]> git.proxmox.com Git - mirror_qemu.git/blob - target/riscv/cpu_helper.c
Merge tag 'pull-request-2023-06-06' of https://gitlab.com/thuth/qemu into staging
[mirror_qemu.git] / target / riscv / cpu_helper.c
1 /*
2 * RISC-V CPU helpers for qemu.
3 *
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "internals.h"
25 #include "pmu.h"
26 #include "exec/exec-all.h"
27 #include "instmap.h"
28 #include "tcg/tcg-op.h"
29 #include "trace.h"
30 #include "semihosting/common-semi.h"
31 #include "sysemu/cpu-timers.h"
32 #include "cpu_bits.h"
33 #include "debug.h"
34 #include "tcg/oversized-guest.h"
35
36 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
37 {
38 #ifdef CONFIG_USER_ONLY
39 return 0;
40 #else
41 bool virt = env->virt_enabled;
42 int mode = env->priv;
43
44 /* All priv -> mmu_idx mapping are here */
45 if (!ifetch) {
46 uint64_t status = env->mstatus;
47
48 if (mode == PRV_M && get_field(status, MSTATUS_MPRV)) {
49 mode = get_field(env->mstatus, MSTATUS_MPP);
50 virt = get_field(env->mstatus, MSTATUS_MPV);
51 if (virt) {
52 status = env->vsstatus;
53 }
54 }
55 if (mode == PRV_S && get_field(status, MSTATUS_SUM)) {
56 mode = MMUIdx_S_SUM;
57 }
58 }
59
60 return mode | (virt ? MMU_2STAGE_BIT : 0);
61 #endif
62 }
63
64 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
65 target_ulong *cs_base, uint32_t *pflags)
66 {
67 CPUState *cs = env_cpu(env);
68 RISCVCPU *cpu = RISCV_CPU(cs);
69 RISCVExtStatus fs, vs;
70 uint32_t flags = 0;
71
72 *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
73 *cs_base = 0;
74
75 if (cpu->cfg.ext_zve32f) {
76 /*
77 * If env->vl equals to VLMAX, we can use generic vector operation
78 * expanders (GVEC) to accerlate the vector operations.
79 * However, as LMUL could be a fractional number. The maximum
80 * vector size can be operated might be less than 8 bytes,
81 * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
82 * only when maxsz >= 8 bytes.
83 */
84 uint32_t vlmax = vext_get_vlmax(cpu, env->vtype);
85 uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
86 uint32_t maxsz = vlmax << sew;
87 bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
88 (maxsz >= 8);
89 flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
90 flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
91 flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
92 FIELD_EX64(env->vtype, VTYPE, VLMUL));
93 flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
94 flags = FIELD_DP32(flags, TB_FLAGS, VTA,
95 FIELD_EX64(env->vtype, VTYPE, VTA));
96 flags = FIELD_DP32(flags, TB_FLAGS, VMA,
97 FIELD_EX64(env->vtype, VTYPE, VMA));
98 flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0);
99 } else {
100 flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
101 }
102
103 #ifdef CONFIG_USER_ONLY
104 fs = EXT_STATUS_DIRTY;
105 vs = EXT_STATUS_DIRTY;
106 #else
107 flags = FIELD_DP32(flags, TB_FLAGS, PRIV, env->priv);
108
109 flags |= cpu_mmu_index(env, 0);
110 fs = get_field(env->mstatus, MSTATUS_FS);
111 vs = get_field(env->mstatus, MSTATUS_VS);
112
113 if (env->virt_enabled) {
114 flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1);
115 /*
116 * Merge DISABLED and !DIRTY states using MIN.
117 * We will set both fields when dirtying.
118 */
119 fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS));
120 vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS));
121 }
122
123 if (cpu->cfg.debug && !icount_enabled()) {
124 flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled);
125 }
126 #endif
127
128 flags = FIELD_DP32(flags, TB_FLAGS, FS, fs);
129 flags = FIELD_DP32(flags, TB_FLAGS, VS, vs);
130 flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
131 if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) {
132 flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
133 }
134 if (env->cur_pmbase != 0) {
135 flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
136 }
137
138 *pflags = flags;
139 }
140
141 void riscv_cpu_update_mask(CPURISCVState *env)
142 {
143 target_ulong mask = -1, base = 0;
144 /*
145 * TODO: Current RVJ spec does not specify
146 * how the extension interacts with XLEN.
147 */
148 #ifndef CONFIG_USER_ONLY
149 if (riscv_has_ext(env, RVJ)) {
150 switch (env->priv) {
151 case PRV_M:
152 if (env->mmte & M_PM_ENABLE) {
153 mask = env->mpmmask;
154 base = env->mpmbase;
155 }
156 break;
157 case PRV_S:
158 if (env->mmte & S_PM_ENABLE) {
159 mask = env->spmmask;
160 base = env->spmbase;
161 }
162 break;
163 case PRV_U:
164 if (env->mmte & U_PM_ENABLE) {
165 mask = env->upmmask;
166 base = env->upmbase;
167 }
168 break;
169 default:
170 g_assert_not_reached();
171 }
172 }
173 #endif
174 if (env->xl == MXL_RV32) {
175 env->cur_pmmask = mask & UINT32_MAX;
176 env->cur_pmbase = base & UINT32_MAX;
177 } else {
178 env->cur_pmmask = mask;
179 env->cur_pmbase = base;
180 }
181 }
182
183 #ifndef CONFIG_USER_ONLY
184
185 /*
186 * The HS-mode is allowed to configure priority only for the
187 * following VS-mode local interrupts:
188 *
189 * 0 (Reserved interrupt, reads as zero)
190 * 1 Supervisor software interrupt
191 * 4 (Reserved interrupt, reads as zero)
192 * 5 Supervisor timer interrupt
193 * 8 (Reserved interrupt, reads as zero)
194 * 13 (Reserved interrupt)
195 * 14 "
196 * 15 "
197 * 16 "
198 * 17 "
199 * 18 "
200 * 19 "
201 * 20 "
202 * 21 "
203 * 22 "
204 * 23 "
205 */
206
207 static const int hviprio_index2irq[] = {
208 0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
209 static const int hviprio_index2rdzero[] = {
210 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
211
212 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
213 {
214 if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
215 return -EINVAL;
216 }
217
218 if (out_irq) {
219 *out_irq = hviprio_index2irq[index];
220 }
221
222 if (out_rdzero) {
223 *out_rdzero = hviprio_index2rdzero[index];
224 }
225
226 return 0;
227 }
228
229 /*
230 * Default priorities of local interrupts are defined in the
231 * RISC-V Advanced Interrupt Architecture specification.
