]> git.proxmox.com Git - mirror_qemu.git/blob - target/riscv/cpu_helper.c
Merge tag 'pull-vfio-20230911' of https://github.com/legoater/qemu into staging
[mirror_qemu.git] / target / riscv / cpu_helper.c
1 /*
2 * RISC-V CPU helpers for qemu.
3 *
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "internals.h"
25 #include "pmu.h"
26 #include "exec/exec-all.h"
27 #include "instmap.h"
28 #include "tcg/tcg-op.h"
29 #include "trace.h"
30 #include "semihosting/common-semi.h"
31 #include "sysemu/cpu-timers.h"
32 #include "cpu_bits.h"
33 #include "debug.h"
34 #include "tcg/oversized-guest.h"
35
36 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
37 {
38 #ifdef CONFIG_USER_ONLY
39 return 0;
40 #else
41 bool virt = env->virt_enabled;
42 int mode = env->priv;
43
44 /* All priv -> mmu_idx mapping are here */
45 if (!ifetch) {
46 uint64_t status = env->mstatus;
47
48 if (mode == PRV_M && get_field(status, MSTATUS_MPRV)) {
49 mode = get_field(env->mstatus, MSTATUS_MPP);
50 virt = get_field(env->mstatus, MSTATUS_MPV) &&
51 (mode != PRV_M);
52 if (virt) {
53 status = env->vsstatus;
54 }
55 }
56 if (mode == PRV_S && get_field(status, MSTATUS_SUM)) {
57 mode = MMUIdx_S_SUM;
58 }
59 }
60
61 return mode | (virt ? MMU_2STAGE_BIT : 0);
62 #endif
63 }
64
65 void cpu_get_tb_cpu_state(CPURISCVState *env, vaddr *pc,
66 uint64_t *cs_base, uint32_t *pflags)
67 {
68 CPUState *cs = env_cpu(env);
69 RISCVCPU *cpu = RISCV_CPU(cs);
70 RISCVExtStatus fs, vs;
71 uint32_t flags = 0;
72
73 *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
74 *cs_base = 0;
75
76 if (cpu->cfg.ext_zve32f) {
77 /*
78 * If env->vl equals to VLMAX, we can use generic vector operation
79 * expanders (GVEC) to accerlate the vector operations.
80 * However, as LMUL could be a fractional number. The maximum
81 * vector size can be operated might be less than 8 bytes,
82 * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
83 * only when maxsz >= 8 bytes.
84 */
85 uint32_t vlmax = vext_get_vlmax(cpu, env->vtype);
86 uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
87 uint32_t maxsz = vlmax << sew;
88 bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
89 (maxsz >= 8);
90 flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
91 flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
92 flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
93 FIELD_EX64(env->vtype, VTYPE, VLMUL));
94 flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
95 flags = FIELD_DP32(flags, TB_FLAGS, VTA,
96 FIELD_EX64(env->vtype, VTYPE, VTA));
97 flags = FIELD_DP32(flags, TB_FLAGS, VMA,
98 FIELD_EX64(env->vtype, VTYPE, VMA));
99 flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0);
100 } else {
101 flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
102 }
103
104 #ifdef CONFIG_USER_ONLY
105 fs = EXT_STATUS_DIRTY;
106 vs = EXT_STATUS_DIRTY;
107 #else
108 flags = FIELD_DP32(flags, TB_FLAGS, PRIV, env->priv);
109
110 flags |= cpu_mmu_index(env, 0);
111 fs = get_field(env->mstatus, MSTATUS_FS);
112 vs = get_field(env->mstatus, MSTATUS_VS);
113
114 if (env->virt_enabled) {
115 flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1);
116 /*
117 * Merge DISABLED and !DIRTY states using MIN.
118 * We will set both fields when dirtying.
119 */
120 fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS));
121 vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS));
122 }
123
124 /* With Zfinx, floating point is enabled/disabled by Smstateen. */
125 if (!riscv_has_ext(env, RVF)) {
126 fs = (smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR) == RISCV_EXCP_NONE)
127 ? EXT_STATUS_DIRTY : EXT_STATUS_DISABLED;
128 }
129
130 if (cpu->cfg.debug && !icount_enabled()) {
131 flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled);
132 }
133 #endif
134
135 flags = FIELD_DP32(flags, TB_FLAGS, FS, fs);
136 flags = FIELD_DP32(flags, TB_FLAGS, VS, vs);
137 flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
138 flags = FIELD_DP32(flags, TB_FLAGS, AXL, cpu_address_xl(env));
139 if (env->cur_pmmask != 0) {
140 flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
141 }
142 if (env->cur_pmbase != 0) {
143 flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
144 }
145
146 *pflags = flags;
147 }
148
149 void riscv_cpu_update_mask(CPURISCVState *env)
150 {
151 target_ulong mask = 0, base = 0;
152 RISCVMXL xl = env->xl;
153 /*
154 * TODO: Current RVJ spec does not specify
155 * how the extension interacts with XLEN.
156 */
157 #ifndef CONFIG_USER_ONLY
158 int mode = cpu_address_mode(env);
159 xl = cpu_get_xl(env, mode);
160 if (riscv_has_ext(env, RVJ)) {
161 switch (mode) {
162 case PRV_M:
163 if (env->mmte & M_PM_ENABLE) {
164 mask = env->mpmmask;
165 base = env->mpmbase;
166 }
167 break;
168 case PRV_S:
169 if (env->mmte & S_PM_ENABLE) {
170 mask = env->spmmask;
171 base = env->spmbase;
172 }
173 break;
174 case PRV_U:
175 if (env->mmte & U_PM_ENABLE) {
176 mask = env->upmmask;
177 base = env->upmbase;
178 }
179 break;
180 default:
181 g_assert_not_reached();
182 }
183 }
184 #endif
185 if (xl == MXL_RV32) {
186 env->cur_pmmask = mask & UINT32_MAX;
187 env->cur_pmbase = base & UINT32_MAX;
188 } else {
189 env->cur_pmmask = mask;
190 env->cur_pmbase = base;
191 }
192 }
193
194 #ifndef CONFIG_USER_ONLY
195
196 /*
197 * The HS-mode is allowed to configure priority only for the
198 * following VS-mode local interrupts:
199 *
200 * 0 (Reserved interrupt, reads as zero)
201 * 1 Supervisor software interrupt
202 * 4 (Reserved interrupt, reads as zero)
203 * 5 Supervisor timer interrupt
204 * 8 (Reserved interrupt, reads as zero)
205 * 13 (Reserved interrupt)
206 * 14 "
207 * 15 "
208 * 16 "
209 * 17 "
210 * 18 "
211 * 19 "
212 * 20 "
213 * 21 "
214 * 22 "
215 * 23 "
216 */
217
218 static const int hviprio_index2irq[] = {
219 0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
220 static const int hviprio_index2rdzero[] = {
221 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
222
223 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
224 {
225 if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
226 return -EINVAL;
227 }
228
229 if (out_irq) {
230 *out_irq = hviprio_index2irq[index];
231 }
232
233 if (out_rdzero) {
234 *out_rdzero = hviprio_index2rdzero[index];
235 }
236
237 return 0;
238 }
239
240 /*
241 * Default priorities of local interrupts are defined in the
242 * RISC-V Advanced Interrupt Architecture specification.
