirect_error = true;
1328 }
1329
1330 qemu_log_mask(CPU_LOG_MMU,
1331 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1332 HWADDR_FMT_plx " prot %d\n",
1333 __func__, address, ret, pa, prot);
1334
1335 if (ret == TRANSLATE_SUCCESS) {
1336 /* Second stage lookup */
1337 im_address = pa;
1338
1339 ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1340 access_type, MMUIdx_U, false, true,
1341 false);
1342
1343 qemu_log_mask(CPU_LOG_MMU,
1344 "%s 2nd-stage address=%" VADDR_PRIx
1345 " ret %d physical "
1346 HWADDR_FMT_plx " prot %d\n",
1347 __func__, im_address, ret, pa, prot2);
1348
1349 prot &= prot2;
1350
1351 if (ret == TRANSLATE_SUCCESS) {
1352 ret = get_physical_address_pmp(env, &prot_pmp, pa,
1353 size, access_type, mode);
1354 tlb_size = pmp_get_tlb_size(env, pa);
1355
1356 qemu_log_mask(CPU_LOG_MMU,
1357 "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1358 " %d tlb_size " TARGET_FMT_lu "\n",
1359 __func__, pa, ret, prot_pmp, tlb_size);
1360
1361 prot &= prot_pmp;
1362 }
1363
1364 if (ret != TRANSLATE_SUCCESS) {
1365 /*
1366 * Guest physical address translation failed, this is a HS
1367 * level exception
1368 */
1369 first_stage_error = false;
1370 env->guest_phys_fault_addr = (im_address |
1371 (address &
1372 (TARGET_PAGE_SIZE - 1))) >> 2;
1373 }
1374 }
1375 } else {
1376 /* Single stage lookup */
1377 ret = get_physical_address(env, &pa, &prot, address, NULL,
1378 access_type, mmu_idx, true, false, false);
1379
1380 qemu_log_mask(CPU_LOG_MMU,
1381 "%s address=%" VADDR_PRIx " ret %d physical "
1382 HWADDR_FMT_plx " prot %d\n",
1383 __func__, address, ret, pa, prot);
1384
1385 if (ret == TRANSLATE_SUCCESS) {
1386 ret = get_physical_address_pmp(env, &prot_pmp, pa,
1387 size, access_type, mode);
1388 tlb_size = pmp_get_tlb_size(env, pa);
1389
1390 qemu_log_mask(CPU_LOG_MMU,
1391 "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1392 " %d tlb_size " TARGET_FMT_lu "\n",
1393 __func__, pa, ret, prot_pmp, tlb_size);
1394
1395 prot &= prot_pmp;
1396 }
1397 }
1398
1399 if (ret == TRANSLATE_PMP_FAIL) {
1400 pmp_violation = true;
1401 }
1402
1403 if (ret == TRANSLATE_SUCCESS) {
1404 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1405 prot, mmu_idx, tlb_size);
1406 return true;
1407 } else if (probe) {
1408 return false;
1409 } else {
1410 raise_mmu_exception(env, address, access_type, pmp_violation,
1411 first_stage_error, two_stage_lookup,
1412 two_stage_indirect_error);
1413 cpu_loop_exit_restore(cs, retaddr);
1414 }
1415
1416 return true;
1417 }
1418
1419 static target_ulong riscv_transformed_insn(CPURISCVState *env,
1420 target_ulong insn,
1421 target_ulong taddr)
1422 {
1423 target_ulong xinsn = 0;
1424 target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1425
1426 /*
1427 * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1428 * be uncompressed. The Quadrant 1 of RVC instruction space need
1429 * not be transformed because these instructions won't generate
1430 * any load/store trap.