232 *
233 * ----------------------------------------------------------------
234 * Default |
235 * Priority | Major Interrupt Numbers
236 * ----------------------------------------------------------------
237 * Highest | 47, 23, 46, 45, 22, 44,
238 * | 43, 21, 42, 41, 20, 40
239 * |
240 * | 11 (0b), 3 (03), 7 (07)
241 * | 9 (09), 1 (01), 5 (05)
242 * | 12 (0c)
243 * | 10 (0a), 2 (02), 6 (06)
244 * |
245 * | 39, 19, 38, 37, 18, 36,
246 * Lowest | 35, 17, 34, 33, 16, 32
247 * ----------------------------------------------------------------
248 */
249 static const uint8_t default_iprio[64] = {
250 /* Custom interrupts 48 to 63 */
251 [63] = IPRIO_MMAXIPRIO,
252 [62] = IPRIO_MMAXIPRIO,
253 [61] = IPRIO_MMAXIPRIO,
254 [60] = IPRIO_MMAXIPRIO,
255 [59] = IPRIO_MMAXIPRIO,
256 [58] = IPRIO_MMAXIPRIO,
257 [57] = IPRIO_MMAXIPRIO,
258 [56] = IPRIO_MMAXIPRIO,
259 [55] = IPRIO_MMAXIPRIO,
260 [54] = IPRIO_MMAXIPRIO,
261 [53] = IPRIO_MMAXIPRIO,
262 [52] = IPRIO_MMAXIPRIO,
263 [51] = IPRIO_MMAXIPRIO,
264 [50] = IPRIO_MMAXIPRIO,
265 [49] = IPRIO_MMAXIPRIO,
266 [48] = IPRIO_MMAXIPRIO,
267
268 /* Custom interrupts 24 to 31 */
269 [31] = IPRIO_MMAXIPRIO,
270 [30] = IPRIO_MMAXIPRIO,
271 [29] = IPRIO_MMAXIPRIO,
272 [28] = IPRIO_MMAXIPRIO,
273 [27] = IPRIO_MMAXIPRIO,
274 [26] = IPRIO_MMAXIPRIO,
275 [25] = IPRIO_MMAXIPRIO,
276 [24] = IPRIO_MMAXIPRIO,
277
278 [47] = IPRIO_DEFAULT_UPPER,
279 [23] = IPRIO_DEFAULT_UPPER + 1,
280 [46] = IPRIO_DEFAULT_UPPER + 2,
281 [45] = IPRIO_DEFAULT_UPPER + 3,
282 [22] = IPRIO_DEFAULT_UPPER + 4,
283 [44] = IPRIO_DEFAULT_UPPER + 5,
284
285 [43] = IPRIO_DEFAULT_UPPER + 6,
286 [21] = IPRIO_DEFAULT_UPPER + 7,
287 [42] = IPRIO_DEFAULT_UPPER + 8,
288 [41] = IPRIO_DEFAULT_UPPER + 9,
289 [20] = IPRIO_DEFAULT_UPPER + 10,
290 [40] = IPRIO_DEFAULT_UPPER + 11,
291
292 [11] = IPRIO_DEFAULT_M,
293 [3] = IPRIO_DEFAULT_M + 1,
294 [7] = IPRIO_DEFAULT_M + 2,
295
296 [9] = IPRIO_DEFAULT_S,
297 [1] = IPRIO_DEFAULT_S + 1,
298 [5] = IPRIO_DEFAULT_S + 2,
299
300 [12] = IPRIO_DEFAULT_SGEXT,
301
302 [10] = IPRIO_DEFAULT_VS,
303 [2] = IPRIO_DEFAULT_VS + 1,
304 [6] = IPRIO_DEFAULT_VS + 2,
305
306 [39] = IPRIO_DEFAULT_LOWER,
307 [19] = IPRIO_DEFAULT_LOWER + 1,
308 [38] = IPRIO_DEFAULT_LOWER + 2,
309 [37] = IPRIO_DEFAULT_LOWER + 3,
310 [18] = IPRIO_DEFAULT_LOWER + 4,
311 [36] = IPRIO_DEFAULT_LOWER + 5,
312
313 [35] = IPRIO_DEFAULT_LOWER + 6,
314 [17] = IPRIO_DEFAULT_LOWER + 7,
315 [34] = IPRIO_DEFAULT_LOWER + 8,
316 [33] = IPRIO_DEFAULT_LOWER + 9,
317 [16] = IPRIO_DEFAULT_LOWER + 10,
318 [32] = IPRIO_DEFAULT_LOWER + 11,
319 };
320
321 uint8_t riscv_cpu_default_priority(int irq)
322 {
323 if (irq < 0 || irq > 63) {
324 return IPRIO_MMAXIPRIO;
325 }
326
327 return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
328 };
329
330 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
331 int extirq, unsigned int extirq_def_prio,
332 uint64_t pending, uint8_t *iprio)
333 {
334 int irq, best_irq = RISCV_EXCP_NONE;
335 unsigned int prio, best_prio = UINT_MAX;
336
337 if (!pending) {
338 return RISCV_EXCP_NONE;
339 }
340
341 irq = ctz64(pending);
342 if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia :
343 riscv_cpu_cfg(env)->ext_ssaia)) {
344 return irq;
345 }
346
347 pending = pending >> irq;
348 while (pending) {
349 prio = iprio[irq];
350 if (!prio) {
351 if (irq == extirq) {
352 prio = extirq_def_prio;
353 } else {
354 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
355 1 : IPRIO_MMAXIPRIO;
356 }
357 }
358 if ((pending & 0x1) && (prio <= best_prio)) {
359 best_irq = irq;
360 best_prio = prio;
361 }
362 irq++;
363 pending = pending >> 1;
364 }
365
366 return best_irq;
367 }
368
369 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
370 {
371 uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
372 uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
373 uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
374
375 return (env->mip | vsgein | vstip) & env->mie;
376 }
377
378 int riscv_cpu_mirq_pending(CPURISCVState *env)
379 {
380 uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
381 ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
382
383 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
384 irqs, env->miprio);
385 }
386
387 int riscv_cpu_sirq_pending(CPURISCVState *env)
388 {
389 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
390 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
391
392 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
393 irqs, env->siprio);
394 }
395
396 int riscv_cpu_vsirq_pending(CPURISCVState *env)
397 {
398 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
399 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
400
401 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
402 irqs >> 1, env->hviprio);
403 }
404
405 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
406 {
407 int virq;
408 uint64_t irqs, pending, mie, hsie, vsie;
409
410 /* Determine interrupt enable state of all privilege modes */
411 if (env->virt_enabled) {
412 mie = 1;
413 hsie = 1;
414 vsie = (env->priv < PRV_S) ||
415 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
416 } else {
417 mie = (env->priv < PRV_M) ||
418 (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
419 hsie = (env->priv < PRV_S) ||
420 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
421 vsie = 0;
422 }
423
424 /* Determine all pending interrupts */
425 pending = riscv_cpu_all_pending(env);
426
427 /* Check M-mode interrupts */
428 irqs = pending & ~env->mideleg & -mie;
429 if (irqs) {
430 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
431 irqs, env->miprio);
432 }
433
434 /* Check HS-mode interrupts */
435 irqs = pending & env->mideleg & ~env->hideleg & -hsie;
436 if (irqs) {
437 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
438 irqs, env->siprio);
439 }
440
441 /* Check VS-mode interrupts */
442 irqs = pending & env->mideleg & env->hideleg & -vsie;
443 if (irqs) {
444 virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
445 irqs >> 1, env->hviprio);
446 return (virq <= 0) ? virq : virq + 1;
447 }
448
449 /* Indicate no pending interrupt */
450 return RISCV_EXCP_NONE;
451 }
452
453 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
454 {
455 if (interrupt_request & CPU_INTERRUPT_HARD) {
456 RISCVCPU *cpu = RISCV_CPU(cs);
457 CPURISCVState *env = &cpu->env;
458 int interruptno = riscv_cpu_local_irq_pending(env);
459 if (interruptno >= 0) {
