]> git.proxmox.com Git - mirror_qemu.git/blob - target/riscv/cpu_helper.c
target/riscv: Add hypvervisor trap support
[mirror_qemu.git] / target / riscv / cpu_helper.c
1 /*
2 * RISC-V CPU helpers for qemu.
3 *
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "tcg/tcg-op.h"
26 #include "trace.h"
27
28 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
29 {
30 #ifdef CONFIG_USER_ONLY
31 return 0;
32 #else
33 return env->priv;
34 #endif
35 }
36
37 #ifndef CONFIG_USER_ONLY
38 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
39 {
40 target_ulong irqs;
41
42 target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
43 target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
44 target_ulong hs_mstatus_sie = get_field(env->mstatus_hs, MSTATUS_SIE);
45
46 target_ulong pending = env->mip & env->mie &
47 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
48 target_ulong vspending = (env->mip & env->mie &
49 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) >> 1;
50
51 target_ulong mie = env->priv < PRV_M ||
52 (env->priv == PRV_M && mstatus_mie);
53 target_ulong sie = env->priv < PRV_S ||
54 (env->priv == PRV_S && mstatus_sie);
55 target_ulong hs_sie = env->priv < PRV_S ||
56 (env->priv == PRV_S && hs_mstatus_sie);
57
58 if (riscv_cpu_virt_enabled(env)) {
59 target_ulong pending_hs_irq = pending & -hs_sie;
60
61 if (pending_hs_irq) {
62 riscv_cpu_set_force_hs_excep(env, FORCE_HS_EXCEP);
63 return ctz64(pending_hs_irq);
64 }
65
66 pending = vspending;
67 }
68
69 irqs = (pending & ~env->mideleg & -mie) | (pending & env->mideleg & -sie);
70
71 if (irqs) {
72 return ctz64(irqs); /* since non-zero */
73 } else {
74 return EXCP_NONE; /* indicates no pending interrupt */
75 }
76 }
77 #endif
78
79 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
80 {
81 #if !defined(CONFIG_USER_ONLY)
82 if (interrupt_request & CPU_INTERRUPT_HARD) {
83 RISCVCPU *cpu = RISCV_CPU(cs);
84 CPURISCVState *env = &cpu->env;
85 int interruptno = riscv_cpu_local_irq_pending(env);
86 if (interruptno >= 0) {
87 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
88 riscv_cpu_do_interrupt(cs);
89 return true;
90 }
91 }
92 #endif
93 return false;
94 }
95
96 #if !defined(CONFIG_USER_ONLY)
97
98 /* Return true is floating point support is currently enabled */
99 bool riscv_cpu_fp_enabled(CPURISCVState *env)
100 {
101 if (env->mstatus & MSTATUS_FS) {
102 return true;
103 }
104
105 return false;
106 }
107
108 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
109 {
110 target_ulong mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS |
111 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE;
112 bool current_virt = riscv_cpu_virt_enabled(env);
113
114 g_assert(riscv_has_ext(env, RVH));
115
116 #if defined(TARGET_RISCV64)
117 mstatus_mask |= MSTATUS64_UXL;
118 #endif
119
120 if (current_virt) {
121 /* Current V=1 and we are about to change to V=0 */
122 env->vsstatus = env->mstatus & mstatus_mask;
123 env->mstatus &= ~mstatus_mask;
124 env->mstatus |= env->mstatus_hs;
125
126 env->vstvec = env->stvec;
127 env->stvec = env->stvec_hs;
128
129 env->vsscratch = env->sscratch;
130 env->sscratch = env->sscratch_hs;
131
132 env->vsepc = env->sepc;
133 env->sepc = env->sepc_hs;
134