243 *
244 * ----------------------------------------------------------------
245 * Default |
246 * Priority | Major Interrupt Numbers
247 * ----------------------------------------------------------------
248 * Highest | 47, 23, 46, 45, 22, 44,
249 * | 43, 21, 42, 41, 20, 40
250 * |
251 * | 11 (0b), 3 (03), 7 (07)
252 * | 9 (09), 1 (01), 5 (05)
253 * | 12 (0c)
254 * | 10 (0a), 2 (02), 6 (06)
255 * |
256 * | 39, 19, 38, 37, 18, 36,
257 * Lowest | 35, 17, 34, 33, 16, 32
258 * ----------------------------------------------------------------
259 */
260 static const uint8_t default_iprio[64] = {
261 /* Custom interrupts 48 to 63 */
262 [63] = IPRIO_MMAXIPRIO,
263 [62] = IPRIO_MMAXIPRIO,
264 [61] = IPRIO_MMAXIPRIO,
265 [60] = IPRIO_MMAXIPRIO,
266 [59] = IPRIO_MMAXIPRIO,
267 [58] = IPRIO_MMAXIPRIO,
268 [57] = IPRIO_MMAXIPRIO,
269 [56] = IPRIO_MMAXIPRIO,
270 [55] = IPRIO_MMAXIPRIO,
271 [54] = IPRIO_MMAXIPRIO,
272 [53] = IPRIO_MMAXIPRIO,
273 [52] = IPRIO_MMAXIPRIO,
274 [51] = IPRIO_MMAXIPRIO,
275 [50] = IPRIO_MMAXIPRIO,
276 [49] = IPRIO_MMAXIPRIO,
277 [48] = IPRIO_MMAXIPRIO,
278
279 /* Custom interrupts 24 to 31 */
280 [31] = IPRIO_MMAXIPRIO,
281 [30] = IPRIO_MMAXIPRIO,
282 [29] = IPRIO_MMAXIPRIO,
283 [28] = IPRIO_MMAXIPRIO,
284 [27] = IPRIO_MMAXIPRIO,
285 [26] = IPRIO_MMAXIPRIO,
286 [25] = IPRIO_MMAXIPRIO,
287 [24] = IPRIO_MMAXIPRIO,
288
289 [47] = IPRIO_DEFAULT_UPPER,
290 [23] = IPRIO_DEFAULT_UPPER + 1,
291 [46] = IPRIO_DEFAULT_UPPER + 2,
292 [45] = IPRIO_DEFAULT_UPPER + 3,
293 [22] = IPRIO_DEFAULT_UPPER + 4,
294 [44] = IPRIO_DEFAULT_UPPER + 5,
295
296 [43] = IPRIO_DEFAULT_UPPER + 6,
297 [21] = IPRIO_DEFAULT_UPPER + 7,
298 [42] = IPRIO_DEFAULT_UPPER + 8,
299 [41] = IPRIO_DEFAULT_UPPER + 9,
300 [20] = IPRIO_DEFAULT_UPPER + 10,
301 [40] = IPRIO_DEFAULT_UPPER + 11,
302
303 [11] = IPRIO_DEFAULT_M,
304 [3] = IPRIO_DEFAULT_M + 1,
305 [7] = IPRIO_DEFAULT_M + 2,
306
307 [9] = IPRIO_DEFAULT_S,
308 [1] = IPRIO_DEFAULT_S + 1,
309 [5] = IPRIO_DEFAULT_S + 2,
310
311 [12] = IPRIO_DEFAULT_SGEXT,
312
313 [10] = IPRIO_DEFAULT_VS,
314 [2] = IPRIO_DEFAULT_VS + 1,
315 [6] = IPRIO_DEFAULT_VS + 2,
316
317 [39] = IPRIO_DEFAULT_LOWER,
318 [19] = IPRIO_DEFAULT_LOWER + 1,
319 [38] = IPRIO_DEFAULT_LOWER + 2,
320 [37] = IPRIO_DEFAULT_LOWER + 3,
321 [18] = IPRIO_DEFAULT_LOWER + 4,
322 [36] = IPRIO_DEFAULT_LOWER + 5,
323
324 [35] = IPRIO_DEFAULT_LOWER + 6,
325 [17] = IPRIO_DEFAULT_LOWER + 7,
326 [34] = IPRIO_DEFAULT_LOWER + 8,
327 [33] = IPRIO_DEFAULT_LOWER + 9,
328 [16] = IPRIO_DEFAULT_LOWER + 10,
329 [32] = IPRIO_DEFAULT_LOWER + 11,
330 };
331
332 uint8_t riscv_cpu_default_priority(int irq)
333 {
334 if (irq < 0 || irq > 63) {
335 return IPRIO_MMAXIPRIO;
336 }
337
338 return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
339 };
340
341 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
342 int extirq, unsigned int extirq_def_prio,
343 uint64_t pending, uint8_t *iprio)
344 {
345 int irq, best_irq = RISCV_EXCP_NONE;
346 unsigned int prio, best_prio = UINT_MAX;
347
348 if (!pending) {
349 return RISCV_EXCP_NONE;
350 }
351
352 irq = ctz64(pending);
353 if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia :
354 riscv_cpu_cfg(env)->ext_ssaia)) {
355 return irq;
356 }
357
358 pending = pending >> irq;
359 while (pending) {
360 prio = iprio[irq];
361 if (!prio) {
362 if (irq == extirq) {
363 prio = extirq_def_prio;
364 } else {
365 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
366 1 : IPRIO_MMAXIPRIO;
367 }
368 }
369 if ((pending & 0x1) && (prio <= best_prio)) {
370 best_irq = irq;
371 best_prio = prio;
372 }
373 irq++;
374 pending = pending >> 1;
375 }
376
377 return best_irq;
378 }
379
380 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
381 {
382 uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
383 uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
384 uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
385
386 return (env->mip | vsgein | vstip) & env->mie;
387 }
388
389 int riscv_cpu_mirq_pending(CPURISCVState *env)
390 {
391 uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
392 ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
393
394 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
395 irqs, env->miprio);
396 }
397
398 int riscv_cpu_sirq_pending(CPURISCVState *env)
399 {
400 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
401 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
402
403 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
404 irqs, env->siprio);
405 }
406
407 int riscv_cpu_vsirq_pending(CPURISCVState *env)
408 {
409 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
410 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
411
412 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
413 irqs >> 1, env->hviprio);
414 }
415
416 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
417 {
418 int virq;
419 uint64_t irqs, pending, mie, hsie, vsie;
420
421 /* Determine interrupt enable state of all privilege modes */