460 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
461 riscv_cpu_do_interrupt(cs);
462 return true;
463 }
464 }
465 return false;
466 }
467
468 /* Return true is floating point support is currently enabled */
469 bool riscv_cpu_fp_enabled(CPURISCVState *env)
470 {
471 if (env->mstatus & MSTATUS_FS) {
472 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) {
473 return false;
474 }
475 return true;
476 }
477
478 return false;
479 }
480
481 /* Return true is vector support is currently enabled */
482 bool riscv_cpu_vector_enabled(CPURISCVState *env)
483 {
484 if (env->mstatus & MSTATUS_VS) {
485 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) {
486 return false;
487 }
488 return true;
489 }
490
491 return false;
492 }
493
494 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
495 {
496 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
497 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
498 MSTATUS64_UXL | MSTATUS_VS;
499
500 if (riscv_has_ext(env, RVF)) {
501 mstatus_mask |= MSTATUS_FS;
502 }
503 bool current_virt = env->virt_enabled;
504
505 g_assert(riscv_has_ext(env, RVH));
506
507 if (current_virt) {
508 /* Current V=1 and we are about to change to V=0 */
509 env->vsstatus = env->mstatus & mstatus_mask;
510 env->mstatus &= ~mstatus_mask;
511 env->mstatus |= env->mstatus_hs;
512
513 env->vstvec = env->stvec;
514 env->stvec = env->stvec_hs;
515
516 env->vsscratch = env->sscratch;
517 env->sscratch = env->sscratch_hs;
518
519 env->vsepc = env->sepc;
520 env->sepc = env->sepc_hs;
521
522 env->vscause = env->scause;
523 env->scause = env->scause_hs;
524
525 env->vstval = env->stval;
526 env->stval = env->stval_hs;
527
528 env->vsatp = env->satp;
529 env->satp = env->satp_hs;
530 } else {
531 /* Current V=0 and we are about to change to V=1 */
532 env->mstatus_hs = env->mstatus & mstatus_mask;
533 env->mstatus &= ~mstatus_mask;
534 env->mstatus |= env->vsstatus;
535
536 env->stvec_hs = env->stvec;
537 env->stvec = env->vstvec;
538
539 env->sscratch_hs = env->sscratch;
540 env->sscratch = env->vsscratch;
541
542 env->sepc_hs = env->sepc;
543 env->sepc = env->vsepc;
544
545 env->scause_hs = env->scause;
546 env->scause = env->vscause;
547
548 env->stval_hs = env->stval;
549 env->stval = env->vstval;
550
551 env->satp_hs = env->satp;
552 env->satp = env->vsatp;
553 }
554 }
555
556 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
557 {
558 if (!riscv_has_ext(env, RVH)) {
559 return 0;
560 }
561
562 return env->geilen;
563 }
564
565 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
566 {
567 if (!riscv_has_ext(env, RVH)) {
568 return;
569 }
570
571 if (geilen > (TARGET_LONG_BITS - 1)) {
572 return;
573 }
574
575 env->geilen = geilen;
576 }
577
578 /* This function can only be called to set virt when RVH is enabled */
579 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
580 {
581 /* Flush the TLB on all virt mode changes. */
582 if (env->virt_enabled != enable) {
583 tlb_flush(env_cpu(env));
584 }
585
586 env->virt_enabled = enable;
587
588 if (enable) {
589 /*
590 * The guest external interrupts from an interrupt controller are
591 * delivered only when the Guest/VM is running (i.e. V=1). This means
592 * any guest external interrupt which is triggered while the Guest/VM
593 * is not running (i.e. V=0) will be missed on QEMU resulting in guest
594 * with sluggish response to serial console input and other I/O events.
595 *
596 * To solve this, we check and inject interrupt after setting V=1.
597 */
598 riscv_cpu_update_mip(env, 0, 0);
599 }
600 }
601
602 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
603 {
604 CPURISCVState *env = &cpu->env;
605 if (env->miclaim & interrupts) {
606 return -1;
607 } else {
608 env->miclaim |= interrupts;
609 return 0;
610 }
611 }
612
613 uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask,
614 uint64_t value)
615 {
616 CPUState *cs = env_cpu(env);
617 uint64_t gein, vsgein = 0, vstip = 0, old = env->mip;
618
619 if (env->virt_enabled) {
620 gein = get_field(env->hstatus, HSTATUS_VGEIN);
621 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
622 }
623
624 vstip = env->vstime_irq ? MIP_VSTIP : 0;
625
626 QEMU_IOTHREAD_LOCK_GUARD();
627
628 env->mip = (env->mip & ~mask) | (value & mask);
629
630 if (env->mip | vsgein | vstip) {
631 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
632 } else {
633 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
634 }
635
636 return old;
637 }
638
639 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
640 void *arg)
641 {
642 env->rdtime_fn = fn;
643 env->rdtime_fn_arg = arg;
644 }
645
646 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
647 int (*rmw_fn)(void *arg,
648 target_ulong reg,
649 target_ulong *val,
650 target_ulong new_val,
651 target_ulong write_mask),
652 void *rmw_fn_arg)
653 {
654 if (priv <= PRV_M) {
655 env->aia_ireg_rmw_fn[priv] = rmw_fn;
656 env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
657 }
658 }
659
660 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
661 {
662 g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED);
663
664 if (icount_enabled() && newpriv != env->priv) {
665 riscv_itrigger_update_priv(env);
666 }
667 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
668 env->priv = newpriv;
669 env->xl = cpu_recompute_xl(env);
670 riscv_cpu_update_mask(env);
671
672 /*
673 * Clear the load reservation - otherwise a reservation placed in one
674 * context/process can be used by another, resulting in an SC succeeding
675 * incorrectly. Version 2.2 of the ISA specification explicitly requires
676 * this behaviour, while later revisions say that the kernel "should" use
677 * an SC instruction to force the yielding of a load reservation on a
678 * preemptive context switch. As a result, do both.
679 */
680 env->load_res = -1;
681 }
682
683 /*
684 * get_physical_address_pmp - check PMP permission for this physical address
685 *
686 * Match the PMP region and check permission for this physical address and it's
687 * TLB page. Returns 0 if the permission checking was successful
688 *
689 * @env: CPURISCVState
690 * @prot: The returned protection attributes
691 * @tlb_size: TLB page size containing addr. It could be modified after PMP
692 * permission checking. NULL if not set TLB page for addr.
693 * @addr: The physical address to be checked permission
694 * @access_type: The type of MMU access
695 * @mode: Indicates current privilege level.
