]> git.proxmox.com Git - mirror_qemu.git/blob - target/riscv/cpu_helper.c
target/riscv: Add M-mode virtual interrupt and IRQ filtering support.
[mirror_qemu.git] / target / riscv / cpu_helper.c
1 /*
2 * RISC-V CPU helpers for qemu.
3 *
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "internals.h"
25 #include "pmu.h"
26 #include "exec/exec-all.h"
27 #include "instmap.h"
28 #include "tcg/tcg-op.h"
29 #include "trace.h"
30 #include "semihosting/common-semi.h"
31 #include "sysemu/cpu-timers.h"
32 #include "cpu_bits.h"
33 #include "debug.h"
34 #include "tcg/oversized-guest.h"
35
36 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
37 {
38 #ifdef CONFIG_USER_ONLY
39 return 0;
40 #else
41 bool virt = env->virt_enabled;
42 int mode = env->priv;
43
44 /* All priv -> mmu_idx mapping are here */
45 if (!ifetch) {
46 uint64_t status = env->mstatus;
47
48 if (mode == PRV_M && get_field(status, MSTATUS_MPRV)) {
49 mode = get_field(env->mstatus, MSTATUS_MPP);
50 virt = get_field(env->mstatus, MSTATUS_MPV) &&
51 (mode != PRV_M);
52 if (virt) {
53 status = env->vsstatus;
54 }
55 }
56 if (mode == PRV_S && get_field(status, MSTATUS_SUM)) {
57 mode = MMUIdx_S_SUM;
58 }
59 }
60
61 return mode | (virt ? MMU_2STAGE_BIT : 0);
62 #endif
63 }
64
65 void cpu_get_tb_cpu_state(CPURISCVState *env, vaddr *pc,
66 uint64_t *cs_base, uint32_t *pflags)
67 {
68 RISCVCPU *cpu = env_archcpu(env);
69 RISCVExtStatus fs, vs;
70 uint32_t flags = 0;
71
72 *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
73 *cs_base = 0;
74
75 if (cpu->cfg.ext_zve32f) {
76 /*
77 * If env->vl equals to VLMAX, we can use generic vector operation
78 * expanders (GVEC) to accerlate the vector operations.
79 * However, as LMUL could be a fractional number. The maximum
80 * vector size can be operated might be less than 8 bytes,
81 * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
82 * only when maxsz >= 8 bytes.
83 */
84 uint32_t vlmax = vext_get_vlmax(cpu, env->vtype);
85 uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
86 uint32_t maxsz = vlmax << sew;
87 bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
88 (maxsz >= 8);
89 flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
90 flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
91 flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
92 FIELD_EX64(env->vtype, VTYPE, VLMUL));
93 flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
94 flags = FIELD_DP32(flags, TB_FLAGS, VTA,
95 FIELD_EX64(env->vtype, VTYPE, VTA));
96 flags = FIELD_DP32(flags, TB_FLAGS, VMA,
97 FIELD_EX64(env->vtype, VTYPE, VMA));
98 flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0);
99 } else {
100 flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
101 }
102
103 #ifdef CONFIG_USER_ONLY
104 fs = EXT_STATUS_DIRTY;
105 vs = EXT_STATUS_DIRTY;
106 #else
107 flags = FIELD_DP32(flags, TB_FLAGS, PRIV, env->priv);
108
109 flags |= cpu_mmu_index(env, 0);
110 fs = get_field(env->mstatus, MSTATUS_FS);
111 vs = get_field(env->mstatus, MSTATUS_VS);
112
113 if (env->virt_enabled) {
114 flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1);
115 /*
116 * Merge DISABLED and !DIRTY states using MIN.
117 * We will set both fields when dirtying.
118 */
119 fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS));
120 vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS));
121 }
122
123 /* With Zfinx, floating point is enabled/disabled by Smstateen. */
124 if (!riscv_has_ext(env, RVF)) {
125 fs = (smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR) == RISCV_EXCP_NONE)
126 ? EXT_STATUS_DIRTY : EXT_STATUS_DISABLED;
127 }
128
129 if (cpu->cfg.debug && !icount_enabled()) {
130 flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled);
131 }
132 #endif
133
134 flags = FIELD_DP32(flags, TB_FLAGS, FS, fs);
135 flags = FIELD_DP32(flags, TB_FLAGS, VS, vs);
136 flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
137 flags = FIELD_DP32(flags, TB_FLAGS, AXL, cpu_address_xl(env));
138 if (env->cur_pmmask != 0) {
139 flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
140 }
141 if (env->cur_pmbase != 0) {
142 flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
143 }
144
145 *pflags = flags;
146 }
147
148 void riscv_cpu_update_mask(CPURISCVState *env)
149 {
150 target_ulong mask = 0, base = 0;
151 RISCVMXL xl = env->xl;
152 /*
153 * TODO: Current RVJ spec does not specify
154 * how the extension interacts with XLEN.
155 */
156 #ifndef CONFIG_USER_ONLY
157 int mode = cpu_address_mode(env);
158 xl = cpu_get_xl(env, mode);
159 if (riscv_has_ext(env, RVJ)) {
160 switch (mode) {
161 case PRV_M:
162 if (env->mmte & M_PM_ENABLE) {
163 mask = env->mpmmask;
164 base = env->mpmbase;
165 }
166 break;
167 case PRV_S:
168 if (env->mmte & S_PM_ENABLE) {
169 mask = env->spmmask;
170 base = env->spmbase;
171 }
172 break;
173 case PRV_U:
174 if (env->mmte & U_PM_ENABLE) {
175 mask = env->upmmask;
176 base = env->upmbase;
177 }
178 break;
179 default:
180 g_assert_not_reached();
181 }
182 }
183 #endif
184 if (xl == MXL_RV32) {
185 env->cur_pmmask = mask & UINT32_MAX;
186 env->cur_pmbase = base & UINT32_MAX;
187 } else {
188 env->cur_pmmask = mask;
189 env->cur_pmbase = base;
190 }
191 }
192
193 #ifndef CONFIG_USER_ONLY
194
195 /*
196 * The HS-mode is allowed to configure priority only for the
197 * following VS-mode local interrupts:
198 *
199 * 0 (Reserved interrupt, reads as zero)
200 * 1 Supervisor software interrupt
201 * 4 (Reserved interrupt, reads as zero)
202 * 5 Supervisor timer interrupt
203 * 8 (Reserved interrupt, reads as zero)
204 * 13 (Reserved interrupt)
205 * 14 "
206 * 15 "
207 * 16 "
208 * 17 "
209 * 18 "
210 * 19 "
211 * 20 "
212 * 21 "
213 * 22 "
214 * 23 "
215 */
216
217 static const int hviprio_index2irq[] = {
218 0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
219 static const int hviprio_index2rdzero[] = {
220 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
221
222 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
223 {
224 if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
225 return -EINVAL;
226 }
227
228 if (out_irq) {
229 *out_irq = hviprio_index2irq[index];
230 }
231
232 if (out_rdzero) {
233 *out_rdzero = hviprio_index2rdzero[index];
234 }
235
236 return 0;
237 }
238
239 /*
240 * Default priorities of local interrupts are defined in the
241 * RISC-V Advanced Interrupt Architecture specification.