1431 */
1432
1433 if ((insn & 0x3) != 0x3) {
1434 /* Transform 16bit instruction into 32bit instruction */
1435 switch (GET_C_OP(insn)) {
1436 case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1437 switch (GET_C_FUNC(insn)) {
1438 case OPC_RISC_C_FUNC_FLD_LQ:
1439 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1440 xinsn = OPC_RISC_FLD;
1441 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1442 access_rs1 = GET_C_RS1S(insn);
1443 access_imm = GET_C_LD_IMM(insn);
1444 access_size = 8;
1445 }
1446 break;
1447 case OPC_RISC_C_FUNC_LW: /* C.LW */
1448 xinsn = OPC_RISC_LW;
1449 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1450 access_rs1 = GET_C_RS1S(insn);
1451 access_imm = GET_C_LW_IMM(insn);
1452 access_size = 4;
1453 break;
1454 case OPC_RISC_C_FUNC_FLW_LD:
1455 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1456 xinsn = OPC_RISC_FLW;
1457 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1458 access_rs1 = GET_C_RS1S(insn);
1459 access_imm = GET_C_LW_IMM(insn);
1460 access_size = 4;
1461 } else { /* C.LD (RV64/RV128) */
1462 xinsn = OPC_RISC_LD;
1463 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1464 access_rs1 = GET_C_RS1S(insn);
1465 access_imm = GET_C_LD_IMM(insn);
1466 access_size = 8;
1467 }
1468 break;
1469 case OPC_RISC_C_FUNC_FSD_SQ:
1470 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1471 xinsn = OPC_RISC_FSD;
1472 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1473 access_rs1 = GET_C_RS1S(insn);
1474 access_imm = GET_C_SD_IMM(insn);
1475 access_size = 8;
1476 }
1477 break;
1478 case OPC_RISC_C_FUNC_SW: /* C.SW */
1479 xinsn = OPC_RISC_SW;
1480 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1481 access_rs1 = GET_C_RS1S(insn);
1482 access_imm = GET_C_SW_IMM(insn);
1483 access_size = 4;
1484 break;
1485 case OPC_RISC_C_FUNC_FSW_SD:
1486 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1487 xinsn = OPC_RISC_FSW;
1488 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1489 access_rs1 = GET_C_RS1S(insn);
1490 access_imm = GET_C_SW_IMM(insn);
1491 access_size = 4;
1492 } else { /* C.SD (RV64/RV128) */
1493 xinsn = OPC_RISC_SD;
1494 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1495 access_rs1 = GET_C_RS1S(insn);
1496 access_imm = GET_C_SD_IMM(insn);
1497 access_size = 8;
1498 }
1499 break;
1500 default:
1501 break;
1502 }
1503 break;
1504 case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1505 switch (GET_C_FUNC(insn)) {
1506 case OPC_RISC_C_FUNC_FLDSP_LQSP:
1507 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1508 xinsn = OPC_RISC_FLD;
1509 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1510 access_rs1 = 2;
1511 access_imm = GET_C_LDSP_IMM(insn);
1512 access_size = 8;
1513 }
1514 break;
1515 case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1516 xinsn = OPC_RISC_LW;
1517 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1518 access_rs1 = 2;
1519 access_imm = GET_C_LWSP_IMM(insn);
1520 access_size = 4;
1521 break;
1522 case OPC_RISC_C_FUNC_FLWSP_LDSP:
1523 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1524 xinsn = OPC_RISC_FLW;
1525 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1526 access_rs1 = 2;
1527 access_imm = GET_C_LWSP_IMM(insn);
1528 access_size = 4;
1529 } else { /* C.LDSP (RV64/RV128) */
1530 xinsn = OPC_RISC_LD;
1531 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1532 access_rs1 = 2;
1533 access_imm = GET_C_LDSP_IMM(insn);
1534 access_size = 8;
1535 }
1536 break;
1537 case OPC_RISC_C_FUNC_FSDSP_SQSP:
1538 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1539 xinsn = OPC_RISC_FSD;
1540 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1541 access_rs1 = 2;
1542 access_imm = GET_C_SDSP_IMM(insn);
1543 access_size = 8;
1544 }
1545 break;
1546 case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1547 xinsn = OPC_RISC_SW;
1548 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1549 access_rs1 = 2;
1550 access_imm = GET_C_SWSP_IMM(insn);
1551 access_size = 4;
1552 break;
1553 case 7:
1554 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1555 xinsn = OPC_RISC_FSW;
1556 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1557 access_rs1 = 2;
