]> git.proxmox.com Git - mirror_qemu.git/blob - target/riscv/cpu_helper.c
target: Widen pc/cs_base in cpu_get_tb_cpu_state
[mirror_qemu.git] / target / riscv / cpu_helper.c
1 /*
2 * RISC-V CPU helpers for qemu.
3 *
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "internals.h"
25 #include "pmu.h"
26 #include "exec/exec-all.h"
27 #include "instmap.h"
28 #include "tcg/tcg-op.h"
29 #include "trace.h"
30 #include "semihosting/common-semi.h"
31 #include "sysemu/cpu-timers.h"
32 #include "cpu_bits.h"
33 #include "debug.h"
34 #include "tcg/oversized-guest.h"
35
36 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
37 {
38 #ifdef CONFIG_USER_ONLY
39 return 0;
40 #else
41 bool virt = env->virt_enabled;
42 int mode = env->priv;
43
44 /* All priv -> mmu_idx mapping are here */
45 if (!ifetch) {
46 uint64_t status = env->mstatus;
47
48 if (mode == PRV_M && get_field(status, MSTATUS_MPRV)) {
49 mode = get_field(env->mstatus, MSTATUS_MPP);
50 virt = get_field(env->mstatus, MSTATUS_MPV);
51 if (virt) {
52 status = env->vsstatus;
53 }
54 }
55 if (mode == PRV_S && get_field(status, MSTATUS_SUM)) {
56 mode = MMUIdx_S_SUM;
57 }
58 }
59
60 return mode | (virt ? MMU_2STAGE_BIT : 0);
61 #endif
62 }
63
64 void cpu_get_tb_cpu_state(CPURISCVState *env, vaddr *pc,
65 uint64_t *cs_base, uint32_t *pflags)
66 {
67 CPUState *cs = env_cpu(env);
68 RISCVCPU *cpu = RISCV_CPU(cs);
69 RISCVExtStatus fs, vs;
70 uint32_t flags = 0;
71
72 *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
73 *cs_base = 0;
74
75 if (cpu->cfg.ext_zve32f) {
76 /*
77 * If env->vl equals to VLMAX, we can use generic vector operation
78 * expanders (GVEC) to accerlate the vector operations.
79 * However, as LMUL could be a fractional number. The maximum
80 * vector size can be operated might be less than 8 bytes,
81 * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
82 * only when maxsz >= 8 bytes.
83 */
84 uint32_t vlmax = vext_get_vlmax(cpu, env->vtype);
85 uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
86 uint32_t maxsz = vlmax << sew;
87 bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
88 (maxsz >= 8);
89 flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
90 flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
91 flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
92 FIELD_EX64(env->vtype, VTYPE, VLMUL));
93 flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
94 flags = FIELD_DP32(flags, TB_FLAGS, VTA,
95 FIELD_EX64(env->vtype, VTYPE, VTA));
96 flags = FIELD_DP32(flags, TB_FLAGS, VMA,
97 FIELD_EX64(env->vtype, VTYPE, VMA));
98 flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0);
99 } else {
100 flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
101 }
102
103 #ifdef CONFIG_USER_ONLY
104 fs = EXT_STATUS_DIRTY;
105 vs = EXT_STATUS_DIRTY;
106 #else
107 flags = FIELD_DP32(flags, TB_FLAGS, PRIV, env->priv);
108
109 flags |= cpu_mmu_index(env, 0);
110 fs = get_field(env->mstatus, MSTATUS_FS);
111 vs = get_field(env->mstatus, MSTATUS_VS);
112
113 if (env->virt_enabled) {
114 flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1);
115 /*
116 * Merge DISABLED and !DIRTY states using MIN.
117 * We will set both fields when dirtying.
118 */
119 fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS));
120 vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS));
121 }
122
123 /* With Zfinx, floating point is enabled/disabled by Smstateen. */
124 if (!riscv_has_ext(env, RVF)) {
125 fs = (smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR) == RISCV_EXCP_NONE)
126 ? EXT_STATUS_DIRTY : EXT_STATUS_DISABLED;
127 }
128
129 if (cpu->cfg.debug && !icount_enabled()) {
130 flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled);
131 }
132 #endif
133
134 flags = FIELD_DP32(flags, TB_FLAGS, FS, fs);
135 flags = FIELD_DP32(flags, TB_FLAGS, VS, vs);
136 flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
137 if (env->cur_pmmask != 0) {
138 flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
139 }
140 if (env->cur_pmbase != 0) {
141 flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
142 }
143
144 *pflags = flags;
145 }
146
147 void riscv_cpu_update_mask(CPURISCVState *env)
148 {
149 target_ulong mask = 0, base = 0;
150 /*
151 * TODO: Current RVJ spec does not specify
152 * how the extension interacts with XLEN.
153 */
154 #ifndef CONFIG_USER_ONLY
155 if (riscv_has_ext(env, RVJ)) {
156 switch (env->priv) {
157 case PRV_M:
158 if (env->mmte & M_PM_ENABLE) {
159 mask = env->mpmmask;
160 base = env->mpmbase;
161 }
162 break;
163 case PRV_S:
164 if (env->mmte & S_PM_ENABLE) {
165 mask = env->spmmask;
166 base = env->spmbase;
167 }
168 break;
169 case PRV_U:
170 if (env->mmte & U_PM_ENABLE) {
171 mask = env->upmmask;
172 base = env->upmbase;
173 }
174 break;
175 default:
176 g_assert_not_reached();
177 }
178 }
179 #endif
180 if (env->xl == MXL_RV32) {
181 env->cur_pmmask = mask & UINT32_MAX;
182 env->cur_pmbase = base & UINT32_MAX;
183 } else {
184 env->cur_pmmask = mask;
185 env->cur_pmbase = base;
186 }
187 }
188
189 #ifndef CONFIG_USER_ONLY
190
191 /*
192 * The HS-mode is allowed to configure priority only for the
193 * following VS-mode local interrupts:
194 *
195 * 0 (Reserved interrupt, reads as zero)
196 * 1 Supervisor software interrupt
197 * 4 (Reserved interrupt, reads as zero)
198 * 5 Supervisor timer interrupt
199 * 8 (Reserved interrupt, reads as zero)
200 * 13 (Reserved interrupt)
201 * 14 "
202 * 15 "
203 * 16 "
204 * 17 "
205 * 18 "
206 * 19 "
207 * 20 "
208 * 21 "
209 * 22 "
210 * 23 "
211 */
212
213 static const int hviprio_index2irq[] = {
214 0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
215 static const int hviprio_index2rdzero[] = {
216 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
217
218 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
219 {
220 if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
221 return -EINVAL;
222 }
223
224 if (out_irq) {
225 *out_irq = hviprio_index2irq[index];
226 }
227
228 if (out_rdzero) {
229 *out_rdzero = hviprio_index2rdzero[index];
230 }
231
232 return 0;
233 }
234
235 /*
236 * Default priorities of local interrupts are defined in the
237 * RISC-V Advanced Interrupt Architecture specification.