696 */
697 static int get_physical_address_pmp(CPURISCVState *env, int *prot,
698 target_ulong *tlb_size, hwaddr addr,
699 int size, MMUAccessType access_type,
700 int mode)
701 {
702 pmp_priv_t pmp_priv;
703 int pmp_index = -1;
704
705 if (!riscv_cpu_cfg(env)->pmp) {
706 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
707 return TRANSLATE_SUCCESS;
708 }
709
710 pmp_index = pmp_hart_has_privs(env, addr, size, 1 << access_type,
711 &pmp_priv, mode);
712 if (pmp_index < 0) {
713 *prot = 0;
714 return TRANSLATE_PMP_FAIL;
715 }
716
717 *prot = pmp_priv_to_page_prot(pmp_priv);
718 if ((tlb_size != NULL) && pmp_index != MAX_RISCV_PMPS) {
719 target_ulong tlb_sa = addr & ~(TARGET_PAGE_SIZE - 1);
720 target_ulong tlb_ea = tlb_sa + TARGET_PAGE_SIZE - 1;
721
722 *tlb_size = pmp_get_tlb_size(env, pmp_index, tlb_sa, tlb_ea);
723 }
724
725 return TRANSLATE_SUCCESS;
726 }
727
728 /*
729 * get_physical_address - get the physical address for this virtual address
730 *
731 * Do a page table walk to obtain the physical address corresponding to a
732 * virtual address. Returns 0 if the translation was successful
733 *
734 * Adapted from Spike's mmu_t::translate and mmu_t::walk
735 *
736 * @env: CPURISCVState
737 * @physical: This will be set to the calculated physical address
738 * @prot: The returned protection attributes
739 * @addr: The virtual address or guest physical address to be translated
740 * @fault_pte_addr: If not NULL, this will be set to fault pte address
741 * when a error occurs on pte address translation.
742 * This will already be shifted to match htval.
743 * @access_type: The type of MMU access
744 * @mmu_idx: Indicates current privilege level
745 * @first_stage: Are we in first stage translation?
746 * Second stage is used for hypervisor guest translation
747 * @two_stage: Are we going to perform two stage translation
748 * @is_debug: Is this access from a debugger or the monitor?
749 */
750 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
751 int *ret_prot, vaddr addr,
752 target_ulong *fault_pte_addr,
753 int access_type, int mmu_idx,
754 bool first_stage, bool two_stage,
755 bool is_debug)
756 {
757 /*
758 * NOTE: the env->pc value visible here will not be
759 * correct, but the value visible to the exception handler
760 * (riscv_cpu_do_interrupt) is correct
761 */
762 MemTxResult res;
763 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
764 int mode = mmuidx_priv(mmu_idx);
765 bool use_background = false;
766 hwaddr ppn;
767 int napot_bits = 0;
768 target_ulong napot_mask;
769
770 /*
771 * Check if we should use the background registers for the two
772 * stage translation. We don't need to check if we actually need
773 * two stage translation as that happened before this function
774 * was called. Background registers will be used if the guest has
775 * forced a two stage translation to be on (in HS or M mode).
776 */
777 if (!env->virt_enabled && two_stage) {
778 use_background = true;
779 }
780
781 if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) {
782 *physical = addr;
783 *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
784 return TRANSLATE_SUCCESS;
785 }
786
787 *ret_prot = 0;
788
789 hwaddr base;
790 int levels, ptidxbits, ptesize, vm, widened;
791
792 if (first_stage == true) {
793 if (use_background) {
794 if (riscv_cpu_mxl(env) == MXL_RV32) {
795 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
796 vm = get_field(env->vsatp, SATP32_MODE);
797 } else {
798 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
799 vm = get_field(env->vsatp, SATP64_MODE);
800 }
801 } else {
802 if (riscv_cpu_mxl(env) == MXL_RV32) {
803 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
804 vm = get_field(env->satp, SATP32_MODE);
805 } else {
806 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
807 vm = get_field(env->satp, SATP64_MODE);
808 }
809 }
810 widened = 0;
811 } else {
812 if (riscv_cpu_mxl(env) == MXL_RV32) {
813 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
814 vm = get_field(env->hgatp, SATP32_MODE);
815 } else {
816 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
817 vm = get_field(env->hgatp, SATP64_MODE);
818 }
819 widened = 2;
820 }
821
822 switch (vm) {
823 case VM_1_10_SV32:
824 levels = 2; ptidxbits = 10; ptesize = 4; break;
825 case VM_1_10_SV39:
826 levels = 3; ptidxbits = 9; ptesize = 8; break;
827 case VM_1_10_SV48:
828 levels = 4; ptidxbits = 9; ptesize = 8; break;
829 case VM_1_10_SV57:
830 levels = 5; ptidxbits = 9; ptesize = 8; break;
831 case VM_1_10_MBARE:
832 *physical = addr;
833 *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
834 return TRANSLATE_SUCCESS;
835 default:
836 g_assert_not_reached();
837 }
838
839 CPUState *cs = env_cpu(env);
840 int va_bits = PGSHIFT + levels * ptidxbits + widened;
841
842 if (first_stage == true) {
843 target_ulong mask, masked_msbs;
844
845 if (TARGET_LONG_BITS > (va_bits - 1)) {
846 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
847 } else {
848 mask = 0;
849 }
850 masked_msbs = (addr >> (va_bits - 1)) & mask;
851
852 if (masked_msbs != 0 && masked_msbs != mask) {
853 return TRANSLATE_FAIL;
854 }
855 } else {
856 if (vm != VM_1_10_SV32 && addr >> va_bits != 0) {
857 return TRANSLATE_FAIL;
858 }
859 }
860
861 bool pbmte = env->menvcfg & MENVCFG_PBMTE;
862 bool hade = env->menvcfg & MENVCFG_HADE;
863
864 if (first_stage && two_stage && env->virt_enabled) {
865 pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE);
866 hade = hade && (env->henvcfg & HENVCFG_HADE);
867 }
868
869 int ptshift = (levels - 1) * ptidxbits;
870 target_ulong pte;
871 hwaddr pte_addr;
872 int i;
873
874 #if !TCG_OVERSIZED_GUEST
875 restart:
876 #endif
877 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
878 target_ulong idx;
879 if (i == 0) {
880 idx = (addr >> (PGSHIFT + ptshift)) &
881 ((1 << (ptidxbits + widened)) - 1);
882 } else {
883 idx = (addr >> (PGSHIFT + ptshift)) &
884 ((1 << ptidxbits) - 1);
885 }
886
887 /* check that physical address of PTE is legal */
888
889 if (two_stage && first_stage) {
890 int vbase_prot;
891 hwaddr vbase;
892
893 /* Do the second stage translation on the base PTE address. */
894 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
895 base, NULL, MMU_DATA_LOAD,
896 MMUIdx_U, false, true,
897 is_debug);
898
899 if (vbase_ret != TRANSLATE_SUCCESS) {
900 if (fault_pte_addr) {
901 *fault_pte_addr = (base + idx * ptesize) >> 2;
902 }