422 if (env->virt_enabled) {
423 mie = 1;
424 hsie = 1;
425 vsie = (env->priv < PRV_S) ||
426 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
427 } else {
428 mie = (env->priv < PRV_M) ||
429 (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
430 hsie = (env->priv < PRV_S) ||
431 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
432 vsie = 0;
433 }
434
435 /* Determine all pending interrupts */
436 pending = riscv_cpu_all_pending(env);
437
438 /* Check M-mode interrupts */
439 irqs = pending & ~env->mideleg & -mie;
440 if (irqs) {
441 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
442 irqs, env->miprio);
443 }
444
445 /* Check HS-mode interrupts */
446 irqs = pending & env->mideleg & ~env->hideleg & -hsie;
447 if (irqs) {
448 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
449 irqs, env->siprio);
450 }
451
452 /* Check VS-mode interrupts */
453 irqs = pending & env->mideleg & env->hideleg & -vsie;
454 if (irqs) {
455 virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
456 irqs >> 1, env->hviprio);
457 return (virq <= 0) ? virq : virq + 1;
458 }
459
460 /* Indicate no pending interrupt */
461 return RISCV_EXCP_NONE;
462 }
463
464 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
465 {
466 if (interrupt_request & CPU_INTERRUPT_HARD) {
467 RISCVCPU *cpu = RISCV_CPU(cs);
468 CPURISCVState *env = &cpu->env;
469 int interruptno = riscv_cpu_local_irq_pending(env);
470 if (interruptno >= 0) {
471 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
472 riscv_cpu_do_interrupt(cs);
473 return true;
474 }
475 }
476 return false;
477 }
478
479 /* Return true is floating point support is currently enabled */
480 bool riscv_cpu_fp_enabled(CPURISCVState *env)
481 {
482 if (env->mstatus & MSTATUS_FS) {
483 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) {
484 return false;
485 }
486 return true;
487 }
488
489 return false;
490 }
491
492 /* Return true is vector support is currently enabled */
493 bool riscv_cpu_vector_enabled(CPURISCVState *env)
494 {
495 if (env->mstatus & MSTATUS_VS) {
496 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) {
497 return false;
498 }
499 return true;
500 }
501
502 return false;
503 }
504
505 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
506 {
507 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
508 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
509 MSTATUS64_UXL | MSTATUS_VS;
510
511 if (riscv_has_ext(env, RVF)) {
512 mstatus_mask |= MSTATUS_FS;
513 }
514 bool current_virt = env->virt_enabled;
515
516 g_assert(riscv_has_ext(env, RVH));
517
518 if (current_virt) {
519 /* Current V=1 and we are about to change to V=0 */
520 env->vsstatus = env->mstatus & mstatus_mask;
521 env->mstatus &= ~mstatus_mask;
522 env->mstatus |= env->mstatus_hs;
523
524 env->vstvec = env->stvec;
525 env->stvec = env->stvec_hs;
526
527 env->vsscratch = env->sscratch;
528 env->sscratch = env->sscratch_hs;
529
530 env->vsepc = env->sepc;
531 env->sepc = env->sepc_hs;
532
533 env->vscause = env->scause;
534 env->scause = env->scause_hs;
535
536 env->vstval = env->stval;
537 env->stval = env->stval_hs;
538
539 env->vsatp = env->satp;
540 env->satp = env->satp_hs;
541 } else {
542 /* Current V=0 and we are about to change to V=1 */
543 env->mstatus_hs = env->mstatus & mstatus_mask;
544 env->mstatus &= ~mstatus_mask;
545 env->mstatus |= env->vsstatus;
546
547 env->stvec_hs = env->stvec;
548 env->stvec = env->vstvec;
549
550 env->sscratch_hs = env->sscratch;
551 env->sscratch = env->vsscratch;
552
553 env->sepc_hs = env->sepc;
554 env->sepc = env->vsepc;
555
556 env->scause_hs = env->scause;
557 env->scause = env->vscause;
558
559 env->stval_hs = env->stval;
560 env->stval = env->vstval;
561
562 env->satp_hs = env->satp;
563 env->satp = env->vsatp;
564 }
565 }
566
567 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
568 {
569 if (!riscv_has_ext(env, RVH)) {
570 return 0;
571 }
572
573 return env->geilen;
574 }
575
576 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
577 {
578 if (!riscv_has_ext(env, RVH)) {
579 return;
580 }
581
582 if (geilen > (TARGET_LONG_BITS - 1)) {
583 return;
584 }
585
586 env->geilen = geilen;
587 }
588
589 /* This function can only be called to set virt when RVH is enabled */
590 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
591 {
592 /* Flush the TLB on all virt mode changes. */
593 if (env->virt_enabled != enable) {
594 tlb_flush(env_cpu(env));
595 }
596
597 env->virt_enabled = enable;
598
599 if (enable) {
600 /*
601 * The guest external interrupts from an interrupt controller are
602 * delivered only when the Guest/VM is running (i.e. V=1). This means
603 * any guest external interrupt which is triggered while the Guest/VM
604 * is not running (i.e. V=0) will be missed on QEMU resulting in guest
605 * with sluggish response to serial console input and other I/O events.
606 *
607 * To solve this, we check and inject interrupt after setting V=1.