238 *
239 * ----------------------------------------------------------------
240 * Default |
241 * Priority | Major Interrupt Numbers
242 * ----------------------------------------------------------------
243 * Highest | 47, 23, 46, 45, 22, 44,
244 * | 43, 21, 42, 41, 20, 40
245 * |
246 * | 11 (0b), 3 (03), 7 (07)
247 * | 9 (09), 1 (01), 5 (05)
248 * | 12 (0c)
249 * | 10 (0a), 2 (02), 6 (06)
250 * |
251 * | 39, 19, 38, 37, 18, 36,
252 * Lowest | 35, 17, 34, 33, 16, 32
253 * ----------------------------------------------------------------
254 */
255 static const uint8_t default_iprio[64] = {
256 /* Custom interrupts 48 to 63 */
257 [63] = IPRIO_MMAXIPRIO,
258 [62] = IPRIO_MMAXIPRIO,
259 [61] = IPRIO_MMAXIPRIO,
260 [60] = IPRIO_MMAXIPRIO,
261 [59] = IPRIO_MMAXIPRIO,
262 [58] = IPRIO_MMAXIPRIO,
263 [57] = IPRIO_MMAXIPRIO,
264 [56] = IPRIO_MMAXIPRIO,
265 [55] = IPRIO_MMAXIPRIO,
266 [54] = IPRIO_MMAXIPRIO,
267 [53] = IPRIO_MMAXIPRIO,
268 [52] = IPRIO_MMAXIPRIO,
269 [51] = IPRIO_MMAXIPRIO,
270 [50] = IPRIO_MMAXIPRIO,
271 [49] = IPRIO_MMAXIPRIO,
272 [48] = IPRIO_MMAXIPRIO,
273
274 /* Custom interrupts 24 to 31 */
275 [31] = IPRIO_MMAXIPRIO,
276 [30] = IPRIO_MMAXIPRIO,
277 [29] = IPRIO_MMAXIPRIO,
278 [28] = IPRIO_MMAXIPRIO,
279 [27] = IPRIO_MMAXIPRIO,
280 [26] = IPRIO_MMAXIPRIO,
281 [25] = IPRIO_MMAXIPRIO,
282 [24] = IPRIO_MMAXIPRIO,
283
284 [47] = IPRIO_DEFAULT_UPPER,
285 [23] = IPRIO_DEFAULT_UPPER + 1,
286 [46] = IPRIO_DEFAULT_UPPER + 2,
287 [45] = IPRIO_DEFAULT_UPPER + 3,
288 [22] = IPRIO_DEFAULT_UPPER + 4,
289 [44] = IPRIO_DEFAULT_UPPER + 5,
290
291 [43] = IPRIO_DEFAULT_UPPER + 6,
292 [21] = IPRIO_DEFAULT_UPPER + 7,
293 [42] = IPRIO_DEFAULT_UPPER + 8,
294 [41] = IPRIO_DEFAULT_UPPER + 9,
295 [20] = IPRIO_DEFAULT_UPPER + 10,
296 [40] = IPRIO_DEFAULT_UPPER + 11,
297
298 [11] = IPRIO_DEFAULT_M,
299 [3] = IPRIO_DEFAULT_M + 1,
300 [7] = IPRIO_DEFAULT_M + 2,
301
302 [9] = IPRIO_DEFAULT_S,
303 [1] = IPRIO_DEFAULT_S + 1,
304 [5] = IPRIO_DEFAULT_S + 2,
305
306 [12] = IPRIO_DEFAULT_SGEXT,
307
308 [10] = IPRIO_DEFAULT_VS,
309 [2] = IPRIO_DEFAULT_VS + 1,
310 [6] = IPRIO_DEFAULT_VS + 2,
311
312 [39] = IPRIO_DEFAULT_LOWER,
313 [19] = IPRIO_DEFAULT_LOWER + 1,
314 [38] = IPRIO_DEFAULT_LOWER + 2,
315 [37] = IPRIO_DEFAULT_LOWER + 3,
316 [18] = IPRIO_DEFAULT_LOWER + 4,
317 [36] = IPRIO_DEFAULT_LOWER + 5,
318
319 [35] = IPRIO_DEFAULT_LOWER + 6,
320 [17] = IPRIO_DEFAULT_LOWER + 7,
321 [34] = IPRIO_DEFAULT_LOWER + 8,
322 [33] = IPRIO_DEFAULT_LOWER + 9,
323 [16] = IPRIO_DEFAULT_LOWER + 10,
324 [32] = IPRIO_DEFAULT_LOWER + 11,
325 };
326
327 uint8_t riscv_cpu_default_priority(int irq)
328 {
329 if (irq < 0 || irq > 63) {
330 return IPRIO_MMAXIPRIO;
331 }
332
333 return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
334 };
335
336 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
337 int extirq, unsigned int extirq_def_prio,
338 uint64_t pending, uint8_t *iprio)
339 {
340 int irq, best_irq = RISCV_EXCP_NONE;
341 unsigned int prio, best_prio = UINT_MAX;
342
343 if (!pending) {
344 return RISCV_EXCP_NONE;
345 }
346
347 irq = ctz64(pending);
348 if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia :
349 riscv_cpu_cfg(env)->ext_ssaia)) {
350 return irq;
351 }
352
353 pending = pending >> irq;
354 while (pending) {
355 prio = iprio[irq];
356 if (!prio) {
357 if (irq == extirq) {
358 prio = extirq_def_prio;
359 } else {
360 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
361 1 : IPRIO_MMAXIPRIO;
362 }
363 }
364 if ((pending & 0x1) && (prio <= best_prio)) {
365 best_irq = irq;
366 best_prio = prio;
367 }
368 irq++;
369 pending = pending >> 1;
370 }
371
372 return best_irq;
373 }
374
375 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
376 {
377 uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
378 uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
379 uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
380
381 return (env->mip | vsgein | vstip) & env->mie;
382 }
383
384 int riscv_cpu_mirq_pending(CPURISCVState *env)
385 {
386 uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
387 ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
388
389 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
390 irqs, env->miprio);
391 }
392
393 int riscv_cpu_sirq_pending(CPURISCVState *env)
394 {
395 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
396 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
397
398 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
399 irqs, env->siprio);
400 }
401
402 int riscv_cpu_vsirq_pending(CPURISCVState *env)
403 {
404 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
405 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
406
407 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
408 irqs >> 1, env->hviprio);
409 }
410
411 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
412 {
413 int virq;
414 uint64_t irqs, pending, mie, hsie, vsie;
415
416 /* Determine interrupt enable state of all privilege modes */
417 if (env->virt_enabled) {
418 mie = 1;
419 hsie = 1;
420 vsie = (env->priv < PRV_S) ||
421 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
422 } else {
423 mie = (env->priv < PRV_M) ||
424 (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
425 hsie = (env->priv < PRV_S) ||
426 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
427 vsie = 0;
428 }
429
430 /* Determine all pending interrupts */
431 pending = riscv_cpu_all_pending(env);
432
433 /* Check M-mode interrupts */
434 irqs = pending & ~env->mideleg & -mie;
435 if (irqs) {
436 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
437 irqs, env->miprio);
438 }
439
440 /* Check HS-mode interrupts */
441 irqs = pending & env->mideleg & ~env->hideleg & -hsie;
442 if (irqs) {
443 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
444 irqs, env->siprio);
445 }
446
447 /* Check VS-mode interrupts */
448 irqs = pending & env->mideleg & env->hideleg & -vsie;
449 if (irqs) {
450 virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
451 irqs >> 1, env->hviprio);
452 return (virq <= 0) ? virq : virq + 1;
453 }
454
455 /* Indicate no pending interrupt */
456 return RISCV_EXCP_NONE;
457 }
458
459 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
460 {
461 if (interrupt_request & CPU_INTERRUPT_HARD) {
462 RISCVCPU *cpu = RISCV_CPU(cs);
463 CPURISCVState *env = &cpu->env;
464 int interruptno = riscv_cpu_local_irq_pending(env);