903 return TRANSLATE_G_STAGE_FAIL;
904 }
905
906 pte_addr = vbase + idx * ptesize;
907 } else {
908 pte_addr = base + idx * ptesize;
909 }
910
911 int pmp_prot;
912 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
913 sizeof(target_ulong),
914 MMU_DATA_LOAD, PRV_S);
915 if (pmp_ret != TRANSLATE_SUCCESS) {
916 return TRANSLATE_PMP_FAIL;
917 }
918
919 if (riscv_cpu_mxl(env) == MXL_RV32) {
920 pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
921 } else {
922 pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
923 }
924
925 if (res != MEMTX_OK) {
926 return TRANSLATE_FAIL;
927 }
928
929 if (riscv_cpu_sxl(env) == MXL_RV32) {
930 ppn = pte >> PTE_PPN_SHIFT;
931 } else {
932 if (pte & PTE_RESERVED) {
933 return TRANSLATE_FAIL;
934 }
935
936 if (!pbmte && (pte & PTE_PBMT)) {
937 return TRANSLATE_FAIL;
938 }
939
940 if (!riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
941 return TRANSLATE_FAIL;
942 }
943
944 ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
945 }
946
947 if (!(pte & PTE_V)) {
948 /* Invalid PTE */
949 return TRANSLATE_FAIL;
950 }
951 if (pte & (PTE_R | PTE_W | PTE_X)) {
952 goto leaf;
953 }
954
955 /* Inner PTE, continue walking */
956 if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
957 return TRANSLATE_FAIL;
958 }
959 base = ppn << PGSHIFT;
960 }
961
962 /* No leaf pte at any translation level. */
963 return TRANSLATE_FAIL;
964
965 leaf:
966 if (ppn & ((1ULL << ptshift) - 1)) {
967 /* Misaligned PPN */
968 return TRANSLATE_FAIL;
969 }
970 if (!pbmte && (pte & PTE_PBMT)) {
971 /* Reserved without Svpbmt. */
972 return TRANSLATE_FAIL;
973 }
974
975 /* Check for reserved combinations of RWX flags. */
976 switch (pte & (PTE_R | PTE_W | PTE_X)) {
977 case PTE_W:
978 case PTE_W | PTE_X:
979 return TRANSLATE_FAIL;
980 }
981
982 int prot = 0;
983 if (pte & PTE_R) {
984 prot |= PAGE_READ;
985 }
986 if (pte & PTE_W) {
987 prot |= PAGE_WRITE;
988 }
989 if (pte & PTE_X) {
990 bool mxr;
991
992 if (first_stage == true) {
993 mxr = get_field(env->mstatus, MSTATUS_MXR);
994 } else {
995 mxr = get_field(env->vsstatus, MSTATUS_MXR);
996 }
997 if (mxr) {
998 prot |= PAGE_READ;
999 }
1000 prot |= PAGE_EXEC;
1001 }
1002
1003 if (pte & PTE_U) {
1004 if (mode != PRV_U) {
1005 if (!mmuidx_sum(mmu_idx)) {
1006 return TRANSLATE_FAIL;
1007 }
1008 /* SUM allows only read+write, not execute. */
1009 prot &= PAGE_READ | PAGE_WRITE;
1010 }
1011 } else if (mode != PRV_S) {
1012 /* Supervisor PTE flags when not S mode */
1013 return TRANSLATE_FAIL;
1014 }
1015
1016 if (!((prot >> access_type) & 1)) {
1017 /* Access check failed */
1018 return TRANSLATE_FAIL;
1019 }
1020
1021 /* If necessary, set accessed and dirty bits. */
1022 target_ulong updated_pte = pte | PTE_A |
1023 (access_type == MMU_DATA_STORE ? PTE_D : 0);
1024
1025 /* Page table updates need to be atomic with MTTCG enabled */
1026 if (updated_pte != pte && !is_debug) {
1027 if (!hade) {
1028 return TRANSLATE_FAIL;
1029 }
1030
1031 /*
1032 * - if accessed or dirty bits need updating, and the PTE is
1033 * in RAM, then we do so atomically with a compare and swap.
1034 * - if the PTE is in IO space or ROM, then it can't be updated
1035 * and we return TRANSLATE_FAIL.
1036 * - if the PTE changed by the time we went to update it, then
1037 * it is no longer valid and we must re-walk the page table.
1038 */
1039 MemoryRegion *mr;
1040 hwaddr l = sizeof(target_ulong), addr1;
1041 mr = address_space_translate(cs->as, pte_addr, &addr1, &l,
1042 false, MEMTXATTRS_UNSPECIFIED);
1043 if (memory_region_is_ram(mr)) {
1044 target_ulong *pte_pa = qemu_map_ram_ptr(mr->ram_block, addr1);
1045 #if TCG_OVERSIZED_GUEST
1046 /*
1047 * MTTCG is not enabled on oversized TCG guests so
1048 * page table updates do not need to be atomic
1049 */
1050 *pte_pa = pte = updated_pte;
1051 #else
1052 target_ulong old_pte = qatomic_cmpxchg(pte_pa, pte, updated_pte);
1053 if (old_pte != pte) {
1054 goto restart;
1055 }
1056 pte = updated_pte;
1057 #endif
1058 } else {
1059 /*
1060 * Misconfigured PTE in ROM (AD bits are not preset) or
1061 * PTE is in IO space and can't be updated atomically.
1062 */
1063 return TRANSLATE_FAIL;
1064 }
1065 }
1066
1067 /* For superpage mappings, make a fake leaf PTE for the TLB's benefit. */
1068 target_ulong vpn = addr >> PGSHIFT;
1069
1070 if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
1071 napot_bits = ctzl(ppn) + 1;
1072 if ((i != (levels - 1)) || (napot_bits != 4)) {
1073 return TRANSLATE_FAIL;
1074 }
1075 }
1076
1077 napot_mask = (1 << napot_bits) - 1;
1078 *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1079 (vpn & (((target_ulong)1 << ptshift) - 1))
1080 ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1081
1082 /*
1083 * Remove write permission unless this is a store, or the page is
1084 * already dirty, so that we TLB miss on later writes to update
1085 * the dirty bit.
1086 */
1087 if (access_type != MMU_DATA_STORE && !(pte & PTE_D)) {
1088 prot &= ~PAGE_WRITE;
1089 }
1090 *ret_prot = prot;
1091
1092 return TRANSLATE_SUCCESS;
1093 }
1094
1095 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1096 MMUAccessType access_type, bool pmp_violation,
1097 bool first_stage, bool two_stage,
1098 bool two_stage_indirect)
1099 {
1100 CPUState *cs = env_cpu(env);
1101 int page_fault_exceptions, vm;
1102 uint64_t stap_mode;
1103
1104 if (riscv_cpu_mxl(env) == MXL_RV32) {
1105 stap_mode = SATP32_MODE;
1106 } else {
1107 stap_mode = SATP64_MODE;
1108 }
1109
1110 if (first_stage) {
1111 vm = get_field(env->satp, stap_mode);
1112 } else {
1113 vm = get_field(env->hgatp, stap_mode);
1114 }
1115
1116 page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1117
1118 switch (access_type) {
1119 case MMU_INST_FETCH:
1120 if (env->virt_enabled && !first_stage) {
1121 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1122 } else {
1123 cs->exception_index = page_fault_exceptions ?
1124 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1125 }
1126 break;
1127 case MMU_DATA_LOAD:
1128 if (two_stage && !first_stage) {
1129 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1130 } else {
1131 cs->exception_index = page_fault_exceptions ?
1132 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1133 }
1134 break;
1135 case MMU_DATA_STORE:
1136 if (two_stage && !first_stage) {
1137 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1138 } else {
1139 cs->exception_index = page_fault_exceptions ?