608 */
609 riscv_cpu_update_mip(env, 0, 0);
610 }
611 }
612
613 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
614 {
615 CPURISCVState *env = &cpu->env;
616 if (env->miclaim & interrupts) {
617 return -1;
618 } else {
619 env->miclaim |= interrupts;
620 return 0;
621 }
622 }
623
624 uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask,
625 uint64_t value)
626 {
627 CPUState *cs = env_cpu(env);
628 uint64_t gein, vsgein = 0, vstip = 0, old = env->mip;
629
630 if (env->virt_enabled) {
631 gein = get_field(env->hstatus, HSTATUS_VGEIN);
632 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
633 }
634
635 vstip = env->vstime_irq ? MIP_VSTIP : 0;
636
637 QEMU_IOTHREAD_LOCK_GUARD();
638
639 env->mip = (env->mip & ~mask) | (value & mask);
640
641 if (env->mip | vsgein | vstip) {
642 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
643 } else {
644 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
645 }
646
647 return old;
648 }
649
650 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
651 void *arg)
652 {
653 env->rdtime_fn = fn;
654 env->rdtime_fn_arg = arg;
655 }
656
657 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
658 int (*rmw_fn)(void *arg,
659 target_ulong reg,
660 target_ulong *val,
661 target_ulong new_val,
662 target_ulong write_mask),
663 void *rmw_fn_arg)
664 {
665 if (priv <= PRV_M) {
666 env->aia_ireg_rmw_fn[priv] = rmw_fn;
667 env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
668 }
669 }
670
671 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
672 {
673 g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED);
674
675 if (icount_enabled() && newpriv != env->priv) {
676 riscv_itrigger_update_priv(env);
677 }
678 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
679 env->priv = newpriv;
680 env->xl = cpu_recompute_xl(env);
681 riscv_cpu_update_mask(env);
682
683 /*
684 * Clear the load reservation - otherwise a reservation placed in one
685 * context/process can be used by another, resulting in an SC succeeding
686 * incorrectly. Version 2.2 of the ISA specification explicitly requires
687 * this behaviour, while later revisions say that the kernel "should" use
688 * an SC instruction to force the yielding of a load reservation on a
689 * preemptive context switch. As a result, do both.
690 */
691 env->load_res = -1;
692 }
693
694 /*
695 * get_physical_address_pmp - check PMP permission for this physical address
696 *
697 * Match the PMP region and check permission for this physical address and it's
698 * TLB page. Returns 0 if the permission checking was successful
699 *
700 * @env: CPURISCVState
701 * @prot: The returned protection attributes
702 * @addr: The physical address to be checked permission
703 * @access_type: The type of MMU access
704 * @mode: Indicates current privilege level.
705 */
706 static int get_physical_address_pmp(CPURISCVState *env, int *prot, hwaddr addr,
707 int size, MMUAccessType access_type,
708 int mode)
709 {
710 pmp_priv_t pmp_priv;
711 bool pmp_has_privs;
712
713 if (!riscv_cpu_cfg(env)->pmp) {
714 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
715 return TRANSLATE_SUCCESS;
716 }
717
718 pmp_has_privs = pmp_hart_has_privs(env, addr, size, 1 << access_type,
719 &pmp_priv, mode);
720 if (!pmp_has_privs) {
721 *prot = 0;
722 return TRANSLATE_PMP_FAIL;
723 }
724
725 *prot = pmp_priv_to_page_prot(pmp_priv);
726
727 return TRANSLATE_SUCCESS;
728 }
729
730 /*
731 * get_physical_address - get the physical address for this virtual address
732 *
733 * Do a page table walk to obtain the physical address corresponding to a
734 * virtual address. Returns 0 if the translation was successful
735 *
736 * Adapted from Spike's mmu_t::translate and mmu_t::walk
737 *
738 * @env: CPURISCVState
739 * @physical: This will be set to the calculated physical address
740 * @prot: The returned protection attributes
741 * @addr: The virtual address or guest physical address to be translated
742 * @fault_pte_addr: If not NULL, this will be set to fault pte address
743 * when a error occurs on pte address translation.
744 * This will already be shifted to match htval.
745 * @access_type: The type of MMU access
746 * @mmu_idx: Indicates current privilege level
747 * @first_stage: Are we in first stage translation?
748 * Second stage is used for hypervisor guest translation
749 * @two_stage: Are we going to perform two stage translation
750 * @is_debug: Is this access from a debugger or the monitor?
751 */
752 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
753 int *ret_prot, vaddr addr,
754 target_ulong *fault_pte_addr,
755 int access_type, int mmu_idx,
756 bool first_stage, bool two_stage,
757 bool is_debug)
758 {
759 /*
760 * NOTE: the env->pc value visible here will not be
761 * correct, but the value visible to the exception handler
762 * (riscv_cpu_do_interrupt) is correct
763 */
764 MemTxResult res;
765 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
766 int mode = mmuidx_priv(mmu_idx);
767 bool use_background = false;
768 hwaddr ppn;
769 int napot_bits = 0;
770 target_ulong napot_mask;
771
772 /*
773 * Check if we should use the background registers for the two
774 * stage translation. We don't need to check if we actually need
775 * two stage translation as that happened before this function
776 * was called. Background registers will be used if the guest has
777 * forced a two stage translation to be on (in HS or M mode).