465 if (interruptno >= 0) {
466 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
467 riscv_cpu_do_interrupt(cs);
468 return true;
469 }
470 }
471 return false;
472 }
473
474 /* Return true is floating point support is currently enabled */
475 bool riscv_cpu_fp_enabled(CPURISCVState *env)
476 {
477 if (env->mstatus & MSTATUS_FS) {
478 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) {
479 return false;
480 }
481 return true;
482 }
483
484 return false;
485 }
486
487 /* Return true is vector support is currently enabled */
488 bool riscv_cpu_vector_enabled(CPURISCVState *env)
489 {
490 if (env->mstatus & MSTATUS_VS) {
491 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) {
492 return false;
493 }
494 return true;
495 }
496
497 return false;
498 }
499
500 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
501 {
502 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
503 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
504 MSTATUS64_UXL | MSTATUS_VS;
505
506 if (riscv_has_ext(env, RVF)) {
507 mstatus_mask |= MSTATUS_FS;
508 }
509 bool current_virt = env->virt_enabled;
510
511 g_assert(riscv_has_ext(env, RVH));
512
513 if (current_virt) {
514 /* Current V=1 and we are about to change to V=0 */
515 env->vsstatus = env->mstatus & mstatus_mask;
516 env->mstatus &= ~mstatus_mask;
517 env->mstatus |= env->mstatus_hs;
518
519 env->vstvec = env->stvec;
520 env->stvec = env->stvec_hs;
521
522 env->vsscratch = env->sscratch;
523 env->sscratch = env->sscratch_hs;
524
525 env->vsepc = env->sepc;
526 env->sepc = env->sepc_hs;
527
528 env->vscause = env->scause;
529 env->scause = env->scause_hs;
530
531 env->vstval = env->stval;
532 env->stval = env->stval_hs;
533
534 env->vsatp = env->satp;
535 env->satp = env->satp_hs;
536 } else {
537 /* Current V=0 and we are about to change to V=1 */
538 env->mstatus_hs = env->mstatus & mstatus_mask;
539 env->mstatus &= ~mstatus_mask;
540 env->mstatus |= env->vsstatus;
541
542 env->stvec_hs = env->stvec;
543 env->stvec = env->vstvec;
544
545 env->sscratch_hs = env->sscratch;
546 env->sscratch = env->vsscratch;
547
548 env->sepc_hs = env->sepc;
549 env->sepc = env->vsepc;
550
551 env->scause_hs = env->scause;
552 env->scause = env->vscause;
553
554 env->stval_hs = env->stval;
555 env->stval = env->vstval;
556
557 env->satp_hs = env->satp;
558 env->satp = env->vsatp;
559 }
560 }
561
562 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
563 {
564 if (!riscv_has_ext(env, RVH)) {
565 return 0;
566 }
567
568 return env->geilen;
569 }
570
571 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
572 {
573 if (!riscv_has_ext(env, RVH)) {
574 return;
575 }
576
577 if (geilen > (TARGET_LONG_BITS - 1)) {
578 return;
579 }
580
581 env->geilen = geilen;
582 }
583
584 /* This function can only be called to set virt when RVH is enabled */
585 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
586 {
587 /* Flush the TLB on all virt mode changes. */
588 if (env->virt_enabled != enable) {
589 tlb_flush(env_cpu(env));
590 }
591
592 env->virt_enabled = enable;
593
594 if (enable) {
595 /*
596 * The guest external interrupts from an interrupt controller are
597 * delivered only when the Guest/VM is running (i.e. V=1). This means
598 * any guest external interrupt which is triggered while the Guest/VM
599 * is not running (i.e. V=0) will be missed on QEMU resulting in guest
600 * with sluggish response to serial console input and other I/O events.
601 *
602 * To solve this, we check and inject interrupt after setting V=1.
603 */
604 riscv_cpu_update_mip(env, 0, 0);
605 }
606 }
607
608 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
609 {
610 CPURISCVState *env = &cpu->env;
611 if (env->miclaim & interrupts) {
612 return -1;
613 } else {
614 env->miclaim |= interrupts;
615 return 0;
616 }
617 }
618
619 uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask,
620 uint64_t value)
621 {
622 CPUState *cs = env_cpu(env);
623 uint64_t gein, vsgein = 0, vstip = 0, old = env->mip;
624
625 if (env->virt_enabled) {
626 gein = get_field(env->hstatus, HSTATUS_VGEIN);
627 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
628 }
629
630 vstip = env->vstime_irq ? MIP_VSTIP : 0;
631
632 QEMU_IOTHREAD_LOCK_GUARD();
633
634 env->mip = (env->mip & ~mask) | (value & mask);
635
636 if (env->mip | vsgein | vstip) {
637 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
638 } else {
639 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
640 }
641
642 return old;
643 }
644
645 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
646 void *arg)
647 {
648 env->rdtime_fn = fn;
649 env->rdtime_fn_arg = arg;
650 }
651
652 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
653 int (*rmw_fn)(void *arg,
654 target_ulong reg,
655 target_ulong *val,
656 target_ulong new_val,
657 target_ulong write_mask),
658 void *rmw_fn_arg)
659 {
660 if (priv <= PRV_M) {
661 env->aia_ireg_rmw_fn[priv] = rmw_fn;
662 env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
663 }
664 }
665
666 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
667 {
668 g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED);
669
670 if (icount_enabled() && newpriv != env->priv) {
671 riscv_itrigger_update_priv(env);
672 }
673 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
674 env->priv = newpriv;
675 env->xl = cpu_recompute_xl(env);
676 riscv_cpu_update_mask(env);
677
678 /*
679 * Clear the load reservation - otherwise a reservation placed in one
680 * context/process can be used by another, resulting in an SC succeeding
681 * incorrectly. Version 2.2 of the ISA specification explicitly requires
682 * this behaviour, while later revisions say that the kernel "should" use
683 * an SC instruction to force the yielding of a load reservation on a
684 * preemptive context switch. As a result, do both.
685 */
686 env->load_res = -1;
687 }
688
689 /*
690 * get_physical_address_pmp - check PMP permission for this physical address
691 *
692 * Match the PMP region and check permission for this physical address and it's
693 * TLB page. Returns 0 if the permission checking was successful
694 *
695 * @env: CPURISCVState
696 * @prot: The returned protection attributes
697 * @addr: The physical address to be checked permission
698 * @access_type: The type of MMU access
699 * @mode: Indicates current privilege level.