135 env->vscause = env->scause;
136 env->scause = env->scause_hs;
137
138 env->vstval = env->sbadaddr;
139 env->sbadaddr = env->stval_hs;
140
141 env->vsatp = env->satp;
142 env->satp = env->satp_hs;
143 } else {
144 /* Current V=0 and we are about to change to V=1 */
145 env->mstatus_hs = env->mstatus & mstatus_mask;
146 env->mstatus &= ~mstatus_mask;
147 env->mstatus |= env->vsstatus;
148
149 env->stvec_hs = env->stvec;
150 env->stvec = env->vstvec;
151
152 env->sscratch_hs = env->sscratch;
153 env->sscratch = env->vsscratch;
154
155 env->sepc_hs = env->sepc;
156 env->sepc = env->vsepc;
157
158 env->scause_hs = env->scause;
159 env->scause = env->vscause;
160
161 env->stval_hs = env->sbadaddr;
162 env->sbadaddr = env->vstval;
163
164 env->satp_hs = env->satp;
165 env->satp = env->vsatp;
166 }
167 }
168
169 bool riscv_cpu_virt_enabled(CPURISCVState *env)
170 {
171 if (!riscv_has_ext(env, RVH)) {
172 return false;
173 }
174
175 return get_field(env->virt, VIRT_ONOFF);
176 }
177
178 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
179 {
180 if (!riscv_has_ext(env, RVH)) {
181 return;
182 }
183
184 /* Flush the TLB on all virt mode changes. */
185 if (get_field(env->virt, VIRT_ONOFF) != enable) {
186 tlb_flush(env_cpu(env));
187 }
188
189 env->virt = set_field(env->virt, VIRT_ONOFF, enable);
190 }
191
192 bool riscv_cpu_force_hs_excep_enabled(CPURISCVState *env)
193 {
194 if (!riscv_has_ext(env, RVH)) {
195 return false;
196 }
197
198 return get_field(env->virt, FORCE_HS_EXCEP);
199 }
200
201 void riscv_cpu_set_force_hs_excep(CPURISCVState *env, bool enable)
202 {
203 if (!riscv_has_ext(env, RVH)) {
204 return;
205 }
206
207 env->virt = set_field(env->virt, FORCE_HS_EXCEP, enable);
208 }
209
210 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
211 {
212 CPURISCVState *env = &cpu->env;
213 if (env->miclaim & interrupts) {
214 return -1;
215 } else {
216 env->miclaim |= interrupts;
217 return 0;
218 }
219 }
220
221 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
222 {
223 CPURISCVState *env = &cpu->env;
224 CPUState *cs = CPU(cpu);
225 uint32_t old = env->mip;
226 bool locked = false;
227
228 if (!qemu_mutex_iothread_locked()) {
229 locked = true;
230 qemu_mutex_lock_iothread();
231 }
232
233 env->mip = (env->mip & ~mask) | (value & mask);
234
235 if (env->mip) {
236 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
237 } else {
238 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
239 }
240
241 if (locked) {
242 qemu_mutex_unlock_iothread();
243 }
244
245 return old;
246 }
247
248 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
249 {
250 if (newpriv > PRV_M) {
251 g_assert_not_reached();
252 }
253 if (newpriv == PRV_H) {
254 newpriv = PRV_U;
255 }
256 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
257 env->priv = newpriv;
258
259 /*
260 * Clear the load reservation - otherwise a reservation placed in one
261 * context/process can be used by another, resulting in an SC succeeding
262 * incorrectly. Version 2.2 of the ISA specification explicitly requires
263 * this behaviour, while later revisions say that the kernel "should" use
264 * an SC instruction to force the yielding of a load reservation on a
265 * preemptive context switch. As a result, do both.