1558 access_imm = GET_C_SWSP_IMM(insn);
1559 access_size = 4;
1560 } else { /* C.SDSP (RV64/RV128) */
1561 xinsn = OPC_RISC_SD;
1562 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1563 access_rs1 = 2;
1564 access_imm = GET_C_SDSP_IMM(insn);
1565 access_size = 8;
1566 }
1567 break;
1568 default:
1569 break;
1570 }
1571 break;
1572 default:
1573 break;
1574 }
1575
1576 /*
1577 * Clear Bit1 of transformed instruction to indicate that
1578 * original insruction was a 16bit instruction
1579 */
1580 xinsn &= ~((target_ulong)0x2);
1581 } else {
1582 /* Transform 32bit (or wider) instructions */
1583 switch (MASK_OP_MAJOR(insn)) {
1584 case OPC_RISC_ATOMIC:
1585 xinsn = insn;
1586 access_rs1 = GET_RS1(insn);
1587 access_size = 1 << GET_FUNCT3(insn);
1588 break;
1589 case OPC_RISC_LOAD:
1590 case OPC_RISC_FP_LOAD:
1591 xinsn = SET_I_IMM(insn, 0);
1592 access_rs1 = GET_RS1(insn);
1593 access_imm = GET_IMM(insn);
1594 access_size = 1 << GET_FUNCT3(insn);
1595 break;
1596 case OPC_RISC_STORE:
1597 case OPC_RISC_FP_STORE:
1598 xinsn = SET_S_IMM(insn, 0);
1599 access_rs1 = GET_RS1(insn);
1600 access_imm = GET_STORE_IMM(insn);
1601 access_size = 1 << GET_FUNCT3(insn);
1602 break;
1603 case OPC_RISC_SYSTEM:
1604 if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1605 xinsn = insn;
1606 access_rs1 = GET_RS1(insn);
1607 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1608 access_size = 1 << access_size;
1609 }
1610 break;
1611 default:
1612 break;
1613 }
1614 }
1615
1616 if (access_size) {
1617 xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1618 (access_size - 1));
1619 }
1620
1621 return xinsn;
1622 }
1623 #endif /* !CONFIG_USER_ONLY */
1624
1625 /*
1626 * Handle Traps
1627 *
1628 * Adapted from Spike's processor_t::take_trap.
1629 *
1630 */
1631 void riscv_cpu_do_interrupt(CPUState *cs)
1632 {
1633 #if !defined(CONFIG_USER_ONLY)
1634
1635 RISCVCPU *cpu = RISCV_CPU(cs);
1636 CPURISCVState *env = &cpu->env;
1637 bool write_gva = false;
1638 uint64_t s;
1639
1640 /*
1641 * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1642 * so we mask off the MSB and separate into trap type and cause.
1643 */
1644 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1645 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1646 uint64_t deleg = async ? env->mideleg : env->medeleg;
1647 bool s_injected = env->mvip & (1 << cause) & env->mvien &&
1648 !(env->mip & (1 << cause));
1649 bool vs_injected = env->hvip & (1 << cause) & env->hvien &&
1650 !(env->mip & (1 << cause));
1651 target_ulong tval = 0;
1652 target_ulong tinst = 0;
1653 target_ulong htval = 0;
1654 target_ulong mtval2 = 0;
1655
1656 if (!async) {
1657 /* set tval to badaddr for traps with address information */
1658 switch (cause) {
1659 case RISCV_EXCP_SEMIHOST:
1660 do_common_semihosting(cs);
1661 env->pc += 4;
1662 return;
1663 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1664 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1665 case RISCV_EXCP_LOAD_ADDR_MIS:
1666 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1667 case RISCV_EXCP_LOAD_ACCESS_FAULT:
1668 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1669 case RISCV_EXCP_LOAD_PAGE_FAULT:
1670 case RISCV_EXCP_STORE_PAGE_FAULT:
1671 write_gva = env->two_stage_lookup;
1672 tval = env->badaddr;
1673 if (env->two_stage_indirect_lookup) {
1674 /*
1675 * special pseudoinstruction for G-stage fault taken while
1676 * doing VS-stage page table walk.
1677 */
1678 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1679 } else {
1680 /*
1681 * The "Addr. Offset" field in transformed instruction is
1682 * non-zero only for misaligned access.
1683 */
1684 tinst = riscv_transformed_insn(env, env->bins, tval);
1685 }
1686 break;
1687 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1688 case RISCV_EXCP_INST_ADDR_MIS:
1689 case RISCV_EXCP_INST_ACCESS_FAULT:
1690 case RISCV_EXCP_INST_PAGE_FAULT:
1691 write_gva = env->two_stage_lookup;
1692 tval = env->badaddr;
1693 if (env->two_stage_indirect_lookup) {
1694 /*
1695 * special pseudoinstruction for G-stage fault taken while
1696 * doing VS-stage page table walk.