700 */
701 static int get_physical_address_pmp(CPURISCVState *env, int *prot, hwaddr addr,
702 int size, MMUAccessType access_type,
703 int mode)
704 {
705 pmp_priv_t pmp_priv;
706 bool pmp_has_privs;
707
708 if (!riscv_cpu_cfg(env)->pmp) {
709 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
710 return TRANSLATE_SUCCESS;
711 }
712
713 pmp_has_privs = pmp_hart_has_privs(env, addr, size, 1 << access_type,
714 &pmp_priv, mode);
715 if (!pmp_has_privs) {
716 *prot = 0;
717 return TRANSLATE_PMP_FAIL;
718 }
719
720 *prot = pmp_priv_to_page_prot(pmp_priv);
721
722 return TRANSLATE_SUCCESS;
723 }
724
725 /*
726 * get_physical_address - get the physical address for this virtual address
727 *
728 * Do a page table walk to obtain the physical address corresponding to a
729 * virtual address. Returns 0 if the translation was successful
730 *
731 * Adapted from Spike's mmu_t::translate and mmu_t::walk
732 *
733 * @env: CPURISCVState
734 * @physical: This will be set to the calculated physical address
735 * @prot: The returned protection attributes
736 * @addr: The virtual address or guest physical address to be translated
737 * @fault_pte_addr: If not NULL, this will be set to fault pte address
738 * when a error occurs on pte address translation.
739 * This will already be shifted to match htval.
740 * @access_type: The type of MMU access
741 * @mmu_idx: Indicates current privilege level
742 * @first_stage: Are we in first stage translation?
743 * Second stage is used for hypervisor guest translation
744 * @two_stage: Are we going to perform two stage translation
745 * @is_debug: Is this access from a debugger or the monitor?
746 */
747 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
748 int *ret_prot, vaddr addr,
749 target_ulong *fault_pte_addr,
750 int access_type, int mmu_idx,
751 bool first_stage, bool two_stage,
752 bool is_debug)
753 {
754 /*
755 * NOTE: the env->pc value visible here will not be
756 * correct, but the value visible to the exception handler
757 * (riscv_cpu_do_interrupt) is correct
758 */
759 MemTxResult res;
760 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
761 int mode = mmuidx_priv(mmu_idx);
762 bool use_background = false;
763 hwaddr ppn;
764 int napot_bits = 0;
765 target_ulong napot_mask;
766
767 /*
768 * Check if we should use the background registers for the two
769 * stage translation. We don't need to check if we actually need
770 * two stage translation as that happened before this function
771 * was called. Background registers will be used if the guest has
772 * forced a two stage translation to be on (in HS or M mode).
773 */
774 if (!env->virt_enabled && two_stage) {
775 use_background = true;
776 }
777
778 if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) {
779 *physical = addr;
780 *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
781 return TRANSLATE_SUCCESS;
782 }
783
784 *ret_prot = 0;
785
786 hwaddr base;
787 int levels, ptidxbits, ptesize, vm, widened;
788
789 if (first_stage == true) {
790 if (use_background) {
791 if (riscv_cpu_mxl(env) == MXL_RV32) {
792 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
793 vm = get_field(env->vsatp, SATP32_MODE);
794 } else {
795 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
796 vm = get_field(env->vsatp, SATP64_MODE);
797 }
798 } else {
799 if (riscv_cpu_mxl(env) == MXL_RV32) {
800 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
801 vm = get_field(env->satp, SATP32_MODE);
802 } else {
803 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
804 vm = get_field(env->satp, SATP64_MODE);
805 }
806 }
807 widened = 0;
808 } else {
809 if (riscv_cpu_mxl(env) == MXL_RV32) {
810 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
811 vm = get_field(env->hgatp, SATP32_MODE);
812 } else {
813 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
814 vm = get_field(env->hgatp, SATP64_MODE);
815 }
816 widened = 2;
817 }
818
819 switch (vm) {
820 case VM_1_10_SV32:
821 levels = 2; ptidxbits = 10; ptesize = 4; break;
822 case VM_1_10_SV39:
823 levels = 3; ptidxbits = 9; ptesize = 8; break;
824 case VM_1_10_SV48:
825 levels = 4; ptidxbits = 9; ptesize = 8; break;
826 case VM_1_10_SV57:
827 levels = 5; ptidxbits = 9; ptesize = 8; break;
828 case VM_1_10_MBARE:
829 *physical = addr;
830 *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
831 return TRANSLATE_SUCCESS;
832 default:
833 g_assert_not_reached();
834 }
835
836 CPUState *cs = env_cpu(env);
837 int va_bits = PGSHIFT + levels * ptidxbits + widened;
838
839 if (first_stage == true) {
840 target_ulong mask, masked_msbs;
841
842 if (TARGET_LONG_BITS > (va_bits - 1)) {
843 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
844 } else {
845 mask = 0;
846 }
847 masked_msbs = (addr >> (va_bits - 1)) & mask;
848
849 if (masked_msbs != 0 && masked_msbs != mask) {
850 return TRANSLATE_FAIL;
851 }
852 } else {
853 if (vm != VM_1_10_SV32 && addr >> va_bits != 0) {
854 return TRANSLATE_FAIL;
855 }
856 }
857
858 bool pbmte = env->menvcfg & MENVCFG_PBMTE;
859 bool hade = env->menvcfg & MENVCFG_HADE;
860
861 if (first_stage && two_stage && env->virt_enabled) {
862 pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE);
863 hade = hade && (env->henvcfg & HENVCFG_HADE);
864 }
865
866 int ptshift = (levels - 1) * ptidxbits;
867 target_ulong pte;
868 hwaddr pte_addr;
869 int i;
870
871 #if !TCG_OVERSIZED_GUEST
872 restart:
873 #endif
874 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
875 target_ulong idx;
876 if (i == 0) {
877 idx = (addr >> (PGSHIFT + ptshift)) &
878 ((1 << (ptidxbits + widened)) - 1);
879 } else {
880 idx = (addr >> (PGSHIFT + ptshift)) &
881 ((1 << ptidxbits) - 1);
882 }
883
884 /* check that physical address of PTE is legal */
885
886 if (two_stage && first_stage) {
887 int vbase_prot;
888 hwaddr vbase;
889
890 /* Do the second stage translation on the base PTE address. */
891 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
892 base, NULL, MMU_DATA_LOAD,
893 MMUIdx_U, false, true,
894 is_debug);
895
896 if (vbase_ret != TRANSLATE_SUCCESS) {
897 if (fault_pte_addr) {
898 *fault_pte_addr = (base + idx * ptesize) >> 2;
899 }
900 return TRANSLATE_G_STAGE_FAIL;
901 }
902
903 pte_addr = vbase + idx * ptesize;
904 } else {
905 pte_addr = base + idx * ptesize;
906 }
907