1140 RISCV_EXCP_STORE_PAGE_FAULT :
1141 RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1142 }
1143 break;
1144 default:
1145 g_assert_not_reached();
1146 }
1147 env->badaddr = address;
1148 env->two_stage_lookup = two_stage;
1149 env->two_stage_indirect_lookup = two_stage_indirect;
1150 }
1151
1152 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1153 {
1154 RISCVCPU *cpu = RISCV_CPU(cs);
1155 CPURISCVState *env = &cpu->env;
1156 hwaddr phys_addr;
1157 int prot;
1158 int mmu_idx = cpu_mmu_index(&cpu->env, false);
1159
1160 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1161 true, env->virt_enabled, true)) {
1162 return -1;
1163 }
1164
1165 if (env->virt_enabled) {
1166 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1167 0, mmu_idx, false, true, true)) {
1168 return -1;
1169 }
1170 }
1171
1172 return phys_addr & TARGET_PAGE_MASK;
1173 }
1174
1175 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1176 vaddr addr, unsigned size,
1177 MMUAccessType access_type,
1178 int mmu_idx, MemTxAttrs attrs,
1179 MemTxResult response, uintptr_t retaddr)
1180 {
1181 RISCVCPU *cpu = RISCV_CPU(cs);
1182 CPURISCVState *env = &cpu->env;
1183
1184 if (access_type == MMU_DATA_STORE) {
1185 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1186 } else if (access_type == MMU_DATA_LOAD) {
1187 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1188 } else {
1189 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1190 }
1191
1192 env->badaddr = addr;
1193 env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1194 env->two_stage_indirect_lookup = false;
1195 cpu_loop_exit_restore(cs, retaddr);
1196 }
1197
1198 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1199 MMUAccessType access_type, int mmu_idx,
1200 uintptr_t retaddr)
1201 {
1202 RISCVCPU *cpu = RISCV_CPU(cs);
1203 CPURISCVState *env = &cpu->env;
1204 switch (access_type) {
1205 case MMU_INST_FETCH:
1206 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1207 break;
1208 case MMU_DATA_LOAD:
1209 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1210 break;
1211 case MMU_DATA_STORE:
1212 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1213 break;
1214 default:
1215 g_assert_not_reached();
1216 }
1217 env->badaddr = addr;
1218 env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1219 env->two_stage_indirect_lookup = false;
1220 cpu_loop_exit_restore(cs, retaddr);
1221 }
1222
1223
1224 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1225 {
1226 enum riscv_pmu_event_idx pmu_event_type;
1227
1228 switch (access_type) {
1229 case MMU_INST_FETCH:
1230 pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1231 break;
1232 case MMU_DATA_LOAD:
1233 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1234 break;
1235 case MMU_DATA_STORE:
1236 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1237 break;
1238 default:
1239 return;
1240 }
1241
1242 riscv_pmu_incr_ctr(cpu, pmu_event_type);
1243 }
1244
1245 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1246 MMUAccessType access_type, int mmu_idx,
1247 bool probe, uintptr_t retaddr)
1248 {
1249 RISCVCPU *cpu = RISCV_CPU(cs);
1250 CPURISCVState *env = &cpu->env;
1251 vaddr im_address;
1252 hwaddr pa = 0;
1253 int prot, prot2, prot_pmp;
1254 bool pmp_violation = false;
1255 bool first_stage_error = true;
1256 bool two_stage_lookup = mmuidx_2stage(mmu_idx);
1257 bool two_stage_indirect_error = false;
1258 int ret = TRANSLATE_FAIL;
1259 int mode = mmu_idx;
1260 /* default TLB page size */
1261 target_ulong tlb_size = TARGET_PAGE_SIZE;
1262
1263 env->guest_phys_fault_addr = 0;
1264
1265 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1266 __func__, address, access_type, mmu_idx);
1267
1268 pmu_tlb_fill_incr_ctr(cpu, access_type);
1269 if (two_stage_lookup) {
1270 /* Two stage lookup */
1271 ret = get_physical_address(env, &pa, &prot, address,
1272 &env->guest_phys_fault_addr, access_type,
1273 mmu_idx, true, true, false);
1274
1275 /*
1276 * A G-stage exception may be triggered during two state lookup.
1277 * And the env->guest_phys_fault_addr has already been set in
1278 * get_physical_address().
1279 */
1280 if (ret == TRANSLATE_G_STAGE_FAIL) {
1281 first_stage_error = false;
1282 two_stage_indirect_error = true;
1283 access_type = MMU_DATA_LOAD;
1284 }
1285
1286 qemu_log_mask(CPU_LOG_MMU,
1287 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1288 HWADDR_FMT_plx " prot %d\n",
1289 __func__, address, ret, pa, prot);
1290
1291 if (ret == TRANSLATE_SUCCESS) {
1292 /* Second stage lookup */
1293 im_address = pa;
1294
1295 ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1296 access_type, MMUIdx_U, false, true,
1297 false);
1298
1299 qemu_log_mask(CPU_LOG_MMU,
1300 "%s 2nd-stage address=%" VADDR_PRIx
1301 " ret %d physical "
1302 HWADDR_FMT_plx " prot %d\n",
1303 __func__, im_address, ret, pa, prot2);
1304
1305 prot &= prot2;
1306
1307 if (ret == TRANSLATE_SUCCESS) {
1308 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1309 size, access_type, mode);
1310
1311 qemu_log_mask(CPU_LOG_MMU,
1312 "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1313 " %d tlb_size " TARGET_FMT_lu "\n",
1314 __func__, pa, ret, prot_pmp, tlb_size);
1315
1316 prot &= prot_pmp;
1317 }
1318
1319 if (ret != TRANSLATE_SUCCESS) {
1320 /*
1321 * Guest physical address translation failed, this is a HS
1322 * level exception
1323 */
1324 first_stage_error = false;
1325 env->guest_phys_fault_addr = (im_address |
1326 (address &
1327 (TARGET_PAGE_SIZE - 1))) >> 2;
1328 }
1329 }
1330 } else {
1331 /* Single stage lookup */
1332 ret = get_physical_address(env, &pa, &prot, address, NULL,
1333 access_type, mmu_idx, true, false, false);
1334
1335 qemu_log_mask(CPU_LOG_MMU,
1336 "%s address=%" VADDR_PRIx " ret %d physical "
1337 HWADDR_FMT_plx " prot %d\n",
1338 __func__, address, ret, pa, prot);
1339
1340 if (ret == TRANSLATE_SUCCESS) {
1341 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1342 size, access_type, mode);
1343
1344 qemu_log_mask(CPU_LOG_MMU,
1345 "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1346 " %d tlb_size " TARGET_FMT_lu "\n",
1347 __func__, pa, ret, prot_pmp, tlb_size);
1348
1349 prot &= prot_pmp;
1350 }
1351 }
1352
1353 if (ret == TRANSLATE_PMP_FAIL) {
1354 pmp_violation = true;
1355 }
1356
1357 if (ret == TRANSLATE_SUCCESS) {
1358 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1359 prot, mmu_idx, tlb_size);
1360 return true;
1361 } else if (probe) {
1362 return false;
1363 } else {
1364 raise_mmu_exception(env, address, access_type, pmp_violation,
1365 first_stage_error, two_stage_lookup,
1366 two_stage_indirect_error);
1367 cpu_loop_exit_restore(cs, retaddr);
1368 }
1369
1370 return true;
1371 }
1372
1373 static target_ulong riscv_transformed_insn(CPURISCVState *env,
1374 target_ulong insn,
1375 target_ulong taddr)
1376 {
1377 target_ulong xinsn = 0;
1378 target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1379
1380 /*
1381 * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1382 * be uncompressed. The Quadrant 1 of RVC instruction space need
1383 * not be transformed because these instructions won't generate
1384 * any load/store trap.