242 *
243 * ----------------------------------------------------------------
244 * Default |
245 * Priority | Major Interrupt Numbers
246 * ----------------------------------------------------------------
247 * Highest | 47, 23, 46, 45, 22, 44,
248 * | 43, 21, 42, 41, 20, 40
249 * |
250 * | 11 (0b), 3 (03), 7 (07)
251 * | 9 (09), 1 (01), 5 (05)
252 * | 12 (0c)
253 * | 10 (0a), 2 (02), 6 (06)
254 * |
255 * | 39, 19, 38, 37, 18, 36,
256 * Lowest | 35, 17, 34, 33, 16, 32
257 * ----------------------------------------------------------------
258 */
259 static const uint8_t default_iprio[64] = {
260 /* Custom interrupts 48 to 63 */
261 [63] = IPRIO_MMAXIPRIO,
262 [62] = IPRIO_MMAXIPRIO,
263 [61] = IPRIO_MMAXIPRIO,
264 [60] = IPRIO_MMAXIPRIO,
265 [59] = IPRIO_MMAXIPRIO,
266 [58] = IPRIO_MMAXIPRIO,
267 [57] = IPRIO_MMAXIPRIO,
268 [56] = IPRIO_MMAXIPRIO,
269 [55] = IPRIO_MMAXIPRIO,
270 [54] = IPRIO_MMAXIPRIO,
271 [53] = IPRIO_MMAXIPRIO,
272 [52] = IPRIO_MMAXIPRIO,
273 [51] = IPRIO_MMAXIPRIO,
274 [50] = IPRIO_MMAXIPRIO,
275 [49] = IPRIO_MMAXIPRIO,
276 [48] = IPRIO_MMAXIPRIO,
277
278 /* Custom interrupts 24 to 31 */
279 [31] = IPRIO_MMAXIPRIO,
280 [30] = IPRIO_MMAXIPRIO,
281 [29] = IPRIO_MMAXIPRIO,
282 [28] = IPRIO_MMAXIPRIO,
283 [27] = IPRIO_MMAXIPRIO,
284 [26] = IPRIO_MMAXIPRIO,
285 [25] = IPRIO_MMAXIPRIO,
286 [24] = IPRIO_MMAXIPRIO,
287
288 [47] = IPRIO_DEFAULT_UPPER,
289 [23] = IPRIO_DEFAULT_UPPER + 1,
290 [46] = IPRIO_DEFAULT_UPPER + 2,
291 [45] = IPRIO_DEFAULT_UPPER + 3,
292 [22] = IPRIO_DEFAULT_UPPER + 4,
293 [44] = IPRIO_DEFAULT_UPPER + 5,
294
295 [43] = IPRIO_DEFAULT_UPPER + 6,
296 [21] = IPRIO_DEFAULT_UPPER + 7,
297 [42] = IPRIO_DEFAULT_UPPER + 8,
298 [41] = IPRIO_DEFAULT_UPPER + 9,
299 [20] = IPRIO_DEFAULT_UPPER + 10,
300 [40] = IPRIO_DEFAULT_UPPER + 11,
301
302 [11] = IPRIO_DEFAULT_M,
303 [3] = IPRIO_DEFAULT_M + 1,
304 [7] = IPRIO_DEFAULT_M + 2,
305
306 [9] = IPRIO_DEFAULT_S,
307 [1] = IPRIO_DEFAULT_S + 1,
308 [5] = IPRIO_DEFAULT_S + 2,
309
310 [12] = IPRIO_DEFAULT_SGEXT,
311
312 [10] = IPRIO_DEFAULT_VS,
313 [2] = IPRIO_DEFAULT_VS + 1,
314 [6] = IPRIO_DEFAULT_VS + 2,
315
316 [39] = IPRIO_DEFAULT_LOWER,
317 [19] = IPRIO_DEFAULT_LOWER + 1,
318 [38] = IPRIO_DEFAULT_LOWER + 2,
319 [37] = IPRIO_DEFAULT_LOWER + 3,
320 [18] = IPRIO_DEFAULT_LOWER + 4,
321 [36] = IPRIO_DEFAULT_LOWER + 5,
322
323 [35] = IPRIO_DEFAULT_LOWER + 6,
324 [17] = IPRIO_DEFAULT_LOWER + 7,
325 [34] = IPRIO_DEFAULT_LOWER + 8,
326 [33] = IPRIO_DEFAULT_LOWER + 9,
327 [16] = IPRIO_DEFAULT_LOWER + 10,
328 [32] = IPRIO_DEFAULT_LOWER + 11,
329 };
330
331 uint8_t riscv_cpu_default_priority(int irq)
332 {
333 if (irq < 0 || irq > 63) {
334 return IPRIO_MMAXIPRIO;
335 }
336
337 return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
338 };
339
340 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
341 int extirq, unsigned int extirq_def_prio,
342 uint64_t pending, uint8_t *iprio)
343 {
344 int irq, best_irq = RISCV_EXCP_NONE;
345 unsigned int prio, best_prio = UINT_MAX;
346
347 if (!pending) {
348 return RISCV_EXCP_NONE;
349 }
350
351 irq = ctz64(pending);
352 if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia :
353 riscv_cpu_cfg(env)->ext_ssaia)) {
354 return irq;
355 }
356
357 pending = pending >> irq;
358 while (pending) {
359 prio = iprio[irq];
360 if (!prio) {
361 if (irq == extirq) {
362 prio = extirq_def_prio;
363 } else {
364 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
365 1 : IPRIO_MMAXIPRIO;
366 }
367 }
368 if ((pending & 0x1) && (prio <= best_prio)) {
369 best_irq = irq;
370 best_prio = prio;
371 }
372 irq++;
373 pending = pending >> 1;
374 }
375
376 return best_irq;
377 }
378
379 /*
380 * Doesn't report interrupts inserted using mvip from M-mode firmware. Those
381 * are returned in riscv_cpu_sirq_pending().