266 */
267 env->load_res = -1;
268 }
269
270 /* get_physical_address - get the physical address for this virtual address
271 *
272 * Do a page table walk to obtain the physical address corresponding to a
273 * virtual address. Returns 0 if the translation was successful
274 *
275 * Adapted from Spike's mmu_t::translate and mmu_t::walk
276 *
277 */
278 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
279 int *prot, target_ulong addr,
280 int access_type, int mmu_idx)
281 {
282 /* NOTE: the env->pc value visible here will not be
283 * correct, but the value visible to the exception handler
284 * (riscv_cpu_do_interrupt) is correct */
285 MemTxResult res;
286 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
287 int mode = mmu_idx;
288
289 if (mode == PRV_M && access_type != MMU_INST_FETCH) {
290 if (get_field(env->mstatus, MSTATUS_MPRV)) {
291 mode = get_field(env->mstatus, MSTATUS_MPP);
292 }
293 }
294
295 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
296 *physical = addr;
297 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
298 return TRANSLATE_SUCCESS;
299 }
300
301 *prot = 0;
302
303 hwaddr base;
304 int levels, ptidxbits, ptesize, vm, sum;
305 int mxr = get_field(env->mstatus, MSTATUS_MXR);
306
307 if (env->priv_ver >= PRIV_VERSION_1_10_0) {
308 base = (hwaddr)get_field(env->satp, SATP_PPN) << PGSHIFT;
309 sum = get_field(env->mstatus, MSTATUS_SUM);
310 vm = get_field(env->satp, SATP_MODE);
311 switch (vm) {
312 case VM_1_10_SV32:
313 levels = 2; ptidxbits = 10; ptesize = 4; break;
314 case VM_1_10_SV39:
315 levels = 3; ptidxbits = 9; ptesize = 8; break;
316 case VM_1_10_SV48:
317 levels = 4; ptidxbits = 9; ptesize = 8; break;
318 case VM_1_10_SV57:
319 levels = 5; ptidxbits = 9; ptesize = 8; break;
320 case VM_1_10_MBARE:
321 *physical = addr;
322 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
323 return TRANSLATE_SUCCESS;
324 default:
325 g_assert_not_reached();
326 }
327 } else {
328 base = (hwaddr)(env->sptbr) << PGSHIFT;
329 sum = !get_field(env->mstatus, MSTATUS_PUM);
330 vm = get_field(env->mstatus, MSTATUS_VM);
331 switch (vm) {
332 case VM_1_09_SV32:
333 levels = 2; ptidxbits = 10; ptesize = 4; break;
334 case VM_1_09_SV39:
335 levels = 3; ptidxbits = 9; ptesize = 8; break;
336 case VM_1_09_SV48:
337 levels = 4; ptidxbits = 9; ptesize = 8; break;
338 case VM_1_09_MBARE:
339 *physical = addr;
340 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
341 return TRANSLATE_SUCCESS;
342 default:
343 g_assert_not_reached();
344 }
345 }
346
347 CPUState *cs = env_cpu(env);
348 int va_bits = PGSHIFT + levels * ptidxbits;
349 target_ulong mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
350 target_ulong masked_msbs = (addr >> (va_bits - 1)) & mask;
351 if (masked_msbs != 0 && masked_msbs != mask) {
352 return TRANSLATE_FAIL;
353 }
354
355 int ptshift = (levels - 1) * ptidxbits;
356 int i;
357
358 #if !TCG_OVERSIZED_GUEST
359 restart:
360 #endif
361 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
362 target_ulong idx = (addr >> (PGSHIFT + ptshift)) &
363 ((1 << ptidxbits) - 1);
364
365 /* check that physical address of PTE is legal */
366 hwaddr pte_addr = base + idx * ptesize;
367
368 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
369 !pmp_hart_has_privs(env, pte_addr, sizeof(target_ulong),
370 1 << MMU_DATA_LOAD, PRV_S)) {
371 return TRANSLATE_PMP_FAIL;
372 }
373
374 #if defined(TARGET_RISCV32)
375 target_ulong pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
376 #elif defined(TARGET_RISCV64)
377 target_ulong pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
378 #endif
379 if (res != MEMTX_OK) {
380 return TRANSLATE_FAIL;
381 }
382
383 hwaddr ppn = pte >> PTE_PPN_SHIFT;
384
385 if (!(pte & PTE_V)) {
386 /* Invalid PTE */
387 return TRANSLATE_FAIL;
388 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
389 /* Inner PTE, continue walking */
390 base = ppn << PGSHIFT;
391 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
392 /* Reserved leaf PTE flags: PTE_W */
393 return TRANSLATE_FAIL;
394 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
395 /* Reserved leaf PTE flags: PTE_W + PTE_X */
396 return TRANSLATE_FAIL;
397 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
398 (!sum || access_type == MMU_INST_FETCH))) {
399 /* User PTE flags when not U mode and mstatus.SUM is not set,
400 or the access type is an instruction fetch */
401 return TRANSLATE_FAIL;
402 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
403 /* Supervisor PTE flags when not S mode */
404 return TRANSLATE_FAIL;
405 } else if (ppn & ((1ULL << ptshift) - 1)) {
406 /* Misaligned PPN */
407 return TRANSLATE_FAIL;
408 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
409 ((pte & PTE_X) && mxr))) {
410 /* Read access check failed */
411 return TRANSLATE_FAIL;
412 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
413 /* Write access check failed */
414 return TRANSLATE_FAIL;
415 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
416 /* Fetch access check failed */
417 return TRANSLATE_FAIL;
418 } else {
419 /* if necessary, set accessed and dirty bits. */
420 target_ulong updated_pte = pte | PTE_A |
421 (access_type == MMU_DATA_STORE ? PTE_D : 0);
422
423 /* Page table updates need to be atomic with MTTCG enabled */
424 if (updated_pte != pte) {
425 /*
426 * - if accessed or dirty bits need updating, and the PTE is
427 * in RAM, then we do so atomically with a compare and swap.