1385 */
1386
1387 if ((insn & 0x3) != 0x3) {
1388 /* Transform 16bit instruction into 32bit instruction */
1389 switch (GET_C_OP(insn)) {
1390 case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1391 switch (GET_C_FUNC(insn)) {
1392 case OPC_RISC_C_FUNC_FLD_LQ:
1393 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1394 xinsn = OPC_RISC_FLD;
1395 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1396 access_rs1 = GET_C_RS1S(insn);
1397 access_imm = GET_C_LD_IMM(insn);
1398 access_size = 8;
1399 }
1400 break;
1401 case OPC_RISC_C_FUNC_LW: /* C.LW */
1402 xinsn = OPC_RISC_LW;
1403 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1404 access_rs1 = GET_C_RS1S(insn);
1405 access_imm = GET_C_LW_IMM(insn);
1406 access_size = 4;
1407 break;
1408 case OPC_RISC_C_FUNC_FLW_LD:
1409 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1410 xinsn = OPC_RISC_FLW;
1411 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1412 access_rs1 = GET_C_RS1S(insn);
1413 access_imm = GET_C_LW_IMM(insn);
1414 access_size = 4;
1415 } else { /* C.LD (RV64/RV128) */
1416 xinsn = OPC_RISC_LD;
1417 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1418 access_rs1 = GET_C_RS1S(insn);
1419 access_imm = GET_C_LD_IMM(insn);
1420 access_size = 8;
1421 }
1422 break;
1423 case OPC_RISC_C_FUNC_FSD_SQ:
1424 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1425 xinsn = OPC_RISC_FSD;
1426 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1427 access_rs1 = GET_C_RS1S(insn);
1428 access_imm = GET_C_SD_IMM(insn);
1429 access_size = 8;
1430 }
1431 break;
1432 case OPC_RISC_C_FUNC_SW: /* C.SW */
1433 xinsn = OPC_RISC_SW;
1434 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1435 access_rs1 = GET_C_RS1S(insn);
1436 access_imm = GET_C_SW_IMM(insn);
1437 access_size = 4;
1438 break;
1439 case OPC_RISC_C_FUNC_FSW_SD:
1440 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1441 xinsn = OPC_RISC_FSW;
1442 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1443 access_rs1 = GET_C_RS1S(insn);
1444 access_imm = GET_C_SW_IMM(insn);
1445 access_size = 4;
1446 } else { /* C.SD (RV64/RV128) */
1447 xinsn = OPC_RISC_SD;
1448 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1449 access_rs1 = GET_C_RS1S(insn);
1450 access_imm = GET_C_SD_IMM(insn);
1451 access_size = 8;
1452 }
1453 break;
1454 default:
1455 break;
1456 }
1457 break;
1458 case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1459 switch (GET_C_FUNC(insn)) {
1460 case OPC_RISC_C_FUNC_FLDSP_LQSP:
1461 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1462 xinsn = OPC_RISC_FLD;
1463 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1464 access_rs1 = 2;
1465 access_imm = GET_C_LDSP_IMM(insn);
1466 access_size = 8;
1467 }
1468 break;
1469 case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1470 xinsn = OPC_RISC_LW;
1471 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1472 access_rs1 = 2;
1473 access_imm = GET_C_LWSP_IMM(insn);
1474 access_size = 4;
1475 break;
1476 case OPC_RISC_C_FUNC_FLWSP_LDSP:
1477 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1478 xinsn = OPC_RISC_FLW;
1479 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1480 access_rs1 = 2;
1481 access_imm = GET_C_LWSP_IMM(insn);
1482 access_size = 4;
1483 } else { /* C.LDSP (RV64/RV128) */
1484 xinsn = OPC_RISC_LD;
1485 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1486 access_rs1 = 2;
1487 access_imm = GET_C_LDSP_IMM(insn);
1488 access_size = 8;
1489 }
1490 break;
1491 case OPC_RISC_C_FUNC_FSDSP_SQSP:
1492 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1493 xinsn = OPC_RISC_FSD;
1494 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1495 access_rs1 = 2;
1496 access_imm = GET_C_SDSP_IMM(insn);
1497 access_size = 8;
1498 }
1499 break;
1500 case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1501 xinsn = OPC_RISC_SW;
1502 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1503 access_rs1 = 2;
1504 access_imm = GET_C_SWSP_IMM(insn);
1505 access_size = 4;
1506 break;
1507 case 7:
1508 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1509 xinsn = OPC_RISC_FSW;
1510 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1511 access_rs1 = 2;
1512 access_imm = GET_C_SWSP_IMM(insn);
1513 access_size = 4;
1514 } else { /* C.SDSP (RV64/RV128) */
1515 xinsn = OPC_RISC_SD;
1516 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1517 access_rs1 = 2;
1518 access_imm = GET_C_SDSP_IMM(insn);
1519 access_size = 8;
1520 }
1521 break;
1522 default:
1523 break;
1524 }
1525 break;
1526 default:
1527 break;
1528 }
1529
1530 /*
1531 * Clear Bit1 of transformed instruction to indicate that
1532 * original insruction was a 16bit instruction
1533 */
1534 xinsn &= ~((target_ulong)0x2);
1535 } else {
1536 /* Transform 32bit (or wider) instructions */
1537 switch (MASK_OP_MAJOR(insn)) {
1538 case OPC_RISC_ATOMIC:
1539 xinsn = insn;
1540 access_rs1 = GET_RS1(insn);
1541 access_size = 1 << GET_FUNCT3(insn);
1542 break;
1543 case OPC_RISC_LOAD:
1544 case OPC_RISC_FP_LOAD:
1545 xinsn = SET_I_IMM(insn, 0);
1546 access_rs1 = GET_RS1(insn);
1547 access_imm = GET_IMM(insn);
1548 access_size = 1 << GET_FUNCT3(insn);
1549 break;
1550 case OPC_RISC_STORE:
1551 case OPC_RISC_FP_STORE:
1552 xinsn = SET_S_IMM(insn, 0);
1553 access_rs1 = GET_RS1(insn);
1554 access_imm = GET_STORE_IMM(insn);
1555 access_size = 1 << GET_FUNCT3(insn);
1556 break;
1557 case OPC_RISC_SYSTEM:
1558 if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1559 xinsn = insn;
1560 access_rs1 = GET_RS1(insn);
1561 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1562 access_size = 1 << access_size;
1563 }
1564 break;
1565 default:
1566 break;
1567 }
1568 }
1569
1570 if (access_size) {
1571 xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1572 (access_size - 1));
1573 }
1574
1575 return xinsn;
1576 }
1577 #endif /* !CONFIG_USER_ONLY */
1578
1579 /*
1580 * Handle Traps
1581 *
1582 * Adapted from Spike's processor_t::take_trap.