382 */
383 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
384 {
385 uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
386 uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
387 uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
388
389 return (env->mip | vsgein | vstip) & env->mie;
390 }
391
392 int riscv_cpu_mirq_pending(CPURISCVState *env)
393 {
394 uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
395 ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
396
397 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
398 irqs, env->miprio);
399 }
400
401 int riscv_cpu_sirq_pending(CPURISCVState *env)
402 {
403 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
404 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
405 uint64_t irqs_f = env->mvip & env->mvien & ~env->mideleg & env->sie;
406
407 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
408 irqs | irqs_f, env->siprio);
409 }
410
411 int riscv_cpu_vsirq_pending(CPURISCVState *env)
412 {
413 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
414 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
415
416 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
417 irqs >> 1, env->hviprio);
418 }
419
420 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
421 {
422 uint64_t irqs, pending, mie, hsie, vsie, irqs_f;
423 int virq;
424
425 /* Determine interrupt enable state of all privilege modes */
426 if (env->virt_enabled) {
427 mie = 1;
428 hsie = 1;
429 vsie = (env->priv < PRV_S) ||
430 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
431 } else {
432 mie = (env->priv < PRV_M) ||
433 (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
434 hsie = (env->priv < PRV_S) ||
435 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
436 vsie = 0;
437 }
438
439 /* Determine all pending interrupts */
440 pending = riscv_cpu_all_pending(env);
441
442 /* Check M-mode interrupts */
443 irqs = pending & ~env->mideleg & -mie;
444 if (irqs) {
445 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
446 irqs, env->miprio);
447 }
448
449 /* Check for virtual S-mode interrupts. */
450 irqs_f = env->mvip & (env->mvien & ~env->mideleg) & env->sie;
451
452 /* Check HS-mode interrupts */
453 irqs = ((pending & env->mideleg & ~env->hideleg) | irqs_f) & -hsie;
454 if (irqs) {
455 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
456 irqs, env->siprio);
457 }
458
459 /* Check VS-mode interrupts */
460 irqs = pending & env->mideleg & env->hideleg & -vsie;
461 if (irqs) {
462 virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
463 irqs >> 1, env->hviprio);
464 return (virq <= 0) ? virq : virq + 1;
465 }
466
467 /* Indicate no pending interrupt */
468 return RISCV_EXCP_NONE;
469 }
470
471 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
472 {
473 if (interrupt_request & CPU_INTERRUPT_HARD) {
474 RISCVCPU *cpu = RISCV_CPU(cs);
475 CPURISCVState *env = &cpu->env;
476 int interruptno = riscv_cpu_local_irq_pending(env);
477 if (interruptno >= 0) {
478 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
479 riscv_cpu_do_interrupt(cs);
480 return true;
481 }
482 }
483 return false;
484 }
485
486 /* Return true is floating point support is currently enabled */
487 bool riscv_cpu_fp_enabled(CPURISCVState *env)
488 {
489 if (env->mstatus & MSTATUS_FS) {
490 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) {
491 return false;
492 }
493 return true;
494 }
495
496 return false;
497 }
498
499 /* Return true is vector support is currently enabled */
500 bool riscv_cpu_vector_enabled(CPURISCVState *env)
501 {
502 if (env->mstatus & MSTATUS_VS) {
503 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) {
504 return false;
505 }
506 return true;
507 }
508
509 return false;
510 }
511
512 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
513 {
514 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
515 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
516 MSTATUS64_UXL | MSTATUS_VS;
517
518 if (riscv_has_ext(env, RVF)) {
519 mstatus_mask |= MSTATUS_FS;
520 }
521 bool current_virt = env->virt_enabled;
522
523 g_assert(riscv_has_ext(env, RVH));
524
525 if (current_virt) {
526 /* Current V=1 and we are about to change to V=0 */
527 env->vsstatus = env->mstatus & mstatus_mask;
528 env->mstatus &= ~mstatus_mask;
529 env->mstatus |= env->mstatus_hs;
530
531 env->vstvec = env->stvec;
532 env->stvec = env->stvec_hs;
533
534 env->vsscratch = env->sscratch;
535 env->sscratch = env->sscratch_hs;
536
537 env->vsepc = env->sepc;
538 env->sepc = env->sepc_hs;
539
540 env->vscause = env->scause;
541 env->scause = env->scause_hs;
542
543 env->vstval = env->stval;
544 env->stval = env->stval_hs;
545
546 env->vsatp = env->satp;
547 env->satp = env->satp_hs;
548 } else {
549 /* Current V=0 and we are about to change to V=1 */
550 env->mstatus_hs = env->mstatus & mstatus_mask;
551 env->mstatus &= ~mstatus_mask;
552 env->mstatus |= env->vsstatus;
553
554 env->stvec_hs = env->stvec;
555 env->stvec = env->vstvec;
556
557 env->sscratch_hs = env->sscratch;
558 env->sscratch = env->vsscratch;
559
560 env->sepc_hs = env->sepc;
561 env->sepc = env->vsepc;
562
563 env->scause_hs = env->scause;
564 env->scause = env->vscause;
565
566 env->stval_hs = env->stval;
567 env->stval = env->vstval;
568
569 env->satp_hs = env->satp;
570 env->satp = env->vsatp;
571 }
572 }
573
574 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
575 {
576 if (!riscv_has_ext(env, RVH)) {
577 return 0;
578 }
579
580 return env->geilen;
581 }
582
583 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
584 {
585 if (!riscv_has_ext(env, RVH)) {
586 return;
587 }
588
589 if (geilen > (TARGET_LONG_BITS - 1)) {
590 return;
591 }
592
593 env->geilen = geilen;
594 }
595
596 /* This function can only be called to set virt when RVH is enabled */
597 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
598 {
599 /* Flush the TLB on all virt mode changes. */
600 if (env->virt_enabled != enable) {
601 tlb_flush(env_cpu(env));
602 }
603
604 env->virt_enabled = enable;
605
606 if (enable) {
607 /*
608 * The guest external interrupts from an interrupt controller are
609 * delivered only when the Guest/VM is running (i.e. V=1). This means
610 * any guest external interrupt which is triggered while the Guest/VM
611 * is not running (i.e. V=0) will be missed on QEMU resulting in guest
612 * with sluggish response to serial console input and other I/O events.
613 *
614 * To solve this, we check and inject interrupt after setting V=1.
615 */
616 riscv_cpu_update_mip(env, 0, 0);
617 }
618 }
619
620 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
621 {
622 CPURISCVState *env = &cpu->env;
623 if (env->miclaim & interrupts) {
624 return -1;
625 } else {
626 env->miclaim |= interrupts;
627 return 0;
628 }
629 }
630
631 void riscv_cpu_interrupt(CPURISCVState *env)
632 {
633 uint64_t gein, vsgein = 0, vstip = 0, irqf = 0;
634 CPUState *cs = env_cpu(env);
635
636 QEMU_IOTHREAD_LOCK_GUARD();
637
638 if (env->virt_enabled) {
639 gein = get_field(env->hstatus, HSTATUS_VGEIN);
640 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
641 } else {
642 irqf = env->mvien & env->mvip & env->sie;
643 }
644
645 vstip = env->vstime_irq ? MIP_VSTIP : 0;
646
647 if (env->mip | vsgein | vstip | irqf) {
648 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
649 } else {
650 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
651 }
652 }
653
654 uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask, uint64_t value)
655 {
656 uint64_t old = env->mip;
657
658 /* No need to update mip for VSTIP */
659 mask = ((mask == MIP_VSTIP) && env->vstime_irq) ? 0 : mask;
660
661 QEMU_IOTHREAD_LOCK_GUARD();
662
663 env->mip = (env->mip & ~mask) | (value & mask);
664
665 riscv_cpu_interrupt(env);
666
667 return old;
668 }
669
670 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
671 void *arg)
672 {
673 env->rdtime_fn = fn;
674 env->rdtime_fn_arg = arg;
675 }
676
677 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
678 int (*rmw_fn)(void *arg,
679 target_ulong reg,
680 target_ulong *val,
681 target_ulong new_val,
682 target_ulong write_mask),
683 void *rmw_fn_arg)
684 {
685 if (priv <= PRV_M) {
686 env->aia_ireg_rmw_fn[priv] = rmw_fn;
687 env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
688 }
689 }
690
691 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
692 {
693 g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED);
694
695 if (icount_enabled() && newpriv != env->priv) {
696 riscv_itrigger_update_priv(env);
697 }
698 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
699 env->priv = newpriv;
700 env->xl = cpu_recompute_xl(env);
701 riscv_cpu_update_mask(env);
702
703 /*
704 * Clear the load reservation - otherwise a reservation placed in one
705 * context/process can be used by another, resulting in an SC succeeding
706 * incorrectly. Version 2.2 of the ISA specification explicitly requires
707 * this behaviour, while later revisions say that the kernel "should" use
708 * an SC instruction to force the yielding of a load reservation on a
709 * preemptive context switch. As a result, do both.