778 */
779 if (!env->virt_enabled && two_stage) {
780 use_background = true;
781 }
782
783 if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) {
784 *physical = addr;
785 *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
786 return TRANSLATE_SUCCESS;
787 }
788
789 *ret_prot = 0;
790
791 hwaddr base;
792 int levels, ptidxbits, ptesize, vm, widened;
793
794 if (first_stage == true) {
795 if (use_background) {
796 if (riscv_cpu_mxl(env) == MXL_RV32) {
797 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
798 vm = get_field(env->vsatp, SATP32_MODE);
799 } else {
800 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
801 vm = get_field(env->vsatp, SATP64_MODE);
802 }
803 } else {
804 if (riscv_cpu_mxl(env) == MXL_RV32) {
805 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
806 vm = get_field(env->satp, SATP32_MODE);
807 } else {
808 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
809 vm = get_field(env->satp, SATP64_MODE);
810 }
811 }
812 widened = 0;
813 } else {
814 if (riscv_cpu_mxl(env) == MXL_RV32) {
815 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
816 vm = get_field(env->hgatp, SATP32_MODE);
817 } else {
818 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
819 vm = get_field(env->hgatp, SATP64_MODE);
820 }
821 widened = 2;
822 }
823
824 switch (vm) {
825 case VM_1_10_SV32:
826 levels = 2; ptidxbits = 10; ptesize = 4; break;
827 case VM_1_10_SV39:
828 levels = 3; ptidxbits = 9; ptesize = 8; break;
829 case VM_1_10_SV48:
830 levels = 4; ptidxbits = 9; ptesize = 8; break;
831 case VM_1_10_SV57:
832 levels = 5; ptidxbits = 9; ptesize = 8; break;
833 case VM_1_10_MBARE:
834 *physical = addr;
835 *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
836 return TRANSLATE_SUCCESS;
837 default:
838 g_assert_not_reached();
839 }
840
841 CPUState *cs = env_cpu(env);
842 int va_bits = PGSHIFT + levels * ptidxbits + widened;
843
844 if (first_stage == true) {
845 target_ulong mask, masked_msbs;
846
847 if (TARGET_LONG_BITS > (va_bits - 1)) {
848 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
849 } else {
850 mask = 0;
851 }
852 masked_msbs = (addr >> (va_bits - 1)) & mask;
853
854 if (masked_msbs != 0 && masked_msbs != mask) {
855 return TRANSLATE_FAIL;
856 }
857 } else {
858 if (vm != VM_1_10_SV32 && addr >> va_bits != 0) {
859 return TRANSLATE_FAIL;
860 }
861 }
862
863 bool pbmte = env->menvcfg & MENVCFG_PBMTE;
864 bool adue = env->menvcfg & MENVCFG_ADUE;
865
866 if (first_stage && two_stage && env->virt_enabled) {
867 pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE);
868 adue = adue && (env->henvcfg & HENVCFG_ADUE);
869 }
870
871 int ptshift = (levels - 1) * ptidxbits;
872 target_ulong pte;
873 hwaddr pte_addr;
874 int i;
875
876 #if !TCG_OVERSIZED_GUEST
877 restart:
878 #endif
879 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
880 target_ulong idx;
881 if (i == 0) {
882 idx = (addr >> (PGSHIFT + ptshift)) &
883 ((1 << (ptidxbits + widened)) - 1);
884 } else {
885 idx = (addr >> (PGSHIFT + ptshift)) &
886 ((1 << ptidxbits) - 1);
887 }
888
889 /* check that physical address of PTE is legal */
890
891 if (two_stage && first_stage) {
892 int vbase_prot;
893 hwaddr vbase;
894
895 /* Do the second stage translation on the base PTE address. */
896 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
897 base, NULL, MMU_DATA_LOAD,
898 MMUIdx_U, false, true,
899 is_debug);
900
901 if (vbase_ret != TRANSLATE_SUCCESS) {
902 if (fault_pte_addr) {
903 *fault_pte_addr = (base + idx * ptesize) >> 2;
904 }
905 return TRANSLATE_G_STAGE_FAIL;
906 }
907
908 pte_addr = vbase + idx * ptesize;
909 } else {
910 pte_addr = base + idx * ptesize;
911 }
912
913 int pmp_prot;
914 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, pte_addr,
915 sizeof(target_ulong),
916 MMU_DATA_LOAD, PRV_S);
917 if (pmp_ret != TRANSLATE_SUCCESS) {
918 return TRANSLATE_PMP_FAIL;
919 }
920
921 if (riscv_cpu_mxl(env) == MXL_RV32) {
922 pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
923 } else {
924 pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
925 }
926
927 if (res != MEMTX_OK) {
928 return TRANSLATE_FAIL;
929 }
930
931 if (riscv_cpu_sxl(env) == MXL_RV32) {
932 ppn = pte >> PTE_PPN_SHIFT;
933 } else {
934 if (pte & PTE_RESERVED) {
935 return TRANSLATE_FAIL;
936 }
937
938 if (!pbmte && (pte & PTE_PBMT)) {
939 return TRANSLATE_FAIL;
940 }
941
942 if (!riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
943 return TRANSLATE_FAIL;
944 }
945
946 ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
947 }
948
949 if (!(pte & PTE_V)) {
950 /* Invalid PTE */
951 return TRANSLATE_FAIL;
952 }
953 if (pte & (PTE_R | PTE_W | PTE_X)) {
954 goto leaf;
955 }
956
957 /* Inner PTE, continue walking */
958 if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
959 return TRANSLATE_FAIL;
960 }
961 base = ppn << PGSHIFT;
962 }
963
964 /* No leaf pte at any translation level. */
965 return TRANSLATE_FAIL;
966
967 leaf:
968 if (ppn & ((1ULL << ptshift) - 1)) {
969 /* Misaligned PPN */
970 return TRANSLATE_FAIL;
971 }
972 if (!pbmte && (pte & PTE_PBMT)) {
973 /* Reserved without Svpbmt. */
974 return TRANSLATE_FAIL;
975 }
976
977 /* Check for reserved combinations of RWX flags. */
978 switch (pte & (PTE_R | PTE_W | PTE_X)) {
979 case PTE_W:
980 case PTE_W | PTE_X:
981 return TRANSLATE_FAIL;
982 }
983
984 int prot = 0;
985 if (pte & PTE_R) {
986 prot |= PAGE_READ;
987 }
988 if (pte & PTE_W) {
989 prot |= PAGE_WRITE;
990 }
991 if (pte & PTE_X) {
992 bool mxr;
993
994 if (first_stage == true) {
995 mxr = get_field(env->mstatus, MSTATUS_MXR);
996 } else {
997 mxr = get_field(env->vsstatus, MSTATUS_MXR);
998 }
999 if (mxr) {
1000 prot |= PAGE_READ;
1001 }
1002 prot |= PAGE_EXEC;
1003 }
1004
1005 if (pte & PTE_U) {
1006 if (mode != PRV_U) {
1007 if (!mmuidx_sum(mmu_idx)) {
1008 return TRANSLATE_FAIL;
1009 }
1010 /* SUM allows only read+write, not execute. */
1011 prot &= PAGE_READ | PAGE_WRITE;
1012 }
1013 } else if (mode != PRV_S) {
1014 /* Supervisor PTE flags when not S mode */
1015 return TRANSLATE_FAIL;
1016 }
1017
1018 if (!((prot >> access_type) & 1)) {
1019 /* Access check failed */
1020 return TRANSLATE_FAIL;
1021 }
1022
1023 /* If necessary, set accessed and dirty bits. */
1024 target_ulong updated_pte = pte | PTE_A |
1025 (access_type == MMU_DATA_STORE ? PTE_D : 0);
1026
1027 /* Page table updates need to be atomic with MTTCG enabled */
1028 if (updated_pte != pte && !is_debug) {
1029 if (!adue) {
1030 return TRANSLATE_FAIL;
1031 }
1032
1033 /*
1034 * - if accessed or dirty bits need updating, and the PTE is
1035 * in RAM, then we do so atomically with a compare and swap.
1036 * - if the PTE is in IO space or ROM, then it can't be updated
1037 * and we return TRANSLATE_FAIL.
1038 * - if the PTE changed by the time we went to update it, then
1039 * it is no longer valid and we must re-walk the page table.