908 int pmp_prot;
909 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, pte_addr,
910 sizeof(target_ulong),
911 MMU_DATA_LOAD, PRV_S);
912 if (pmp_ret != TRANSLATE_SUCCESS) {
913 return TRANSLATE_PMP_FAIL;
914 }
915
916 if (riscv_cpu_mxl(env) == MXL_RV32) {
917 pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
918 } else {
919 pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
920 }
921
922 if (res != MEMTX_OK) {
923 return TRANSLATE_FAIL;
924 }
925
926 if (riscv_cpu_sxl(env) == MXL_RV32) {
927 ppn = pte >> PTE_PPN_SHIFT;
928 } else {
929 if (pte & PTE_RESERVED) {
930 return TRANSLATE_FAIL;
931 }
932
933 if (!pbmte && (pte & PTE_PBMT)) {
934 return TRANSLATE_FAIL;
935 }
936
937 if (!riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
938 return TRANSLATE_FAIL;
939 }
940
941 ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
942 }
943
944 if (!(pte & PTE_V)) {
945 /* Invalid PTE */
946 return TRANSLATE_FAIL;
947 }
948 if (pte & (PTE_R | PTE_W | PTE_X)) {
949 goto leaf;
950 }
951
952 /* Inner PTE, continue walking */
953 if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
954 return TRANSLATE_FAIL;
955 }
956 base = ppn << PGSHIFT;
957 }
958
959 /* No leaf pte at any translation level. */
960 return TRANSLATE_FAIL;
961
962 leaf:
963 if (ppn & ((1ULL << ptshift) - 1)) {
964 /* Misaligned PPN */
965 return TRANSLATE_FAIL;
966 }
967 if (!pbmte && (pte & PTE_PBMT)) {
968 /* Reserved without Svpbmt. */
969 return TRANSLATE_FAIL;
970 }
971
972 /* Check for reserved combinations of RWX flags. */
973 switch (pte & (PTE_R | PTE_W | PTE_X)) {
974 case PTE_W:
975 case PTE_W | PTE_X:
976 return TRANSLATE_FAIL;
977 }
978
979 int prot = 0;
980 if (pte & PTE_R) {
981 prot |= PAGE_READ;
982 }
983 if (pte & PTE_W) {
984 prot |= PAGE_WRITE;
985 }
986 if (pte & PTE_X) {
987 bool mxr;
988
989 if (first_stage == true) {
990 mxr = get_field(env->mstatus, MSTATUS_MXR);
991 } else {
992 mxr = get_field(env->vsstatus, MSTATUS_MXR);
993 }
994 if (mxr) {
995 prot |= PAGE_READ;
996 }
997 prot |= PAGE_EXEC;
998 }
999
1000 if (pte & PTE_U) {
1001 if (mode != PRV_U) {
1002 if (!mmuidx_sum(mmu_idx)) {
1003 return TRANSLATE_FAIL;
1004 }
1005 /* SUM allows only read+write, not execute. */
1006 prot &= PAGE_READ | PAGE_WRITE;
1007 }
1008 } else if (mode != PRV_S) {
1009 /* Supervisor PTE flags when not S mode */
1010 return TRANSLATE_FAIL;
1011 }
1012
1013 if (!((prot >> access_type) & 1)) {
1014 /* Access check failed */
1015 return TRANSLATE_FAIL;
1016 }
1017
1018 /* If necessary, set accessed and dirty bits. */
1019 target_ulong updated_pte = pte | PTE_A |
1020 (access_type == MMU_DATA_STORE ? PTE_D : 0);
1021
1022 /* Page table updates need to be atomic with MTTCG enabled */
1023 if (updated_pte != pte && !is_debug) {
1024 if (!hade) {
1025 return TRANSLATE_FAIL;
1026 }
1027
1028 /*
1029 * - if accessed or dirty bits need updating, and the PTE is
1030 * in RAM, then we do so atomically with a compare and swap.
1031 * - if the PTE is in IO space or ROM, then it can't be updated
1032 * and we return TRANSLATE_FAIL.
1033 * - if the PTE changed by the time we went to update it, then
1034 * it is no longer valid and we must re-walk the page table.
1035 */
1036 MemoryRegion *mr;
1037 hwaddr l = sizeof(target_ulong), addr1;
1038 mr = address_space_translate(cs->as, pte_addr, &addr1, &l,
1039 false, MEMTXATTRS_UNSPECIFIED);
1040 if (memory_region_is_ram(mr)) {
1041 target_ulong *pte_pa = qemu_map_ram_ptr(mr->ram_block, addr1);
1042 #if TCG_OVERSIZED_GUEST
1043 /*
1044 * MTTCG is not enabled on oversized TCG guests so
1045 * page table updates do not need to be atomic
1046 */
1047 *pte_pa = pte = updated_pte;
1048 #else
1049 target_ulong old_pte = qatomic_cmpxchg(pte_pa, pte, updated_pte);
1050 if (old_pte != pte) {
1051 goto restart;
1052 }
1053 pte = updated_pte;
1054 #endif
1055 } else {
1056 /*
1057 * Misconfigured PTE in ROM (AD bits are not preset) or
1058 * PTE is in IO space and can't be updated atomically.
1059 */
1060 return TRANSLATE_FAIL;
1061 }
1062 }
1063
1064 /* For superpage mappings, make a fake leaf PTE for the TLB's benefit. */
1065 target_ulong vpn = addr >> PGSHIFT;
1066
1067 if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
1068 napot_bits = ctzl(ppn) + 1;
1069 if ((i != (levels - 1)) || (napot_bits != 4)) {
1070 return TRANSLATE_FAIL;
1071 }
1072 }
1073
1074 napot_mask = (1 << napot_bits) - 1;
1075 *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1076 (vpn & (((target_ulong)1 << ptshift) - 1))
1077 ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1078
1079 /*
1080 * Remove write permission unless this is a store, or the page is
1081 * already dirty, so that we TLB miss on later writes to update
1082 * the dirty bit.
1083 */
1084 if (access_type != MMU_DATA_STORE && !(pte & PTE_D)) {
1085 prot &= ~PAGE_WRITE;
1086 }
1087 *ret_prot = prot;
1088
1089 return TRANSLATE_SUCCESS;
1090 }
1091
1092 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1093 MMUAccessType access_type, bool pmp_violation,
1094 bool first_stage, bool two_stage,
1095 bool two_stage_indirect)
1096 {
1097 CPUState *cs = env_cpu(env);
1098 int page_fault_exceptions, vm;
1099 uint64_t stap_mode;
1100
1101 if (riscv_cpu_mxl(env) == MXL_RV32) {
1102 stap_mode = SATP32_MODE;
1103 } else {
1104 stap_mode = SATP64_MODE;
1105 }
1106
1107 if (first_stage) {
1108 vm = get_field(env->satp, stap_mode);
1109 } else {
1110 vm = get_field(env->hgatp, stap_mode);
1111 }
1112
1113 page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1114
1115 switch (access_type) {
1116 case MMU_INST_FETCH:
1117 if (env->virt_enabled && !first_stage) {
1118 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1119 } else {
1120 cs->exception_index = page_fault_exceptions ?
1121 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1122 }
1123 break;
1124 case MMU_DATA_LOAD:
1125 if (two_stage && !first_stage) {
1126 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1127 } else {
1128 cs->exception_index = page_fault_exceptions ?
1129 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1130 }
1131 break;
1132 case MMU_DATA_STORE:
1133 if (two_stage && !first_stage) {
1134 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1135 } else {
1136 cs->exception_index = page_fault_exceptions ?