710 */
711 env->load_res = -1;
712 }
713
714 /*
715 * get_physical_address_pmp - check PMP permission for this physical address
716 *
717 * Match the PMP region and check permission for this physical address and it's
718 * TLB page. Returns 0 if the permission checking was successful
719 *
720 * @env: CPURISCVState
721 * @prot: The returned protection attributes
722 * @addr: The physical address to be checked permission
723 * @access_type: The type of MMU access
724 * @mode: Indicates current privilege level.
725 */
726 static int get_physical_address_pmp(CPURISCVState *env, int *prot, hwaddr addr,
727 int size, MMUAccessType access_type,
728 int mode)
729 {
730 pmp_priv_t pmp_priv;
731 bool pmp_has_privs;
732
733 if (!riscv_cpu_cfg(env)->pmp) {
734 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
735 return TRANSLATE_SUCCESS;
736 }
737
738 pmp_has_privs = pmp_hart_has_privs(env, addr, size, 1 << access_type,
739 &pmp_priv, mode);
740 if (!pmp_has_privs) {
741 *prot = 0;
742 return TRANSLATE_PMP_FAIL;
743 }
744
745 *prot = pmp_priv_to_page_prot(pmp_priv);
746
747 return TRANSLATE_SUCCESS;
748 }
749
750 /*
751 * get_physical_address - get the physical address for this virtual address
752 *
753 * Do a page table walk to obtain the physical address corresponding to a
754 * virtual address. Returns 0 if the translation was successful
755 *
756 * Adapted from Spike's mmu_t::translate and mmu_t::walk
757 *
758 * @env: CPURISCVState
759 * @physical: This will be set to the calculated physical address
760 * @prot: The returned protection attributes
761 * @addr: The virtual address or guest physical address to be translated
762 * @fault_pte_addr: If not NULL, this will be set to fault pte address
763 * when a error occurs on pte address translation.
764 * This will already be shifted to match htval.
765 * @access_type: The type of MMU access
766 * @mmu_idx: Indicates current privilege level
767 * @first_stage: Are we in first stage translation?
768 * Second stage is used for hypervisor guest translation
769 * @two_stage: Are we going to perform two stage translation
770 * @is_debug: Is this access from a debugger or the monitor?
771 */
772 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
773 int *ret_prot, vaddr addr,
774 target_ulong *fault_pte_addr,
775 int access_type, int mmu_idx,
776 bool first_stage, bool two_stage,
777 bool is_debug)
778 {
779 /*
780 * NOTE: the env->pc value visible here will not be
781 * correct, but the value visible to the exception handler
782 * (riscv_cpu_do_interrupt) is correct
783 */
784 MemTxResult res;
785 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
786 int mode = mmuidx_priv(mmu_idx);
787 bool use_background = false;
788 hwaddr ppn;
789 int napot_bits = 0;
790 target_ulong napot_mask;
791
792 /*
793 * Check if we should use the background registers for the two
794 * stage translation. We don't need to check if we actually need
795 * two stage translation as that happened before this function
796 * was called. Background registers will be used if the guest has
797 * forced a two stage translation to be on (in HS or M mode).
798 */
799 if (!env->virt_enabled && two_stage) {
800 use_background = true;
801 }
802
803 if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) {
804 *physical = addr;
805 *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
806 return TRANSLATE_SUCCESS;
807 }
808
809 *ret_prot = 0;
810
811 hwaddr base;
812 int levels, ptidxbits, ptesize, vm, widened;
813
814 if (first_stage == true) {
815 if (use_background) {
816 if (riscv_cpu_mxl(env) == MXL_RV32) {
817 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
818 vm = get_field(env->vsatp, SATP32_MODE);
819 } else {
820 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
821 vm = get_field(env->vsatp, SATP64_MODE);
822 }
823 } else {
824 if (riscv_cpu_mxl(env) == MXL_RV32) {
825 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
826 vm = get_field(env->satp, SATP32_MODE);
827 } else {
828 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
829 vm = get_field(env->satp, SATP64_MODE);
830 }
831 }
832 widened = 0;
833 } else {
834 if (riscv_cpu_mxl(env) == MXL_RV32) {
835 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
836 vm = get_field(env->hgatp, SATP32_MODE);
837 } else {
838 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
839 vm = get_field(env->hgatp, SATP64_MODE);
840 }
841 widened = 2;
842 }
843
844 switch (vm) {
845 case VM_1_10_SV32:
846 levels = 2; ptidxbits = 10; ptesize = 4; break;
847 case VM_1_10_SV39:
848 levels = 3; ptidxbits = 9; ptesize = 8; break;
849 case VM_1_10_SV48:
850 levels = 4; ptidxbits = 9; ptesize = 8; break;
851 case VM_1_10_SV57:
852 levels = 5; ptidxbits = 9; ptesize = 8; break;
853 case VM_1_10_MBARE:
854 *physical = addr;
855 *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
856 return TRANSLATE_SUCCESS;
857 default:
858 g_assert_not_reached();
859 }
860
861 CPUState *cs = env_cpu(env);
862 int va_bits = PGSHIFT + levels * ptidxbits + widened;
863
864 if (first_stage == true) {
865 target_ulong mask, masked_msbs;
866
867 if (TARGET_LONG_BITS > (va_bits - 1)) {
868 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
869 } else {
870 mask = 0;
871 }
872 masked_msbs = (addr >> (va_bits - 1)) & mask;
873
874 if (masked_msbs != 0 && masked_msbs != mask) {
875 return TRANSLATE_FAIL;
876 }
877 } else {
878 if (vm != VM_1_10_SV32 && addr >> va_bits != 0) {
879 return TRANSLATE_FAIL;
880 }
881 }
882
883 bool pbmte = env->menvcfg & MENVCFG_PBMTE;
884 bool adue = env->menvcfg & MENVCFG_ADUE;
885
886 if (first_stage && two_stage && env->virt_enabled) {
887 pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE);
888 adue = adue && (env->henvcfg & HENVCFG_ADUE);
889 }
890
891 int ptshift = (levels - 1) * ptidxbits;
892 target_ulong pte;
893 hwaddr pte_addr;
894 int i;
895
896 #if !TCG_OVERSIZED_GUEST
897 restart:
898 #endif
899 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
900 target_ulong idx;
901 if (i == 0) {
902 idx = (addr >> (PGSHIFT + ptshift)) &
903 ((1 << (ptidxbits + widened)) - 1);
904 } else {
905 idx = (addr >> (PGSHIFT + ptshift)) &
906 ((1 << ptidxbits) - 1);
907 }
908
909 /* check that physical address of PTE is legal */
910
911 if (two_stage && first_stage) {
912 int vbase_prot;
913 hwaddr vbase;
914
915 /* Do the second stage translation on the base PTE address. */