1040 */
1041 MemoryRegion *mr;
1042 hwaddr l = sizeof(target_ulong), addr1;
1043 mr = address_space_translate(cs->as, pte_addr, &addr1, &l,
1044 false, MEMTXATTRS_UNSPECIFIED);
1045 if (memory_region_is_ram(mr)) {
1046 target_ulong *pte_pa = qemu_map_ram_ptr(mr->ram_block, addr1);
1047 #if TCG_OVERSIZED_GUEST
1048 /*
1049 * MTTCG is not enabled on oversized TCG guests so
1050 * page table updates do not need to be atomic
1051 */
1052 *pte_pa = pte = updated_pte;
1053 #else
1054 target_ulong old_pte = qatomic_cmpxchg(pte_pa, pte, updated_pte);
1055 if (old_pte != pte) {
1056 goto restart;
1057 }
1058 pte = updated_pte;
1059 #endif
1060 } else {
1061 /*
1062 * Misconfigured PTE in ROM (AD bits are not preset) or
1063 * PTE is in IO space and can't be updated atomically.
1064 */
1065 return TRANSLATE_FAIL;
1066 }
1067 }
1068
1069 /* For superpage mappings, make a fake leaf PTE for the TLB's benefit. */
1070 target_ulong vpn = addr >> PGSHIFT;
1071
1072 if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
1073 napot_bits = ctzl(ppn) + 1;
1074 if ((i != (levels - 1)) || (napot_bits != 4)) {
1075 return TRANSLATE_FAIL;
1076 }
1077 }
1078
1079 napot_mask = (1 << napot_bits) - 1;
1080 *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1081 (vpn & (((target_ulong)1 << ptshift) - 1))
1082 ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1083
1084 /*
1085 * Remove write permission unless this is a store, or the page is
1086 * already dirty, so that we TLB miss on later writes to update
1087 * the dirty bit.
1088 */
1089 if (access_type != MMU_DATA_STORE && !(pte & PTE_D)) {
1090 prot &= ~PAGE_WRITE;
1091 }
1092 *ret_prot = prot;
1093
1094 return TRANSLATE_SUCCESS;
1095 }
1096
1097 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1098 MMUAccessType access_type, bool pmp_violation,
1099 bool first_stage, bool two_stage,
1100 bool two_stage_indirect)
1101 {
1102 CPUState *cs = env_cpu(env);
1103 int page_fault_exceptions, vm;
1104 uint64_t stap_mode;
1105
1106 if (riscv_cpu_mxl(env) == MXL_RV32) {
1107 stap_mode = SATP32_MODE;
1108 } else {
1109 stap_mode = SATP64_MODE;
1110 }
1111
1112 if (first_stage) {
1113 vm = get_field(env->satp, stap_mode);
1114 } else {
1115 vm = get_field(env->hgatp, stap_mode);
1116 }
1117
1118 page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1119
1120 switch (access_type) {
1121 case MMU_INST_FETCH:
1122 if (env->virt_enabled && !first_stage) {
1123 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1124 } else {
1125 cs->exception_index = page_fault_exceptions ?
1126 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1127 }
1128 break;
1129 case MMU_DATA_LOAD:
1130 if (two_stage && !first_stage) {
1131 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1132 } else {
1133 cs->exception_index = page_fault_exceptions ?
1134 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1135 }
1136 break;
1137 case MMU_DATA_STORE:
1138 if (two_stage && !first_stage) {
1139 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1140 } else {
1141 cs->exception_index = page_fault_exceptions ?
1142 RISCV_EXCP_STORE_PAGE_FAULT :
1143 RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1144 }
1145 break;
1146 default:
1147 g_assert_not_reached();
1148 }
1149 env->badaddr = address;
1150 env->two_stage_lookup = two_stage;
1151 env->two_stage_indirect_lookup = two_stage_indirect;
1152 }
1153
1154 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1155 {
1156 RISCVCPU *cpu = RISCV_CPU(cs);
1157 CPURISCVState *env = &cpu->env;
1158 hwaddr phys_addr;
1159 int prot;
1160 int mmu_idx = cpu_mmu_index(&cpu->env, false);
1161
1162 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1163 true, env->virt_enabled, true)) {
1164 return -1;
1165 }
1166
1167 if (env->virt_enabled) {
1168 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1169 0, mmu_idx, false, true, true)) {
1170 return -1;
1171 }
1172 }
1173
1174 return phys_addr & TARGET_PAGE_MASK;
1175 }
1176
1177 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1178 vaddr addr, unsigned size,
1179 MMUAccessType access_type,
1180 int mmu_idx, MemTxAttrs attrs,
1181 MemTxResult response, uintptr_t retaddr)
1182 {
1183 RISCVCPU *cpu = RISCV_CPU(cs);
1184 CPURISCVState *env = &cpu->env;
1185
1186 if (access_type == MMU_DATA_STORE) {
1187 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1188 } else if (access_type == MMU_DATA_LOAD) {
1189 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1190 } else {
1191 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1192 }
1193
1194 env->badaddr = addr;
1195 env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1196 env->two_stage_indirect_lookup = false;
1197 cpu_loop_exit_restore(cs, retaddr);
1198 }
1199
1200 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1201 MMUAccessType access_type, int mmu_idx,
1202 uintptr_t retaddr)
1203 {
1204 RISCVCPU *cpu = RISCV_CPU(cs);
1205 CPURISCVState *env = &cpu->env;
1206 switch (access_type) {
1207 case MMU_INST_FETCH:
1208 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1209 break;
1210 case MMU_DATA_LOAD:
1211 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1212 break;
1213 case MMU_DATA_STORE:
1214 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1215 break;
1216 default:
1217 g_assert_not_reached();
1218 }
1219 env->badaddr = addr;
1220 env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1221 env->two_stage_indirect_lookup = false;
1222 cpu_loop_exit_restore(cs, retaddr);
1223 }
1224
1225
1226 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1227 {
1228 enum riscv_pmu_event_idx pmu_event_type;
1229
1230 switch (access_type) {
1231 case MMU_INST_FETCH:
1232 pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1233 break;
1234 case MMU_DATA_LOAD:
1235 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1236 break;
1237 case MMU_DATA_STORE:
1238 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1239 break;
1240 default:
1241 return;
1242 }
1243
1244 riscv_pmu_incr_ctr(cpu, pmu_event_type);
1245 }
1246
1247 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1248 MMUAccessType access_type, int mmu_idx,
1249 bool probe, uintptr_t retaddr)
1250 {
1251 RISCVCPU *cpu = RISCV_CPU(cs);
1252 CPURISCVState *env = &cpu->env;
1253 vaddr im_address;
1254 hwaddr pa = 0;
1255 int prot, prot2, prot_pmp;
1256 bool pmp_violation = false;
1257 bool first_stage_error = true;
1258 bool two_stage_lookup = mmuidx_2stage(mmu_idx);
1259 bool two_stage_indirect_error = false;
1260 int ret = TRANSLATE_FAIL;
1261 int mode = mmu_idx;
1262 /* default TLB page size */
1263 target_ulong tlb_size = TARGET_PAGE_SIZE;
1264
1265 env->guest_phys_fault_addr = 0;
1266
1267 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1268 __func__, address, access_type, mmu_idx);
1269
1270 pmu_tlb_fill_incr_ctr(cpu, access_type);
1271 if (two_stage_lookup) {
1272 /* Two stage lookup */
1273 ret = get_physical_address(env, &pa, &prot, address,
1274 &env->guest_phys_fault_addr, access_type,
1275 mmu_idx, true, true, false);
1276
1277 /*
1278 * A G-stage exception may be triggered during two state lookup.