1583 *
1584 */
1585 void riscv_cpu_do_interrupt(CPUState *cs)
1586 {
1587 #if !defined(CONFIG_USER_ONLY)
1588
1589 RISCVCPU *cpu = RISCV_CPU(cs);
1590 CPURISCVState *env = &cpu->env;
1591 bool write_gva = false;
1592 uint64_t s;
1593
1594 /*
1595 * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1596 * so we mask off the MSB and separate into trap type and cause.
1597 */
1598 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1599 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1600 uint64_t deleg = async ? env->mideleg : env->medeleg;
1601 target_ulong tval = 0;
1602 target_ulong tinst = 0;
1603 target_ulong htval = 0;
1604 target_ulong mtval2 = 0;
1605
1606 if (cause == RISCV_EXCP_SEMIHOST) {
1607 do_common_semihosting(cs);
1608 env->pc += 4;
1609 return;
1610 }
1611
1612 if (!async) {
1613 /* set tval to badaddr for traps with address information */
1614 switch (cause) {
1615 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1616 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1617 case RISCV_EXCP_LOAD_ADDR_MIS:
1618 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1619 case RISCV_EXCP_LOAD_ACCESS_FAULT:
1620 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1621 case RISCV_EXCP_LOAD_PAGE_FAULT:
1622 case RISCV_EXCP_STORE_PAGE_FAULT:
1623 write_gva = env->two_stage_lookup;
1624 tval = env->badaddr;
1625 if (env->two_stage_indirect_lookup) {
1626 /*
1627 * special pseudoinstruction for G-stage fault taken while
1628 * doing VS-stage page table walk.
1629 */
1630 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1631 } else {
1632 /*
1633 * The "Addr. Offset" field in transformed instruction is
1634 * non-zero only for misaligned access.
1635 */
1636 tinst = riscv_transformed_insn(env, env->bins, tval);
1637 }
1638 break;
1639 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1640 case RISCV_EXCP_INST_ADDR_MIS:
1641 case RISCV_EXCP_INST_ACCESS_FAULT:
1642 case RISCV_EXCP_INST_PAGE_FAULT:
1643 write_gva = env->two_stage_lookup;
1644 tval = env->badaddr;
1645 if (env->two_stage_indirect_lookup) {
1646 /*
1647 * special pseudoinstruction for G-stage fault taken while
1648 * doing VS-stage page table walk.
1649 */
1650 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1651 }
1652 break;
1653 case RISCV_EXCP_ILLEGAL_INST:
1654 case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
1655 tval = env->bins;
1656 break;
1657 case RISCV_EXCP_BREAKPOINT:
1658 if (cs->watchpoint_hit) {
1659 tval = cs->watchpoint_hit->hitaddr;
1660 cs->watchpoint_hit = NULL;
1661 }
1662 break;
1663 default:
1664 break;
1665 }
1666 /* ecall is dispatched as one cause so translate based on mode */
1667 if (cause == RISCV_EXCP_U_ECALL) {
1668 assert(env->priv <= 3);
1669
1670 if (env->priv == PRV_M) {
1671 cause = RISCV_EXCP_M_ECALL;
1672 } else if (env->priv == PRV_S && env->virt_enabled) {
1673 cause = RISCV_EXCP_VS_ECALL;
1674 } else if (env->priv == PRV_S && !env->virt_enabled) {
1675 cause = RISCV_EXCP_S_ECALL;
1676 } else if (env->priv == PRV_U) {
1677 cause = RISCV_EXCP_U_ECALL;
1678 }
1679 }
1680 }
1681
1682 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1683 riscv_cpu_get_trap_name(cause, async));
1684
1685 qemu_log_mask(CPU_LOG_INT,
1686 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1687 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1688 __func__, env->mhartid, async, cause, env->pc, tval,
1689 riscv_cpu_get_trap_name(cause, async));
1690
1691 if (env->priv <= PRV_S &&
1692 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1693 /* handle the trap in S-mode */
1694 if (riscv_has_ext(env, RVH)) {
1695 uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1696
1697 if (env->virt_enabled && ((hdeleg >> cause) & 1)) {
1698 /* Trap to VS mode */
1699 /*
1700 * See if we need to adjust cause. Yes if its VS mode interrupt
1701 * no if hypervisor has delegated one of hs mode's interrupt
1702 */
1703 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1704 cause == IRQ_VS_EXT) {
1705 cause = cause - 1;
1706 }
1707 write_gva = false;
1708 } else if (env->virt_enabled) {
1709 /* Trap into HS mode, from virt */
1710 riscv_cpu_swap_hypervisor_regs(env);
1711 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1712 env->priv);
1713 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true);
1714
1715 htval = env->guest_phys_fault_addr;
1716
1717 riscv_cpu_set_virt_enabled(env, 0);
1718 } else {
1719 /* Trap into HS mode */
1720 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1721 htval = env->guest_phys_fault_addr;
1722 }
1723 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1724 }
1725
1726 s = env->mstatus;
1727 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1728 s = set_field(s, MSTATUS_SPP, env->priv);
1729 s = set_field(s, MSTATUS_SIE, 0);
1730 env->mstatus = s;
1731 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1732 env->sepc = env->pc;
1733 env->stval = tval;
1734 env->htval = htval;
1735 env->htinst = tinst;
1736 env->pc = (env->stvec >> 2 << 2) +
1737 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1738 riscv_cpu_set_mode(env, PRV_S);
1739 } else {
1740 /* handle the trap in M-mode */
1741 if (riscv_has_ext(env, RVH)) {
1742 if (env->virt_enabled) {
1743 riscv_cpu_swap_hypervisor_regs(env);
1744 }
1745 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1746 env->virt_enabled);
1747 if (env->virt_enabled && tval) {
1748 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1749 }
1750
1751 mtval2 = env->guest_phys_fault_addr;
1752
1753 /* Trapping to M mode, virt is disabled */
1754 riscv_cpu_set_virt_enabled(env, 0);
1755 }
1756
1757 s = env->mstatus;
1758 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1759 s = set_field(s, MSTATUS_MPP, env->priv);
1760 s = set_field(s, MSTATUS_MIE, 0);
1761 env->mstatus = s;
1762 env->mcause = cause | ~(((target_ulong)-1) >> async);
1763 env->mepc = env->pc;
1764 env->mtval = tval;
1765 env->mtval2 = mtval2;
1766 env->mtinst = tinst;
1767 env->pc = (env->mtvec >> 2 << 2) +
1768 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1769 riscv_cpu_set_mode(env, PRV_M);
1770 }
1771
1772 /*
1773 * NOTE: it is not necessary to yield load reservations here. It is only
1774 * necessary for an SC from "another hart" to cause a load reservation
1775 * to be yielded. Refer to the memory consistency model section of the
1776 * RISC-V ISA Specification.
1777 */
1778
1779 env->two_stage_lookup = false;
1780 env->two_stage_indirect_lookup = false;
1781 #endif
1782 cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
1783 }