916 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
917 base, NULL, MMU_DATA_LOAD,
918 MMUIdx_U, false, true,
919 is_debug);
920
921 if (vbase_ret != TRANSLATE_SUCCESS) {
922 if (fault_pte_addr) {
923 *fault_pte_addr = (base + idx * ptesize) >> 2;
924 }
925 return TRANSLATE_G_STAGE_FAIL;
926 }
927
928 pte_addr = vbase + idx * ptesize;
929 } else {
930 pte_addr = base + idx * ptesize;
931 }
932
933 int pmp_prot;
934 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, pte_addr,
935 sizeof(target_ulong),
936 MMU_DATA_LOAD, PRV_S);
937 if (pmp_ret != TRANSLATE_SUCCESS) {
938 return TRANSLATE_PMP_FAIL;
939 }
940
941 if (riscv_cpu_mxl(env) == MXL_RV32) {
942 pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
943 } else {
944 pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
945 }
946
947 if (res != MEMTX_OK) {
948 return TRANSLATE_FAIL;
949 }
950
951 if (riscv_cpu_sxl(env) == MXL_RV32) {
952 ppn = pte >> PTE_PPN_SHIFT;
953 } else {
954 if (pte & PTE_RESERVED) {
955 return TRANSLATE_FAIL;
956 }
957
958 if (!pbmte && (pte & PTE_PBMT)) {
959 return TRANSLATE_FAIL;
960 }
961
962 if (!riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
963 return TRANSLATE_FAIL;
964 }
965
966 ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
967 }
968
969 if (!(pte & PTE_V)) {
970 /* Invalid PTE */
971 return TRANSLATE_FAIL;
972 }
973 if (pte & (PTE_R | PTE_W | PTE_X)) {
974 goto leaf;
975 }
976
977 /* Inner PTE, continue walking */
978 if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
979 return TRANSLATE_FAIL;
980 }
981 base = ppn << PGSHIFT;
982 }
983
984 /* No leaf pte at any translation level. */
985 return TRANSLATE_FAIL;
986
987 leaf:
988 if (ppn & ((1ULL << ptshift) - 1)) {
989 /* Misaligned PPN */
990 return TRANSLATE_FAIL;
991 }
992 if (!pbmte && (pte & PTE_PBMT)) {
993 /* Reserved without Svpbmt. */
994 return TRANSLATE_FAIL;
995 }
996
997 /* Check for reserved combinations of RWX flags. */
998 switch (pte & (PTE_R | PTE_W | PTE_X)) {
999 case PTE_W:
1000 case PTE_W | PTE_X:
1001 return TRANSLATE_FAIL;
1002 }
1003
1004 int prot = 0;
1005 if (pte & PTE_R) {
1006 prot |= PAGE_READ;
1007 }
1008 if (pte & PTE_W) {
1009 prot |= PAGE_WRITE;
1010 }
1011 if (pte & PTE_X) {
1012 bool mxr;
1013
1014 if (first_stage == true) {
1015 mxr = get_field(env->mstatus, MSTATUS_MXR);
1016 } else {
1017 mxr = get_field(env->vsstatus, MSTATUS_MXR);
1018 }
1019 if (mxr) {
1020 prot |= PAGE_READ;
1021 }
1022 prot |= PAGE_EXEC;
1023 }
1024
1025 if (pte & PTE_U) {
1026 if (mode != PRV_U) {
1027 if (!mmuidx_sum(mmu_idx)) {
1028 return TRANSLATE_FAIL;
1029 }
1030 /* SUM allows only read+write, not execute. */
1031 prot &= PAGE_READ | PAGE_WRITE;
1032 }
1033 } else if (mode != PRV_S) {
1034 /* Supervisor PTE flags when not S mode */
1035 return TRANSLATE_FAIL;
1036 }
1037
1038 if (!((prot >> access_type) & 1)) {
1039 /* Access check failed */
1040 return TRANSLATE_FAIL;
1041 }
1042
1043 /* If necessary, set accessed and dirty bits. */
1044 target_ulong updated_pte = pte | PTE_A |
1045 (access_type == MMU_DATA_STORE ? PTE_D : 0);
1046
1047 /* Page table updates need to be atomic with MTTCG enabled */
1048 if (updated_pte != pte && !is_debug) {
1049 if (!adue) {
1050 return TRANSLATE_FAIL;
1051 }
1052
1053 /*
1054 * - if accessed or dirty bits need updating, and the PTE is
1055 * in RAM, then we do so atomically with a compare and swap.
1056 * - if the PTE is in IO space or ROM, then it can't be updated
1057 * and we return TRANSLATE_FAIL.
1058 * - if the PTE changed by the time we went to update it, then
1059 * it is no longer valid and we must re-walk the page table.
1060 */
1061 MemoryRegion *mr;
1062 hwaddr l = sizeof(target_ulong), addr1;
1063 mr = address_space_translate(cs->as, pte_addr, &addr1, &l,
1064 false, MEMTXATTRS_UNSPECIFIED);
1065 if (memory_region_is_ram(mr)) {
1066 target_ulong *pte_pa = qemu_map_ram_ptr(mr->ram_block, addr1);
1067 #if TCG_OVERSIZED_GUEST
1068 /*
1069 * MTTCG is not enabled on oversized TCG guests so
1070 * page table updates do not need to be atomic
1071 */
1072 *pte_pa = pte = updated_pte;
1073 #else
1074 target_ulong old_pte = qatomic_cmpxchg(pte_pa, pte, updated_pte);
1075 if (old_pte != pte) {
1076 goto restart;
1077 }
1078 pte = updated_pte;
1079 #endif
1080 } else {
1081 /*
1082 * Misconfigured PTE in ROM (AD bits are not preset) or
1083 * PTE is in IO space and can't be updated atomically.
1084 */
1085 return TRANSLATE_FAIL;
1086 }
1087 }
1088
1089 /* For superpage mappings, make a fake leaf PTE for the TLB's benefit. */
1090 target_ulong vpn = addr >> PGSHIFT;
1091
1092 if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
1093 napot_bits = ctzl(ppn) + 1;
1094 if ((i != (levels - 1)) || (napot_bits != 4)) {
1095 return TRANSLATE_FAIL;
1096 }
1097 }
1098
1099 napot_mask = (1 << napot_bits) - 1;
1100 *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1101 (vpn & (((target_ulong)1 << ptshift) - 1))
1102 ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1103
1104 /*
1105 * Remove write permission unless this is a store, or the page is
1106 * already dirty, so that we TLB miss on later writes to update
1107 * the dirty bit.
1108 */
1109 if (access_type != MMU_DATA_STORE && !(pte & PTE_D)) {
1110 prot &= ~PAGE_WRITE;
1111 }
1112 *ret_prot = prot;
1113
1114 return TRANSLATE_SUCCESS;
1115 }
1116
1117 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1118 MMUAccessType access_type, bool pmp_violation,
1119 bool first_stage, bool two_stage,
1120 bool two_stage_indirect)
1121 {
1122 CPUState *cs = env_cpu(env);
1123 int page_fault_exceptions, vm;
1124 uint64_t stap_mode;
1125
1126 if (riscv_cpu_mxl(env) == MXL_RV32) {
1127 stap_mode = SATP32_MODE;
1128 } else {
1129 stap_mode = SATP64_MODE;
1130 }
1131
1132 if (first_stage) {
1133 vm = get_field(env->satp, stap_mode);
1134 } else {
1135 vm = get_field(env->hgatp, stap_mode);
1136 }
1137
1138 page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1139
1140 switch (access_type) {
1141 case MMU_INST_FETCH:
1142 if (env->virt_enabled && !first_stage) {
1143 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1144 } else {
1145 cs->exception_index = page_fault_exceptions ?
1146 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1147 }
1148 break;
1149 case MMU_DATA_LOAD:
1150 if (two_stage && !first_stage) {
1151 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1152 } else {
1153 cs->exception_index = page_fault_exceptions ?