1279 * And the env->guest_phys_fault_addr has already been set in
1280 * get_physical_address().
1281 */
1282 if (ret == TRANSLATE_G_STAGE_FAIL) {
1283 first_stage_error = false;
1284 two_stage_indirect_error = true;
1285 }
1286
1287 qemu_log_mask(CPU_LOG_MMU,
1288 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1289 HWADDR_FMT_plx " prot %d\n",
1290 __func__, address, ret, pa, prot);
1291
1292 if (ret == TRANSLATE_SUCCESS) {
1293 /* Second stage lookup */
1294 im_address = pa;
1295
1296 ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1297 access_type, MMUIdx_U, false, true,
1298 false);
1299
1300 qemu_log_mask(CPU_LOG_MMU,
1301 "%s 2nd-stage address=%" VADDR_PRIx
1302 " ret %d physical "
1303 HWADDR_FMT_plx " prot %d\n",
1304 __func__, im_address, ret, pa, prot2);
1305
1306 prot &= prot2;
1307
1308 if (ret == TRANSLATE_SUCCESS) {
1309 ret = get_physical_address_pmp(env, &prot_pmp, pa,
1310 size, access_type, mode);
1311 tlb_size = pmp_get_tlb_size(env, pa);
1312
1313 qemu_log_mask(CPU_LOG_MMU,
1314 "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1315 " %d tlb_size " TARGET_FMT_lu "\n",
1316 __func__, pa, ret, prot_pmp, tlb_size);
1317
1318 prot &= prot_pmp;
1319 }
1320
1321 if (ret != TRANSLATE_SUCCESS) {
1322 /*
1323 * Guest physical address translation failed, this is a HS
1324 * level exception
1325 */
1326 first_stage_error = false;
1327 env->guest_phys_fault_addr = (im_address |
1328 (address &
1329 (TARGET_PAGE_SIZE - 1))) >> 2;
1330 }
1331 }
1332 } else {
1333 /* Single stage lookup */
1334 ret = get_physical_address(env, &pa, &prot, address, NULL,
1335 access_type, mmu_idx, true, false, false);
1336
1337 qemu_log_mask(CPU_LOG_MMU,
1338 "%s address=%" VADDR_PRIx " ret %d physical "
1339 HWADDR_FMT_plx " prot %d\n",
1340 __func__, address, ret, pa, prot);
1341
1342 if (ret == TRANSLATE_SUCCESS) {
1343 ret = get_physical_address_pmp(env, &prot_pmp, pa,
1344 size, access_type, mode);
1345 tlb_size = pmp_get_tlb_size(env, pa);
1346
1347 qemu_log_mask(CPU_LOG_MMU,
1348 "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1349 " %d tlb_size " TARGET_FMT_lu "\n",
1350 __func__, pa, ret, prot_pmp, tlb_size);
1351
1352 prot &= prot_pmp;
1353 }
1354 }
1355
1356 if (ret == TRANSLATE_PMP_FAIL) {
1357 pmp_violation = true;
1358 }
1359
1360 if (ret == TRANSLATE_SUCCESS) {
1361 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1362 prot, mmu_idx, tlb_size);
1363 return true;
1364 } else if (probe) {
1365 return false;
1366 } else {
1367 raise_mmu_exception(env, address, access_type, pmp_violation,
1368 first_stage_error, two_stage_lookup,
1369 two_stage_indirect_error);
1370 cpu_loop_exit_restore(cs, retaddr);
1371 }
1372
1373 return true;
1374 }
1375
1376 static target_ulong riscv_transformed_insn(CPURISCVState *env,
1377 target_ulong insn,
1378 target_ulong taddr)
1379 {
1380 target_ulong xinsn = 0;
1381 target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1382
1383 /*
1384 * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1385 * be uncompressed. The Quadrant 1 of RVC instruction space need
1386 * not be transformed because these instructions won't generate
1387 * any load/store trap.