428 * - if the PTE is in IO space or ROM, then it can't be updated
429 * and we return TRANSLATE_FAIL.
430 * - if the PTE changed by the time we went to update it, then
431 * it is no longer valid and we must re-walk the page table.
432 */
433 MemoryRegion *mr;
434 hwaddr l = sizeof(target_ulong), addr1;
435 mr = address_space_translate(cs->as, pte_addr,
436 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
437 if (memory_region_is_ram(mr)) {
438 target_ulong *pte_pa =
439 qemu_map_ram_ptr(mr->ram_block, addr1);
440 #if TCG_OVERSIZED_GUEST
441 /* MTTCG is not enabled on oversized TCG guests so
442 * page table updates do not need to be atomic */
443 *pte_pa = pte = updated_pte;
444 #else
445 target_ulong old_pte =
446 atomic_cmpxchg(pte_pa, pte, updated_pte);
447 if (old_pte != pte) {
448 goto restart;
449 } else {
450 pte = updated_pte;
451 }
452 #endif
453 } else {
454 /* misconfigured PTE in ROM (AD bits are not preset) or
455 * PTE is in IO space and can't be updated atomically */
456 return TRANSLATE_FAIL;
457 }
458 }
459
460 /* for superpage mappings, make a fake leaf PTE for the TLB's
461 benefit. */
462 target_ulong vpn = addr >> PGSHIFT;
463 *physical = (ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT;
464
465 /* set permissions on the TLB entry */
466 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
467 *prot |= PAGE_READ;
468 }
469 if ((pte & PTE_X)) {
470 *prot |= PAGE_EXEC;
471 }
472 /* add write permission on stores or if the page is already dirty,
473 so that we TLB miss on later writes to update the dirty bit */
474 if ((pte & PTE_W) &&
475 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
476 *prot |= PAGE_WRITE;
477 }
478 return TRANSLATE_SUCCESS;
479 }
480 }
481 return TRANSLATE_FAIL;
482 }
483
484 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
485 MMUAccessType access_type, bool pmp_violation)
486 {
487 CPUState *cs = env_cpu(env);
488 int page_fault_exceptions =
489 (env->priv_ver >= PRIV_VERSION_1_10_0) &&
490 get_field(env->satp, SATP_MODE) != VM_1_10_MBARE &&
491 !pmp_violation;
492 switch (access_type) {
493 case MMU_INST_FETCH:
494 cs->exception_index = page_fault_exceptions ?
495 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
496 break;
497 case MMU_DATA_LOAD:
498 cs->exception_index = page_fault_exceptions ?
499 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
500 break;
501 case MMU_DATA_STORE:
502 cs->exception_index = page_fault_exceptions ?