1154 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1155 }
1156 break;
1157 case MMU_DATA_STORE:
1158 if (two_stage && !first_stage) {
1159 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1160 } else {
1161 cs->exception_index = page_fault_exceptions ?
1162 RISCV_EXCP_STORE_PAGE_FAULT :
1163 RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1164 }
1165 break;
1166 default:
1167 g_assert_not_reached();
1168 }
1169 env->badaddr = address;
1170 env->two_stage_lookup = two_stage;
1171 env->two_stage_indirect_lookup = two_stage_indirect;
1172 }
1173
1174 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1175 {
1176 RISCVCPU *cpu = RISCV_CPU(cs);
1177 CPURISCVState *env = &cpu->env;
1178 hwaddr phys_addr;
1179 int prot;
1180 int mmu_idx = cpu_mmu_index(&cpu->env, false);
1181
1182 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1183 true, env->virt_enabled, true)) {
1184 return -1;
1185 }
1186
1187 if (env->virt_enabled) {
1188 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1189 0, mmu_idx, false, true, true)) {
1190 return -1;
1191 }
1192 }
1193
1194 return phys_addr & TARGET_PAGE_MASK;
1195 }
1196
1197 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1198 vaddr addr, unsigned size,
1199 MMUAccessType access_type,
1200 int mmu_idx, MemTxAttrs attrs,
1201 MemTxResult response, uintptr_t retaddr)
1202 {
1203 RISCVCPU *cpu = RISCV_CPU(cs);
1204 CPURISCVState *env = &cpu->env;
1205
1206 if (access_type == MMU_DATA_STORE) {
1207 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1208 } else if (access_type == MMU_DATA_LOAD) {
1209 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1210 } else {
1211 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1212 }
1213
1214 env->badaddr = addr;
1215 env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1216 env->two_stage_indirect_lookup = false;
1217 cpu_loop_exit_restore(cs, retaddr);
1218 }
1219
1220 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1221 MMUAccessType access_type, int mmu_idx,
1222 uintptr_t retaddr)
1223 {
1224 RISCVCPU *cpu = RISCV_CPU(cs);
1225 CPURISCVState *env = &cpu->env;
1226 switch (access_type) {
1227 case MMU_INST_FETCH:
1228 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1229 break;
1230 case MMU_DATA_LOAD:
1231 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1232 break;
1233 case MMU_DATA_STORE:
1234 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1235 break;
1236 default:
1237 g_assert_not_reached();
1238 }
1239 env->badaddr = addr;
1240 env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1241 env->two_stage_indirect_lookup = false;
1242 cpu_loop_exit_restore(cs, retaddr);
1243 }
1244
1245
1246 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1247 {
1248 enum riscv_pmu_event_idx pmu_event_type;
1249
1250 switch (access_type) {
1251 case MMU_INST_FETCH:
1252 pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1253 break;
1254 case MMU_DATA_LOAD:
1255 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1256 break;
1257 case MMU_DATA_STORE:
1258 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1259 break;
1260 default:
1261 return;
1262 }
1263
1264 riscv_pmu_incr_ctr(cpu, pmu_event_type);
1265 }
1266
1267 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1268 MMUAccessType access_type, int mmu_idx,
1269 bool probe, uintptr_t retaddr)
1270 {
1271 RISCVCPU *cpu = RISCV_CPU(cs);
1272 CPURISCVState *env = &cpu->env;
1273 vaddr im_address;
1274 hwaddr pa = 0;
1275 int prot, prot2, prot_pmp;
1276 bool pmp_violation = false;
1277 bool first_stage_error = true;
1278 bool two_stage_lookup = mmuidx_2stage(mmu_idx);
1279 bool two_stage_indirect_error = false;
1280 int ret = TRANSLATE_FAIL;
1281 int mode = mmu_idx;
1282 /* default TLB page size */
1283 target_ulong tlb_size = TARGET_PAGE_SIZE;
1284
1285 env->guest_phys_fault_addr = 0;
1286
1287 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1288 __func__, address, access_type, mmu_idx);
1289
1290 pmu_tlb_fill_incr_ctr(cpu, access_type);
1291 if (two_stage_lookup) {
1292 /* Two stage lookup */
1293 ret = get_physical_address(env, &pa, &prot, address,
1294 &env->guest_phys_fault_addr, access_type,
1295 mmu_idx, true, true, false);
1296
1297 /*
1298 * A G-stage exception may be triggered during two state lookup.
1299 * And the env->guest_phys_fault_addr has already been set in
1300 * get_physical_address().
1301 */
1302 if (ret == TRANSLATE_G_STAGE_FAIL) {
1303 first_stage_error = false;
1304 two_stage_indirect_error = true;
1305 }
1306
1307 qemu_log_mask(CPU_LOG_MMU,
1308 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1309 HWADDR_FMT_plx " prot %d\n",
1310 __func__, address, ret, pa, prot);
1311
1312 if (ret == TRANSLATE_SUCCESS) {
1313 /* Second stage lookup */
1314 im_address = pa;
1315
1316 ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1317 access_type, MMUIdx_U, false, true,
1318 false);
1319
1320 qemu_log_mask(CPU_LOG_MMU,
1321 "%s 2nd-stage address=%" VADDR_PRIx
1322 " ret %d physical "
1323 HWADDR_FMT_plx " prot %d\n",
1324 __func__, im_address, ret, pa, prot2);
1325
1326 prot &= prot2;
1327
1328 if (ret == TRANSLATE_SUCCESS) {
1329 ret = get_physical_address_pmp(env, &prot_pmp, pa,
1330 size, access_type, mode);
1331 tlb_size = pmp_get_tlb_size(env, pa);
1332
1333 qemu_log_mask(CPU_LOG_MMU,
1334 "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1335 " %d tlb_size " TARGET_FMT_lu "\n",
1336 __func__, pa, ret, prot_pmp, tlb_size);
1337
1338 prot &= prot_pmp;
1339 }
1340
1341 if (ret != TRANSLATE_SUCCESS) {
1342 /*
1343 * Guest physical address translation failed, this is a HS
1344 * level exception
1345 */
1346 first_stage_error = false;
1347 env->guest_phys_fault_addr = (im_address |
1348 (address &
1349 (TARGET_PAGE_SIZE - 1))) >> 2;
1350 }
1351 }
1352 } else {
1353 /* Single stage lookup */
1354 ret = get_physical_address(env, &pa, &prot, address, NULL,
1355 access_type, mmu_idx, true, false, false);
1356
1357 qemu_log_mask(CPU_LOG_MMU,
1358 "%s address=%" VADDR_PRIx " ret %d physical "
1359 HWADDR_FMT_plx " prot %d\n",
1360 __func__, address, ret, pa, prot);
1361
1362 if (ret == TRANSLATE_SUCCESS) {
1363 ret = get_physical_address_pmp(env, &prot_pmp, pa,
1364 size, access_type, mode);
1365 tlb_size = pmp_get_tlb_size(env, pa);
1366
1367 qemu_log_mask(CPU_LOG_MMU,
1368 "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1369 " %d tlb_size " TARGET_FMT_lu "\n",
1370 __func__, pa, ret, prot_pmp, tlb_size);
1371
1372 prot &= prot_pmp;
1373 }
1374 }
1375
1376 if (ret == TRANSLATE_PMP_FAIL) {
1377 pmp_violation = true;
1378 }
1379
1380 if (ret == TRANSLATE_SUCCESS) {
1381 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1382 prot, mmu_idx, tlb_size);
1383 return true;
1384 } else if (probe) {
1385 return false;
1386 } else {
1387 raise_mmu_exception(env, address, access_type, pmp_violation,
1388 first_stage_error, two_stage_lookup,
1389 two_stage_indirect_error);
1390 cpu_loop_exit_restore(cs, retaddr);
1391 }
1392
1393 return true;
1394 }
1395
1396 static target_ulong riscv_transformed_insn(CPURISCVState *env,
1397 target_ulong insn,
1398 target_ulong taddr)
1399 {
1400 target_ulong xinsn = 0;
1401 target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1402
1403 /*
1404 * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1405 * be uncompressed. The Quadrant 1 of RVC instruction space need
1406 * not be transformed because these instructions won't generate
1407 * any load/store trap.