1137 RISCV_EXCP_STORE_PAGE_FAULT :
1138 RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1139 }
1140 break;
1141 default:
1142 g_assert_not_reached();
1143 }
1144 env->badaddr = address;
1145 env->two_stage_lookup = two_stage;
1146 env->two_stage_indirect_lookup = two_stage_indirect;
1147 }
1148
1149 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1150 {
1151 RISCVCPU *cpu = RISCV_CPU(cs);
1152 CPURISCVState *env = &cpu->env;
1153 hwaddr phys_addr;
1154 int prot;
1155 int mmu_idx = cpu_mmu_index(&cpu->env, false);
1156
1157 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1158 true, env->virt_enabled, true)) {
1159 return -1;
1160 }
1161
1162 if (env->virt_enabled) {
1163 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1164 0, mmu_idx, false, true, true)) {
1165 return -1;
1166 }
1167 }
1168
1169 return phys_addr & TARGET_PAGE_MASK;
1170 }
1171
1172 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1173 vaddr addr, unsigned size,
1174 MMUAccessType access_type,
1175 int mmu_idx, MemTxAttrs attrs,
1176 MemTxResult response, uintptr_t retaddr)
1177 {
1178 RISCVCPU *cpu = RISCV_CPU(cs);
1179 CPURISCVState *env = &cpu->env;
1180
1181 if (access_type == MMU_DATA_STORE) {
1182 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1183 } else if (access_type == MMU_DATA_LOAD) {
1184 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1185 } else {
1186 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1187 }
1188
1189 env->badaddr = addr;
1190 env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1191 env->two_stage_indirect_lookup = false;
1192 cpu_loop_exit_restore(cs, retaddr);
1193 }
1194
1195 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1196 MMUAccessType access_type, int mmu_idx,
1197 uintptr_t retaddr)
1198 {
1199 RISCVCPU *cpu = RISCV_CPU(cs);
1200 CPURISCVState *env = &cpu->env;
1201 switch (access_type) {
1202 case MMU_INST_FETCH:
1203 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1204 break;
1205 case MMU_DATA_LOAD:
1206 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1207 break;
1208 case MMU_DATA_STORE:
1209 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1210 break;
1211 default:
1212 g_assert_not_reached();
1213 }
1214 env->badaddr = addr;
1215 env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1216 env->two_stage_indirect_lookup = false;
1217 cpu_loop_exit_restore(cs, retaddr);
1218 }
1219
1220
1221 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1222 {
1223 enum riscv_pmu_event_idx pmu_event_type;
1224
1225 switch (access_type) {
1226 case MMU_INST_FETCH:
1227 pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1228 break;
1229 case MMU_DATA_LOAD:
1230 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1231 break;
1232 case MMU_DATA_STORE:
1233 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1234 break;
1235 default:
1236 return;
1237 }
1238
1239 riscv_pmu_incr_ctr(cpu, pmu_event_type);
1240 }
1241
1242 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1243 MMUAccessType access_type, int mmu_idx,
1244 bool probe, uintptr_t retaddr)
1245 {
1246 RISCVCPU *cpu = RISCV_CPU(cs);
1247 CPURISCVState *env = &cpu->env;
1248 vaddr im_address;
1249 hwaddr pa = 0;
1250 int prot, prot2, prot_pmp;
1251 bool pmp_violation = false;
1252 bool first_stage_error = true;
1253 bool two_stage_lookup = mmuidx_2stage(mmu_idx);
1254 bool two_stage_indirect_error = false;
1255 int ret = TRANSLATE_FAIL;
1256 int mode = mmu_idx;
1257 /* default TLB page size */
1258 target_ulong tlb_size = TARGET_PAGE_SIZE;
1259
1260 env->guest_phys_fault_addr = 0;
1261
1262 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1263 __func__, address, access_type, mmu_idx);
1264
1265 pmu_tlb_fill_incr_ctr(cpu, access_type);
1266 if (two_stage_lookup) {
1267 /* Two stage lookup */
1268 ret = get_physical_address(env, &pa, &prot, address,
1269 &env->guest_phys_fault_addr, access_type,
1270 mmu_idx, true, true, false);
1271
1272 /*
1273 * A G-stage exception may be triggered during two state lookup.
1274 * And the env->guest_phys_fault_addr has already been set in
1275 * get_physical_address().
1276 */
1277 if (ret == TRANSLATE_G_STAGE_FAIL) {
1278 first_stage_error = false;
1279 two_stage_indirect_error = true;
1280 access_type = MMU_DATA_LOAD;
1281 }
1282
1283 qemu_log_mask(CPU_LOG_MMU,
1284 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1285 HWADDR_FMT_plx " prot %d\n",
1286 __func__, address, ret, pa, prot);
1287
1288 if (ret == TRANSLATE_SUCCESS) {
1289 /* Second stage lookup */
1290 im_address = pa;
1291
1292 ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1293 access_type, MMUIdx_U, false, true,
1294 false);
1295
1296 qemu_log_mask(CPU_LOG_MMU,
1297 "%s 2nd-stage address=%" VADDR_PRIx
1298 " ret %d physical "
1299 HWADDR_FMT_plx " prot %d\n",
1300 __func__, im_address, ret, pa, prot2);
1301
1302 prot &= prot2;
1303
1304 if (ret == TRANSLATE_SUCCESS) {
1305 ret = get_physical_address_pmp(env, &prot_pmp, pa,
1306 size, access_type, mode);
1307 tlb_size = pmp_get_tlb_size(env, pa);
1308
1309 qemu_log_mask(CPU_LOG_MMU,
1310 "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1311 " %d tlb_size " TARGET_FMT_lu "\n",
1312 __func__, pa, ret, prot_pmp, tlb_size);
1313
1314 prot &= prot_pmp;
1315 }
1316
1317 if (ret != TRANSLATE_SUCCESS) {
1318 /*
1319 * Guest physical address translation failed, this is a HS
1320 * level exception
1321 */
1322 first_stage_error = false;
1323 env->guest_phys_fault_addr = (im_address |
1324 (address &
1325 (TARGET_PAGE_SIZE - 1))) >> 2;
1326 }
1327 }
1328 } else {
1329 /* Single stage lookup */
1330 ret = get_physical_address(env, &pa, &prot, address, NULL,
1331 access_type, mmu_idx, true, false, false);
1332
1333 qemu_log_mask(CPU_LOG_MMU,
1334 "%s address=%" VADDR_PRIx " ret %d physical "
1335 HWADDR_FMT_plx " prot %d\n",
1336 __func__, address, ret, pa, prot);
1337
1338 if (ret == TRANSLATE_SUCCESS) {
1339 ret = get_physical_address_pmp(env, &prot_pmp, pa,
1340 size, access_type, mode);
1341 tlb_size = pmp_get_tlb_size(env, pa);
1342
1343 qemu_log_mask(CPU_LOG_MMU,
1344 "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1345 " %d tlb_size " TARGET_FMT_lu "\n",
1346 __func__, pa, ret, prot_pmp, tlb_size);
1347
1348 prot &= prot_pmp;
1349 }
1350 }
1351
1352 if (ret == TRANSLATE_PMP_FAIL) {
1353 pmp_violation = true;
1354 }
1355
1356 if (ret == TRANSLATE_SUCCESS) {
1357 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1358 prot, mmu_idx, tlb_size);
1359 return true;
1360 } else if (probe) {
1361 return false;
1362 } else {
1363 raise_mmu_exception(env, address, access_type, pmp_violation,
1364 first_stage_error, two_stage_lookup,
1365 two_stage_indirect_error);
1366 cpu_loop_exit_restore(cs, retaddr);
1367 }
1368
1369 return true;
1370 }
1371
1372 static target_ulong riscv_transformed_insn(CPURISCVState *env,
1373 target_ulong insn,
1374 target_ulong taddr)
1375 {
1376 target_ulong xinsn = 0;
1377 target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1378
1379 /*
1380 * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1381 * be uncompressed. The Quadrant 1 of RVC instruction space need
1382 * not be transformed because these instructions won't generate
1383 * any load/store trap.