503 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
504 break;
505 default:
506 g_assert_not_reached();
507 }
508 env->badaddr = address;
509 }
510
511 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
512 {
513 RISCVCPU *cpu = RISCV_CPU(cs);
514 hwaddr phys_addr;
515 int prot;
516 int mmu_idx = cpu_mmu_index(&cpu->env, false);
517
518 if (get_physical_address(&cpu->env, &phys_addr, &prot, addr, 0, mmu_idx)) {
519 return -1;
520 }
521 return phys_addr;
522 }
523
524 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
525 vaddr addr, unsigned size,
526 MMUAccessType access_type,
527 int mmu_idx, MemTxAttrs attrs,
528 MemTxResult response, uintptr_t retaddr)
529 {
530 RISCVCPU *cpu = RISCV_CPU(cs);
531 CPURISCVState *env = &cpu->env;
532
533 if (access_type == MMU_DATA_STORE) {
534 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
535 } else {
536 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
537 }
538
539 env->badaddr = addr;
540 riscv_raise_exception(&cpu->env, cs->exception_index, retaddr);
541 }
542
543 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
544 MMUAccessType access_type, int mmu_idx,
545 uintptr_t retaddr)
546 {
547 RISCVCPU *cpu = RISCV_CPU(cs);
548 CPURISCVState *env = &cpu->env;
549 switch (access_type) {
550 case MMU_INST_FETCH:
551 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
552 break;
553 case MMU_DATA_LOAD:
554 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
555 break;
556 case MMU_DATA_STORE:
557 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
558 break;
559 default:
560 g_assert_not_reached();
561 }
562 env->badaddr = addr;
563 riscv_raise_exception(env, cs->exception_index, retaddr);
564 }
565 #endif
566
567 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
568 MMUAccessType access_type, int mmu_idx,
569 bool probe, uintptr_t retaddr)
570 {
571 RISCVCPU *cpu = RISCV_CPU(cs);
572 CPURISCVState *env = &cpu->env;
573 #ifndef CONFIG_USER_ONLY
574 hwaddr pa = 0;
575 int prot;
576 bool pmp_violation = false;
577 int ret = TRANSLATE_FAIL;
578 int mode = mmu_idx;
579
580 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
581 __func__, address, access_type, mmu_idx);
582
583 ret = get_physical_address(env, &pa, &prot, address, access_type, mmu_idx);
584
585 if (mode == PRV_M && access_type != MMU_INST_FETCH) {
586 if (get_field(env->mstatus, MSTATUS_MPRV)) {
587 mode = get_field(env->mstatus, MSTATUS_MPP);
588 }
589 }
590
591 qemu_log_mask(CPU_LOG_MMU,
592 "%s address=%" VADDR_PRIx " ret %d physical " TARGET_FMT_plx
593 " prot %d\n", __func__, address, ret, pa, prot);
594
595 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
596 (ret == TRANSLATE_SUCCESS) &&
597 !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) {
598 ret = TRANSLATE_PMP_FAIL;
599 }
600 if (ret == TRANSLATE_PMP_FAIL) {
601 pmp_violation = true;
602 }
603 if (ret == TRANSLATE_SUCCESS) {
604 tlb_set_page(cs, address & TARGET_PAGE_MASK, pa & TARGET_PAGE_MASK,
605 prot, mmu_idx, TARGET_PAGE_SIZE);
606 return true;
607 } else if (probe) {
608 return false;
609 } else {
610 raise_mmu_exception(env, address, access_type, pmp_violation);
611 riscv_raise_exception(env, cs->exception_index, retaddr);
612 }
613 #else
614 switch (access_type) {
615 case MMU_INST_FETCH:
616 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
617 break;
618 case MMU_DATA_LOAD:
619 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
620 break;
621 case MMU_DATA_STORE:
622 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
623 break;
624 default:
625 g_assert_not_reached();
626 }
627 env->badaddr = address;
628 cpu_loop_exit_restore(cs, retaddr);
629 #endif
630 }
631
632 /*
633 * Handle Traps
634 *
635 * Adapted from Spike's processor_t::take_trap.
636 *
637 */
638 void riscv_cpu_do_interrupt(CPUState *cs)
639 {
640 #if !defined(CONFIG_USER_ONLY)
641
642 RISCVCPU *cpu = RISCV_CPU(cs);
643 CPURISCVState *env = &cpu->env;
644 bool force_hs_execp = riscv_cpu_force_hs_excep_enabled(env);
645 target_ulong s;
646
647 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
648 * so we mask off the MSB and separate into trap type and cause.
649 */
650 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
651 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
652 target_ulong deleg = async ? env->mideleg : env->medeleg;
653 target_ulong tval = 0;
654
655 if (!async) {
656 /* set tval to badaddr for traps with address information */
657 switch (cause) {
658 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
659 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
660 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
661 force_hs_execp = true;
662 /* fallthrough */
663 case RISCV_EXCP_INST_ADDR_MIS:
664 case RISCV_EXCP_INST_ACCESS_FAULT:
665 case RISCV_EXCP_LOAD_ADDR_MIS:
666 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
667 case RISCV_EXCP_LOAD_ACCESS_FAULT:
668 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
669 case RISCV_EXCP_INST_PAGE_FAULT:
670 case RISCV_EXCP_LOAD_PAGE_FAULT:
671 case RISCV_EXCP_STORE_PAGE_FAULT:
672 tval = env->badaddr;
673 break;
674 default:
675 break;
676 }
677 /* ecall is dispatched as one cause so translate based on mode */
678 if (cause == RISCV_EXCP_U_ECALL) {
679 assert(env->priv <= 3);
680
681 if (env->priv == PRV_M) {
682 cause = RISCV_EXCP_M_ECALL;
683 } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
684 cause = RISCV_EXCP_VS_ECALL;
685 } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
686 cause = RISCV_EXCP_S_ECALL;
687 } else if (env->priv == PRV_U) {
688 cause = RISCV_EXCP_U_ECALL;
689 }
690 }
691 }
692
693 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, cause < 23 ?