1408 */
1409
1410 if ((insn & 0x3) != 0x3) {
1411 /* Transform 16bit instruction into 32bit instruction */
1412 switch (GET_C_OP(insn)) {
1413 case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1414 switch (GET_C_FUNC(insn)) {
1415 case OPC_RISC_C_FUNC_FLD_LQ:
1416 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1417 xinsn = OPC_RISC_FLD;
1418 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1419 access_rs1 = GET_C_RS1S(insn);
1420 access_imm = GET_C_LD_IMM(insn);
1421 access_size = 8;
1422 }
1423 break;
1424 case OPC_RISC_C_FUNC_LW: /* C.LW */
1425 xinsn = OPC_RISC_LW;
1426 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1427 access_rs1 = GET_C_RS1S(insn);
1428 access_imm = GET_C_LW_IMM(insn);
1429 access_size = 4;
1430 break;
1431 case OPC_RISC_C_FUNC_FLW_LD:
1432 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1433 xinsn = OPC_RISC_FLW;
1434 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1435 access_rs1 = GET_C_RS1S(insn);
1436 access_imm = GET_C_LW_IMM(insn);
1437 access_size = 4;
1438 } else { /* C.LD (RV64/RV128) */
1439 xinsn = OPC_RISC_LD;
1440 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1441 access_rs1 = GET_C_RS1S(insn);
1442 access_imm = GET_C_LD_IMM(insn);
1443 access_size = 8;
1444 }
1445 break;
1446 case OPC_RISC_C_FUNC_FSD_SQ:
1447 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1448 xinsn = OPC_RISC_FSD;
1449 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1450 access_rs1 = GET_C_RS1S(insn);
1451 access_imm = GET_C_SD_IMM(insn);
1452 access_size = 8;
1453 }
1454 break;
1455 case OPC_RISC_C_FUNC_SW: /* C.SW */
1456 xinsn = OPC_RISC_SW;
1457 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1458 access_rs1 = GET_C_RS1S(insn);
1459 access_imm = GET_C_SW_IMM(insn);
1460 access_size = 4;
1461 break;
1462 case OPC_RISC_C_FUNC_FSW_SD:
1463 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1464 xinsn = OPC_RISC_FSW;
1465 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1466 access_rs1 = GET_C_RS1S(insn);
1467 access_imm = GET_C_SW_IMM(insn);
1468 access_size = 4;
1469 } else { /* C.SD (RV64/RV128) */
1470 xinsn = OPC_RISC_SD;
1471 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1472 access_rs1 = GET_C_RS1S(insn);
1473 access_imm = GET_C_SD_IMM(insn);
1474 access_size = 8;
1475 }
1476 break;
1477 default:
1478 break;
1479 }
1480 break;
1481 case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1482 switch (GET_C_FUNC(insn)) {
1483 case OPC_RISC_C_FUNC_FLDSP_LQSP:
1484 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1485 xinsn = OPC_RISC_FLD;
1486 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1487 access_rs1 = 2;
1488 access_imm = GET_C_LDSP_IMM(insn);
1489 access_size = 8;
1490 }
1491 break;
1492 case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1493 xinsn = OPC_RISC_LW;
1494 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1495 access_rs1 = 2;
1496 access_imm = GET_C_LWSP_IMM(insn);
1497 access_size = 4;
1498 break;
1499 case OPC_RISC_C_FUNC_FLWSP_LDSP:
1500 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1501 xinsn = OPC_RISC_FLW;
1502 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1503 access_rs1 = 2;
1504 access_imm = GET_C_LWSP_IMM(insn);
1505 access_size = 4;
1506 } else { /* C.LDSP (RV64/RV128) */
1507 xinsn = OPC_RISC_LD;
1508 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1509 access_rs1 = 2;
1510 access_imm = GET_C_LDSP_IMM(insn);
1511 access_size = 8;
1512 }
1513 break;
1514 case OPC_RISC_C_FUNC_FSDSP_SQSP:
1515 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1516 xinsn = OPC_RISC_FSD;
1517 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1518 access_rs1 = 2;
1519 access_imm = GET_C_SDSP_IMM(insn);
1520 access_size = 8;
1521 }
1522 break;
1523 case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1524 xinsn = OPC_RISC_SW;
1525 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1526 access_rs1 = 2;
1527 access_imm = GET_C_SWSP_IMM(insn);
1528 access_size = 4;
1529 break;
1530 case 7:
1531 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1532 xinsn = OPC_RISC_FSW;
1533 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1534 access_rs1 = 2;
1535 access_imm = GET_C_SWSP_IMM(insn);
1536 access_size = 4;
1537 } else { /* C.SDSP (RV64/RV128) */
1538 xinsn = OPC_RISC_SD;
1539 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1540 access_rs1 = 2;
1541 access_imm = GET_C_SDSP_IMM(insn);
1542 access_size = 8;
1543 }
1544 break;
1545 default:
1546 break;
1547 }
1548 break;
1549 default:
1550 break;
1551 }
1552
1553 /*
1554 * Clear Bit1 of transformed instruction to indicate that
1555 * original insruction was a 16bit instruction
1556 */
1557 xinsn &= ~((target_ulong)0x2);
1558 } else {
1559 /* Transform 32bit (or wider) instructions */
1560 switch (MASK_OP_MAJOR(insn)) {
1561 case OPC_RISC_ATOMIC:
1562 xinsn = insn;
1563 access_rs1 = GET_RS1(insn);
1564 access_size = 1 << GET_FUNCT3(insn);
1565 break;
1566 case OPC_RISC_LOAD:
1567 case OPC_RISC_FP_LOAD:
1568 xinsn = SET_I_IMM(insn, 0);
1569 access_rs1 = GET_RS1(insn);
1570 access_imm = GET_IMM(insn);
1571 access_size = 1 << GET_FUNCT3(insn);
1572 break;
1573 case OPC_RISC_STORE:
1574 case OPC_RISC_FP_STORE:
1575 xinsn = SET_S_IMM(insn, 0);
1576 access_rs1 = GET_RS1(insn);
1577 access_imm = GET_STORE_IMM(insn);
1578 access_size = 1 << GET_FUNCT3(insn);
1579 break;
1580 case OPC_RISC_SYSTEM:
1581 if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1582 xinsn = insn;
1583 access_rs1 = GET_RS1(insn);
1584 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1585 access_size = 1 << access_size;
1586 }
1587 break;
1588 default:
1589 break;
1590 }
1591 }
1592
1593 if (access_size) {
1594 xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1595 (access_size - 1));
1596 }
1597
1598 return xinsn;
1599 }
1600 #endif /* !CONFIG_USER_ONLY */
1601
1602 /*
1603 * Handle Traps
1604 *
1605 * Adapted from Spike's processor_t::take_trap.