1384 */
1385
1386 if ((insn & 0x3) != 0x3) {
1387 /* Transform 16bit instruction into 32bit instruction */
1388 switch (GET_C_OP(insn)) {
1389 case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1390 switch (GET_C_FUNC(insn)) {
1391 case OPC_RISC_C_FUNC_FLD_LQ:
1392 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1393 xinsn = OPC_RISC_FLD;
1394 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1395 access_rs1 = GET_C_RS1S(insn);
1396 access_imm = GET_C_LD_IMM(insn);
1397 access_size = 8;
1398 }
1399 break;
1400 case OPC_RISC_C_FUNC_LW: /* C.LW */
1401 xinsn = OPC_RISC_LW;
1402 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1403 access_rs1 = GET_C_RS1S(insn);
1404 access_imm = GET_C_LW_IMM(insn);
1405 access_size = 4;
1406 break;
1407 case OPC_RISC_C_FUNC_FLW_LD:
1408 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1409 xinsn = OPC_RISC_FLW;
1410 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1411 access_rs1 = GET_C_RS1S(insn);
1412 access_imm = GET_C_LW_IMM(insn);
1413 access_size = 4;
1414 } else { /* C.LD (RV64/RV128) */
1415 xinsn = OPC_RISC_LD;
1416 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1417 access_rs1 = GET_C_RS1S(insn);
1418 access_imm = GET_C_LD_IMM(insn);
1419 access_size = 8;
1420 }
1421 break;
1422 case OPC_RISC_C_FUNC_FSD_SQ:
1423 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1424 xinsn = OPC_RISC_FSD;
1425 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1426 access_rs1 = GET_C_RS1S(insn);
1427 access_imm = GET_C_SD_IMM(insn);
1428 access_size = 8;
1429 }
1430 break;
1431 case OPC_RISC_C_FUNC_SW: /* C.SW */
1432 xinsn = OPC_RISC_SW;
1433 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1434 access_rs1 = GET_C_RS1S(insn);
1435 access_imm = GET_C_SW_IMM(insn);
1436 access_size = 4;
1437 break;
1438 case OPC_RISC_C_FUNC_FSW_SD:
1439 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1440 xinsn = OPC_RISC_FSW;
1441 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1442 access_rs1 = GET_C_RS1S(insn);
1443 access_imm = GET_C_SW_IMM(insn);
1444 access_size = 4;
1445 } else { /* C.SD (RV64/RV128) */
1446 xinsn = OPC_RISC_SD;
1447 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1448 access_rs1 = GET_C_RS1S(insn);
1449 access_imm = GET_C_SD_IMM(insn);
1450 access_size = 8;
1451 }
1452 break;
1453 default:
1454 break;
1455 }
1456 break;
1457 case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1458 switch (GET_C_FUNC(insn)) {
1459 case OPC_RISC_C_FUNC_FLDSP_LQSP:
1460 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1461 xinsn = OPC_RISC_FLD;
1462 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1463 access_rs1 = 2;
1464 access_imm = GET_C_LDSP_IMM(insn);
1465 access_size = 8;
1466 }
1467 break;
1468 case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1469 xinsn = OPC_RISC_LW;
1470 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1471 access_rs1 = 2;
1472 access_imm = GET_C_LWSP_IMM(insn);
1473 access_size = 4;
1474 break;
1475 case OPC_RISC_C_FUNC_FLWSP_LDSP:
1476 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1477 xinsn = OPC_RISC_FLW;
1478 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1479 access_rs1 = 2;
1480 access_imm = GET_C_LWSP_IMM(insn);
1481 access_size = 4;
1482 } else { /* C.LDSP (RV64/RV128) */
1483 xinsn = OPC_RISC_LD;
1484 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1485 access_rs1 = 2;
1486 access_imm = GET_C_LDSP_IMM(insn);
1487 access_size = 8;
1488 }
1489 break;
1490 case OPC_RISC_C_FUNC_FSDSP_SQSP:
1491 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1492 xinsn = OPC_RISC_FSD;
1493 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1494 access_rs1 = 2;
1495 access_imm = GET_C_SDSP_IMM(insn);
1496 access_size = 8;
1497 }
1498 break;
1499 case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1500 xinsn = OPC_RISC_SW;
1501 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1502 access_rs1 = 2;
1503 access_imm = GET_C_SWSP_IMM(insn);
1504 access_size = 4;
1505 break;
1506 case 7:
1507 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1508 xinsn = OPC_RISC_FSW;
1509 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1510 access_rs1 = 2;
1511 access_imm = GET_C_SWSP_IMM(insn);
1512 access_size = 4;
1513 } else { /* C.SDSP (RV64/RV128) */
1514 xinsn = OPC_RISC_SD;
1515 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1516 access_rs1 = 2;
1517 access_imm = GET_C_SDSP_IMM(insn);
1518 access_size = 8;
1519 }
1520 break;
1521 default:
1522 break;
1523 }
1524 break;
1525 default:
1526 break;
1527 }
1528
1529 /*
1530 * Clear Bit1 of transformed instruction to indicate that
1531 * original insruction was a 16bit instruction
1532 */
1533 xinsn &= ~((target_ulong)0x2);
1534 } else {
1535 /* Transform 32bit (or wider) instructions */
1536 switch (MASK_OP_MAJOR(insn)) {
1537 case OPC_RISC_ATOMIC:
1538 xinsn = insn;
1539 access_rs1 = GET_RS1(insn);
1540 access_size = 1 << GET_FUNCT3(insn);
1541 break;
1542 case OPC_RISC_LOAD:
1543 case OPC_RISC_FP_LOAD:
1544 xinsn = SET_I_IMM(insn, 0);
1545 access_rs1 = GET_RS1(insn);
1546 access_imm = GET_IMM(insn);
1547 access_size = 1 << GET_FUNCT3(insn);
1548 break;
1549 case OPC_RISC_STORE:
1550 case OPC_RISC_FP_STORE:
1551 xinsn = SET_S_IMM(insn, 0);
1552 access_rs1 = GET_RS1(insn);
1553 access_imm = GET_STORE_IMM(insn);
1554 access_size = 1 << GET_FUNCT3(insn);
1555 break;
1556 case OPC_RISC_SYSTEM:
1557 if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1558 xinsn = insn;
1559 access_rs1 = GET_RS1(insn);
1560 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1561 access_size = 1 << access_size;
1562 }
1563 break;
1564 default:
1565 break;
1566 }
1567 }
1568
1569 if (access_size) {
1570 xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1571 (access_size - 1));
1572 }
1573
1574 return xinsn;
1575 }
1576 #endif /* !CONFIG_USER_ONLY */
1577
1578 /*
1579 * Handle Traps
1580 *
1581 * Adapted from Spike's processor_t::take_trap.