694 (async ? riscv_intr_names : riscv_excp_names)[cause] : "(unknown)");
695
696 if (env->priv <= PRV_S &&
697 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
698 /* handle the trap in S-mode */
699 if (riscv_has_ext(env, RVH)) {
700 target_ulong hdeleg = async ? env->hideleg : env->hedeleg;
701
702 if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1) &&
703 !force_hs_execp) {
704 /* Trap to VS mode */
705 } else if (riscv_cpu_virt_enabled(env)) {
706 /* Trap into HS mode, from virt */
707 riscv_cpu_swap_hypervisor_regs(env);
708 env->hstatus = set_field(env->hstatus, HSTATUS_SP2V,
709 get_field(env->hstatus, HSTATUS_SPV));
710 env->hstatus = set_field(env->hstatus, HSTATUS_SP2P,
711 get_field(env->mstatus, SSTATUS_SPP));
712 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
713 riscv_cpu_virt_enabled(env));
714
715 riscv_cpu_set_virt_enabled(env, 0);
716 riscv_cpu_set_force_hs_excep(env, 0);
717 } else {
718 /* Trap into HS mode */
719 env->hstatus = set_field(env->hstatus, HSTATUS_SP2V,
720 get_field(env->hstatus, HSTATUS_SPV));
721 env->hstatus = set_field(env->hstatus, HSTATUS_SP2P,
722 get_field(env->mstatus, SSTATUS_SPP));
723 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
724 riscv_cpu_virt_enabled(env));
725 }
726 }
727
728 s = env->mstatus;
729 s = set_field(s, MSTATUS_SPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
730 get_field(s, MSTATUS_SIE) : get_field(s, MSTATUS_UIE << env->priv));
731 s = set_field(s, MSTATUS_SPP, env->priv);
732 s = set_field(s, MSTATUS_SIE, 0);
733 env->mstatus = s;
734 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
735 env->sepc = env->pc;
736 env->sbadaddr = tval;
737 env->pc = (env->stvec >> 2 << 2) +
738 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
739 riscv_cpu_set_mode(env, PRV_S);
740 } else {
741 /* handle the trap in M-mode */
742 if (riscv_has_ext(env, RVH)) {
743 if (riscv_cpu_virt_enabled(env)) {
744 riscv_cpu_swap_hypervisor_regs(env);
745 }
746 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
747 riscv_cpu_virt_enabled(env));
748 env->mstatus = set_field(env->mstatus, MSTATUS_MTL,
749 riscv_cpu_force_hs_excep_enabled(env));
750
751 /* Trapping to M mode, virt is disabled */
752 riscv_cpu_set_virt_enabled(env, 0);
753 riscv_cpu_set_force_hs_excep(env, 0);
754 }
755
756 s = env->mstatus;
757 s = set_field(s, MSTATUS_MPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
758 get_field(s, MSTATUS_MIE) : get_field(s, MSTATUS_UIE << env->priv));
759 s = set_field(s, MSTATUS_MPP, env->priv);
760 s = set_field(s, MSTATUS_MIE, 0);
761 env->mstatus = s;
762 env->mcause = cause | ~(((target_ulong)-1) >> async);
763 env->mepc = env->pc;
764 env->mbadaddr = tval;
765 env->pc = (env->mtvec >> 2 << 2) +
766 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
767 riscv_cpu_set_mode(env, PRV_M);
768 }
769
770 /* NOTE: it is not necessary to yield load reservations here. It is only
771 * necessary for an SC from "another hart" to cause a load reservation
772 * to be yielded. Refer to the memory consistency model section of the
773 * RISC-V ISA Specification.
774 */
775
776 #endif
777 cs->exception_index = EXCP_NONE; /* mark handled to qemu */
778 }