1606 *
1607 */
1608 void riscv_cpu_do_interrupt(CPUState *cs)
1609 {
1610 #if !defined(CONFIG_USER_ONLY)
1611
1612 RISCVCPU *cpu = RISCV_CPU(cs);
1613 CPURISCVState *env = &cpu->env;
1614 bool write_gva = false;
1615 uint64_t s;
1616
1617 /*
1618 * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1619 * so we mask off the MSB and separate into trap type and cause.
1620 */
1621 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1622 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1623 uint64_t deleg = async ? env->mideleg : env->medeleg;
1624 bool s_injected = env->mvip & (1 << cause) & env->mvien &&
1625 !(env->mip & (1 << cause));
1626 target_ulong tval = 0;
1627 target_ulong tinst = 0;
1628 target_ulong htval = 0;
1629 target_ulong mtval2 = 0;
1630
1631 if (!async) {
1632 /* set tval to badaddr for traps with address information */
1633 switch (cause) {
1634 case RISCV_EXCP_SEMIHOST:
1635 do_common_semihosting(cs);
1636 env->pc += 4;
1637 return;
1638 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1639 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1640 case RISCV_EXCP_LOAD_ADDR_MIS:
1641 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1642 case RISCV_EXCP_LOAD_ACCESS_FAULT:
1643 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1644 case RISCV_EXCP_LOAD_PAGE_FAULT:
1645 case RISCV_EXCP_STORE_PAGE_FAULT:
1646 write_gva = env->two_stage_lookup;
1647 tval = env->badaddr;
1648 if (env->two_stage_indirect_lookup) {
1649 /*
1650 * special pseudoinstruction for G-stage fault taken while
1651 * doing VS-stage page table walk.
1652 */
1653 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1654 } else {
1655 /*
1656 * The "Addr. Offset" field in transformed instruction is
1657 * non-zero only for misaligned access.
1658 */
1659 tinst = riscv_transformed_insn(env, env->bins, tval);
1660 }
1661 break;
1662 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1663 case RISCV_EXCP_INST_ADDR_MIS:
1664 case RISCV_EXCP_INST_ACCESS_FAULT:
1665 case RISCV_EXCP_INST_PAGE_FAULT:
1666 write_gva = env->two_stage_lookup;
1667 tval = env->badaddr;
1668 if (env->two_stage_indirect_lookup) {
1669 /*
1670 * special pseudoinstruction for G-stage fault taken while
1671 * doing VS-stage page table walk.
1672 */
1673 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1674 }
1675 break;
1676 case RISCV_EXCP_ILLEGAL_INST:
1677 case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
1678 tval = env->bins;
1679 break;
1680 case RISCV_EXCP_BREAKPOINT:
1681 if (cs->watchpoint_hit) {
1682 tval = cs->watchpoint_hit->hitaddr;
1683 cs->watchpoint_hit = NULL;
1684 }
1685 break;
1686 default:
1687 break;
1688 }
1689 /* ecall is dispatched as one cause so translate based on mode */
1690 if (cause == RISCV_EXCP_U_ECALL) {
1691 assert(env->priv <= 3);
1692
1693 if (env->priv == PRV_M) {
1694 cause = RISCV_EXCP_M_ECALL;
1695 } else if (env->priv == PRV_S && env->virt_enabled) {
1696 cause = RISCV_EXCP_VS_ECALL;
1697 } else if (env->priv == PRV_S && !env->virt_enabled) {
1698 cause = RISCV_EXCP_S_ECALL;
1699 } else if (env->priv == PRV_U) {
1700 cause = RISCV_EXCP_U_ECALL;
1701 }
1702 }
1703 }
1704
1705 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1706 riscv_cpu_get_trap_name(cause, async));
1707
1708 qemu_log_mask(CPU_LOG_INT,
1709 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1710 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1711 __func__, env->mhartid, async, cause, env->pc, tval,
1712 riscv_cpu_get_trap_name(cause, async));
1713
1714 if (env->priv <= PRV_S && cause < 64 &&
1715 (((deleg >> cause) & 1) || s_injected)) {
1716 /* handle the trap in S-mode */
1717 if (riscv_has_ext(env, RVH)) {
1718 uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1719
1720 if (env->virt_enabled && ((hdeleg >> cause) & 1)) {
1721 /* Trap to VS mode */
1722 /*
1723 * See if we need to adjust cause. Yes if its VS mode interrupt
1724 * no if hypervisor has delegated one of hs mode's interrupt
1725 */
1726 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1727 cause == IRQ_VS_EXT) {
1728 cause = cause - 1;
1729 }
1730 write_gva = false;
1731 } else if (env->virt_enabled) {
1732 /* Trap into HS mode, from virt */
1733 riscv_cpu_swap_hypervisor_regs(env);
1734 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1735 env->priv);
1736 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true);
1737
1738 htval = env->guest_phys_fault_addr;
1739
1740 riscv_cpu_set_virt_enabled(env, 0);
1741 } else {
1742 /* Trap into HS mode */
1743 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1744 htval = env->guest_phys_fault_addr;
1745 }
1746 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1747 }
1748
1749 s = env->mstatus;
1750 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1751 s = set_field(s, MSTATUS_SPP, env->priv);
1752 s = set_field(s, MSTATUS_SIE, 0);
1753 env->mstatus = s;
1754 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1755 env->sepc = env->pc;
1756 env->stval = tval;
1757 env->htval = htval;
1758 env->htinst = tinst;
1759 env->pc = (env->stvec >> 2 << 2) +
1760 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1761 riscv_cpu_set_mode(env, PRV_S);
1762 } else {
1763 /* handle the trap in M-mode */
1764 if (riscv_has_ext(env, RVH)) {
1765 if (env->virt_enabled) {
1766 riscv_cpu_swap_hypervisor_regs(env);
1767 }
1768 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1769 env->virt_enabled);
1770 if (env->virt_enabled && tval) {
1771 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1772 }
1773
1774 mtval2 = env->guest_phys_fault_addr;
1775
1776 /* Trapping to M mode, virt is disabled */
1777 riscv_cpu_set_virt_enabled(env, 0);
1778 }
1779
1780 s = env->mstatus;
1781 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1782 s = set_field(s, MSTATUS_MPP, env->priv);
1783 s = set_field(s, MSTATUS_MIE, 0);
1784 env->mstatus = s;
1785 env->mcause = cause | ~(((target_ulong)-1) >> async);
1786 env->mepc = env->pc;
1787 env->mtval = tval;
1788 env->mtval2 = mtval2;
1789 env->mtinst = tinst;
1790 env->pc = (env->mtvec >> 2 << 2) +
1791 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1792 riscv_cpu_set_mode(env, PRV_M);
1793 }
1794
1795 /*
1796 * NOTE: it is not necessary to yield load reservations here. It is only
1797 * necessary for an SC from "another hart" to cause a load reservation
1798 * to be yielded. Refer to the memory consistency model section of the
1799 * RISC-V ISA Specification.
1800 */
1801
1802 env->two_stage_lookup = false;
1803 env->two_stage_indirect_lookup = false;
1804 #endif
1805 cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
1806 }