1582 *
1583 */
1584 void riscv_cpu_do_interrupt(CPUState *cs)
1585 {
1586 #if !defined(CONFIG_USER_ONLY)
1587
1588 RISCVCPU *cpu = RISCV_CPU(cs);
1589 CPURISCVState *env = &cpu->env;
1590 bool write_gva = false;
1591 uint64_t s;
1592
1593 /*
1594 * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1595 * so we mask off the MSB and separate into trap type and cause.
1596 */
1597 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1598 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1599 uint64_t deleg = async ? env->mideleg : env->medeleg;
1600 target_ulong tval = 0;
1601 target_ulong tinst = 0;
1602 target_ulong htval = 0;
1603 target_ulong mtval2 = 0;
1604
1605 if (cause == RISCV_EXCP_SEMIHOST) {
1606 do_common_semihosting(cs);
1607 env->pc += 4;
1608 return;
1609 }
1610
1611 if (!async) {
1612 /* set tval to badaddr for traps with address information */
1613 switch (cause) {
1614 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1615 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1616 case RISCV_EXCP_LOAD_ADDR_MIS:
1617 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1618 case RISCV_EXCP_LOAD_ACCESS_FAULT:
1619 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1620 case RISCV_EXCP_LOAD_PAGE_FAULT:
1621 case RISCV_EXCP_STORE_PAGE_FAULT:
1622 write_gva = env->two_stage_lookup;
1623 tval = env->badaddr;
1624 if (env->two_stage_indirect_lookup) {
1625 /*
1626 * special pseudoinstruction for G-stage fault taken while
1627 * doing VS-stage page table walk.
1628 */
1629 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1630 } else {
1631 /*
1632 * The "Addr. Offset" field in transformed instruction is
1633 * non-zero only for misaligned access.
1634 */
1635 tinst = riscv_transformed_insn(env, env->bins, tval);
1636 }
1637 break;
1638 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1639 case RISCV_EXCP_INST_ADDR_MIS:
1640 case RISCV_EXCP_INST_ACCESS_FAULT:
1641 case RISCV_EXCP_INST_PAGE_FAULT:
1642 write_gva = env->two_stage_lookup;
1643 tval = env->badaddr;
1644 if (env->two_stage_indirect_lookup) {
1645 /*
1646 * special pseudoinstruction for G-stage fault taken while
1647 * doing VS-stage page table walk.
1648 */
1649 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1650 }
1651 break;
1652 case RISCV_EXCP_ILLEGAL_INST:
1653 case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
1654 tval = env->bins;
1655 break;
1656 case RISCV_EXCP_BREAKPOINT:
1657 if (cs->watchpoint_hit) {
1658 tval = cs->watchpoint_hit->hitaddr;
1659 cs->watchpoint_hit = NULL;
1660 }
1661 break;
1662 default:
1663 break;
1664 }
1665 /* ecall is dispatched as one cause so translate based on mode */
1666 if (cause == RISCV_EXCP_U_ECALL) {
1667 assert(env->priv <= 3);
1668
1669 if (env->priv == PRV_M) {
1670 cause = RISCV_EXCP_M_ECALL;
1671 } else if (env->priv == PRV_S && env->virt_enabled) {
1672 cause = RISCV_EXCP_VS_ECALL;
1673 } else if (env->priv == PRV_S && !env->virt_enabled) {
1674 cause = RISCV_EXCP_S_ECALL;
1675 } else if (env->priv == PRV_U) {
1676 cause = RISCV_EXCP_U_ECALL;
1677 }
1678 }
1679 }
1680
1681 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1682 riscv_cpu_get_trap_name(cause, async));
1683
1684 qemu_log_mask(CPU_LOG_INT,
1685 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1686 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1687 __func__, env->mhartid, async, cause, env->pc, tval,
1688 riscv_cpu_get_trap_name(cause, async));
1689
1690 if (env->priv <= PRV_S &&
1691 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1692 /* handle the trap in S-mode */
1693 if (riscv_has_ext(env, RVH)) {
1694 uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1695
1696 if (env->virt_enabled && ((hdeleg >> cause) & 1)) {
1697 /* Trap to VS mode */
1698 /*
1699 * See if we need to adjust cause. Yes if its VS mode interrupt
1700 * no if hypervisor has delegated one of hs mode's interrupt
1701 */
1702 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1703 cause == IRQ_VS_EXT) {
1704 cause = cause - 1;
1705 }
1706 write_gva = false;
1707 } else if (env->virt_enabled) {
1708 /* Trap into HS mode, from virt */
1709 riscv_cpu_swap_hypervisor_regs(env);
1710 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1711 env->priv);
1712 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true);
1713
1714 htval = env->guest_phys_fault_addr;
1715
1716 riscv_cpu_set_virt_enabled(env, 0);
1717 } else {
1718 /* Trap into HS mode */
1719 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1720 htval = env->guest_phys_fault_addr;
1721 }
1722 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1723 }
1724
1725 s = env->mstatus;
1726 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1727 s = set_field(s, MSTATUS_SPP, env->priv);
1728 s = set_field(s, MSTATUS_SIE, 0);
1729 env->mstatus = s;
1730 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1731 env->sepc = env->pc;
1732 env->stval = tval;
1733 env->htval = htval;
1734 env->htinst = tinst;
1735 env->pc = (env->stvec >> 2 << 2) +
1736 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1737 riscv_cpu_set_mode(env, PRV_S);
1738 } else {
1739 /* handle the trap in M-mode */
1740 if (riscv_has_ext(env, RVH)) {
1741 if (env->virt_enabled) {
1742 riscv_cpu_swap_hypervisor_regs(env);
1743 }
1744 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1745 env->virt_enabled);
1746 if (env->virt_enabled && tval) {
1747 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1748 }
1749
1750 mtval2 = env->guest_phys_fault_addr;
1751
1752 /* Trapping to M mode, virt is disabled */
1753 riscv_cpu_set_virt_enabled(env, 0);
1754 }
1755
1756 s = env->mstatus;
1757 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1758 s = set_field(s, MSTATUS_MPP, env->priv);
1759 s = set_field(s, MSTATUS_MIE, 0);
1760 env->mstatus = s;
1761 env->mcause = cause | ~(((target_ulong)-1) >> async);
1762 env->mepc = env->pc;
1763 env->mtval = tval;
1764 env->mtval2 = mtval2;
1765 env->mtinst = tinst;
1766 env->pc = (env->mtvec >> 2 << 2) +
1767 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1768 riscv_cpu_set_mode(env, PRV_M);
1769 }
1770
1771 /*
1772 * NOTE: it is not necessary to yield load reservations here. It is only
1773 * necessary for an SC from "another hart" to cause a load reservation
1774 * to be yielded. Refer to the memory consistency model section of the
1775 * RISC-V ISA Specification.
1776 */
1777
1778 env->two_stage_lookup = false;
1779 env->two_stage_indirect_lookup = false;
1780 #endif
1781 cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
1782 }