1697 */
1698 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1699 }
1700 break;
1701 case RISCV_EXCP_ILLEGAL_INST:
1702 case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
1703 tval = env->bins;
1704 break;
1705 case RISCV_EXCP_BREAKPOINT:
1706 if (cs->watchpoint_hit) {
1707 tval = cs->watchpoint_hit->hitaddr;
1708 cs->watchpoint_hit = NULL;
1709 }
1710 break;
1711 default:
1712 break;
1713 }
1714 /* ecall is dispatched as one cause so translate based on mode */
1715 if (cause == RISCV_EXCP_U_ECALL) {
1716 assert(env->priv <= 3);
1717
1718 if (env->priv == PRV_M) {
1719 cause = RISCV_EXCP_M_ECALL;
1720 } else if (env->priv == PRV_S && env->virt_enabled) {
1721 cause = RISCV_EXCP_VS_ECALL;
1722 } else if (env->priv == PRV_S && !env->virt_enabled) {
1723 cause = RISCV_EXCP_S_ECALL;
1724 } else if (env->priv == PRV_U) {
1725 cause = RISCV_EXCP_U_ECALL;
1726 }
1727 }
1728 }
1729
1730 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1731 riscv_cpu_get_trap_name(cause, async));
1732
1733 qemu_log_mask(CPU_LOG_INT,
1734 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1735 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1736 __func__, env->mhartid, async, cause, env->pc, tval,
1737 riscv_cpu_get_trap_name(cause, async));
1738
1739 if (env->priv <= PRV_S && cause < 64 &&
1740 (((deleg >> cause) & 1) || s_injected || vs_injected)) {
1741 /* handle the trap in S-mode */
1742 if (riscv_has_ext(env, RVH)) {
1743 uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1744
1745 if (env->virt_enabled &&
1746 (((hdeleg >> cause) & 1) || vs_injected)) {
1747 /* Trap to VS mode */
1748 /*
1749 * See if we need to adjust cause. Yes if its VS mode interrupt
1750 * no if hypervisor has delegated one of hs mode's interrupt
1751 */
1752 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1753 cause == IRQ_VS_EXT) {
1754 cause = cause - 1;
1755 }
1756 write_gva = false;
1757 } else if (env->virt_enabled) {
1758 /* Trap into HS mode, from virt */
1759 riscv_cpu_swap_hypervisor_regs(env);
1760 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1761 env->priv);
1762 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true);
1763
1764 htval = env->guest_phys_fault_addr;
1765
1766 riscv_cpu_set_virt_enabled(env, 0);
1767 } else {
1768 /* Trap into HS mode */
1769 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1770 htval = env->guest_phys_fault_addr;
1771 }
1772 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1773 }
1774
1775 s = env->mstatus;
1776 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1777 s = set_field(s, MSTATUS_SPP, env->priv);
1778 s = set_field(s, MSTATUS_SIE, 0);
1779 env->mstatus = s;
1780 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1781 env->sepc = env->pc;
1782 env->stval = tval;
1783 env->htval = htval;
1784 env->htinst = tinst;
1785 env->pc = (env->stvec >> 2 << 2) +
1786 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1787 riscv_cpu_set_mode(env, PRV_S);
1788 } else {
1789 /* handle the trap in M-mode */
1790 if (riscv_has_ext(env, RVH)) {
1791 if (env->virt_enabled) {
1792 riscv_cpu_swap_hypervisor_regs(env);
1793 }
1794 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1795 env->virt_enabled);
1796 if (env->virt_enabled && tval) {
1797 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1798 }
1799
1800 mtval2 = env->guest_phys_fault_addr;
1801
1802 /* Trapping to M mode, virt is disabled */
1803 riscv_cpu_set_virt_enabled(env, 0);
1804 }
1805
1806 s = env->mstatus;
1807 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1808 s = set_field(s, MSTATUS_MPP, env->priv);
1809 s = set_field(s, MSTATUS_MIE, 0);
1810 env->mstatus = s;
1811 env->mcause = cause | ~(((target_ulong)-1) >> async);
1812 env->mepc = env->pc;
1813 env->mtval = tval;
1814 env->mtval2 = mtval2;
1815 env->mtinst = tinst;
1816 env->pc = (env->mtvec >> 2 << 2) +
1817 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1818 riscv_cpu_set_mode(env, PRV_M);
1819 }
1820
1821 /*
1822 * NOTE: it is not necessary to yield load reservations here. It is only
1823 * necessary for an SC from "another hart" to cause a load reservation
1824 * to be yielded. Refer to the memory consistency model section of the
1825 * RISC-V ISA Specification.
1826 */
1827
1828 env->two_stage_lookup = false;
1829 env->two_stage_indirect_lookup = false;
1830 #endif
1831 cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
1832 }