1388 */
1389
1390 if ((insn & 0x3) != 0x3) {
1391 /* Transform 16bit instruction into 32bit instruction */
1392 switch (GET_C_OP(insn)) {
1393 case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1394 switch (GET_C_FUNC(insn)) {
1395 case OPC_RISC_C_FUNC_FLD_LQ:
1396 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1397 xinsn = OPC_RISC_FLD;
1398 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1399 access_rs1 = GET_C_RS1S(insn);
1400 access_imm = GET_C_LD_IMM(insn);
1401 access_size = 8;
1402 }
1403 break;
1404 case OPC_RISC_C_FUNC_LW: /* C.LW */
1405 xinsn = OPC_RISC_LW;
1406 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1407 access_rs1 = GET_C_RS1S(insn);
1408 access_imm = GET_C_LW_IMM(insn);
1409 access_size = 4;
1410 break;
1411 case OPC_RISC_C_FUNC_FLW_LD:
1412 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1413 xinsn = OPC_RISC_FLW;
1414 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1415 access_rs1 = GET_C_RS1S(insn);
1416 access_imm = GET_C_LW_IMM(insn);
1417 access_size = 4;
1418 } else { /* C.LD (RV64/RV128) */
1419 xinsn = OPC_RISC_LD;
1420 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1421 access_rs1 = GET_C_RS1S(insn);
1422 access_imm = GET_C_LD_IMM(insn);
1423 access_size = 8;
1424 }
1425 break;
1426 case OPC_RISC_C_FUNC_FSD_SQ:
1427 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1428 xinsn = OPC_RISC_FSD;
1429 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1430 access_rs1 = GET_C_RS1S(insn);
1431 access_imm = GET_C_SD_IMM(insn);
1432 access_size = 8;
1433 }
1434 break;
1435 case OPC_RISC_C_FUNC_SW: /* C.SW */
1436 xinsn = OPC_RISC_SW;
1437 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1438 access_rs1 = GET_C_RS1S(insn);
1439 access_imm = GET_C_SW_IMM(insn);
1440 access_size = 4;
1441 break;
1442 case OPC_RISC_C_FUNC_FSW_SD:
1443 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1444 xinsn = OPC_RISC_FSW;
1445 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1446 access_rs1 = GET_C_RS1S(insn);
1447 access_imm = GET_C_SW_IMM(insn);
1448 access_size = 4;
1449 } else { /* C.SD (RV64/RV128) */
1450 xinsn = OPC_RISC_SD;
1451 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1452 access_rs1 = GET_C_RS1S(insn);
1453 access_imm = GET_C_SD_IMM(insn);
1454 access_size = 8;
1455 }
1456 break;
1457 default:
1458 break;
1459 }
1460 break;
1461 case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1462 switch (GET_C_FUNC(insn)) {
1463 case OPC_RISC_C_FUNC_FLDSP_LQSP:
1464 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1465 xinsn = OPC_RISC_FLD;
1466 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1467 access_rs1 = 2;
1468 access_imm = GET_C_LDSP_IMM(insn);
1469 access_size = 8;
1470 }
1471 break;
1472 case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1473 xinsn = OPC_RISC_LW;
1474 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1475 access_rs1 = 2;
1476 access_imm = GET_C_LWSP_IMM(insn);
1477 access_size = 4;
1478 break;
1479 case OPC_RISC_C_FUNC_FLWSP_LDSP:
1480 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1481 xinsn = OPC_RISC_FLW;
1482 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1483 access_rs1 = 2;
1484 access_imm = GET_C_LWSP_IMM(insn);
1485 access_size = 4;
1486 } else { /* C.LDSP (RV64/RV128) */
1487 xinsn = OPC_RISC_LD;
1488 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1489 access_rs1 = 2;
1490 access_imm = GET_C_LDSP_IMM(insn);
1491 access_size = 8;
1492 }
1493 break;
1494 case OPC_RISC_C_FUNC_FSDSP_SQSP:
1495 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1496 xinsn = OPC_RISC_FSD;
1497 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1498 access_rs1 = 2;
1499 access_imm = GET_C_SDSP_IMM(insn);
1500 access_size = 8;
1501 }
1502 break;
1503 case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1504 xinsn = OPC_RISC_SW;
1505 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1506 access_rs1 = 2;
1507 access_imm = GET_C_SWSP_IMM(insn);
1508 access_size = 4;
1509 break;
1510 case 7:
1511 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1512 xinsn = OPC_RISC_FSW;
1513 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1514 access_rs1 = 2;
1515 access_imm = GET_C_SWSP_IMM(insn);
1516 access_size = 4;
1517 } else { /* C.SDSP (RV64/RV128) */
1518 xinsn = OPC_RISC_SD;
1519 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1520 access_rs1 = 2;
1521 access_imm = GET_C_SDSP_IMM(insn);
1522 access_size = 8;
1523 }
1524 break;
1525 default:
1526 break;
1527 }
1528 break;
1529 default:
1530 break;
1531 }
1532
1533 /*
1534 * Clear Bit1 of transformed instruction to indicate that
1535 * original insruction was a 16bit instruction
1536 */
1537 xinsn &= ~((target_ulong)0x2);
1538 } else {
1539 /* Transform 32bit (or wider) instructions */
1540 switch (MASK_OP_MAJOR(insn)) {
1541 case OPC_RISC_ATOMIC:
1542 xinsn = insn;
1543 access_rs1 = GET_RS1(insn);
1544 access_size = 1 << GET_FUNCT3(insn);
1545 break;
1546 case OPC_RISC_LOAD:
1547 case OPC_RISC_FP_LOAD:
1548 xinsn = SET_I_IMM(insn, 0);
1549 access_rs1 = GET_RS1(insn);
1550 access_imm = GET_IMM(insn);
1551 access_size = 1 << GET_FUNCT3(insn);
1552 break;
1553 case OPC_RISC_STORE:
1554 case OPC_RISC_FP_STORE:
1555 xinsn = SET_S_IMM(insn, 0);
1556 access_rs1 = GET_RS1(insn);
1557 access_imm = GET_STORE_IMM(insn);
1558 access_size = 1 << GET_FUNCT3(insn);
1559 break;
1560 case OPC_RISC_SYSTEM:
1561 if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1562 xinsn = insn;
1563 access_rs1 = GET_RS1(insn);
1564 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1565 access_size = 1 << access_size;
1566 }
1567 break;
1568 default:
1569 break;
1570 }
1571 }
1572
1573 if (access_size) {
1574 xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1575 (access_size - 1));
1576 }
1577
1578 return xinsn;
1579 }
1580 #endif /* !CONFIG_USER_ONLY */
1581
1582 /*
1583 * Handle Traps
1584 *
1585 * Adapted from Spike's processor_t::take_trap.
1586 *
1587 */
1588 void riscv_cpu_do_interrupt(CPUState *cs)
1589 {
1590 #if !defined(CONFIG_USER_ONLY)
1591
1592 RISCVCPU *cpu = RISCV_CPU(cs);
1593 CPURISCVState *env = &cpu->env;
1594 bool write_gva = false;
1595 uint64_t s;
1596
1597 /*
1598 * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1599 * so we mask off the MSB and separate into trap type and cause.
1600 */
1601 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1602 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1603 uint64_t deleg = async ? env->mideleg : env->medeleg;
1604 target_ulong tval = 0;
1605 target_ulong tinst = 0;
1606 target_ulong htval = 0;
1607 target_ulong mtval2 = 0;
1608
1609 if (cause == RISCV_EXCP_SEMIHOST) {
1610 do_common_semihosting(cs);
1611 env->pc += 4;
1612 return;
1613 }
1614
1615 if (!async) {
1616 /* set tval to badaddr for traps with address information */
1617 switch (cause) {
1618 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1619 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1620 case RISCV_EXCP_LOAD_ADDR_MIS:
1621 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1622 case RISCV_EXCP_LOAD_ACCESS_FAULT:
1623 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1624 case RISCV_EXCP_LOAD_PAGE_FAULT:
1625 case RISCV_EXCP_STORE_PAGE_FAULT:
1626 write_gva = env->two_stage_lookup;
1627 tval = env->badaddr;
1628 if (env->two_stage_indirect_lookup) {
1629 /*
1630 * special pseudoinstruction for G-stage fault taken while
1631 * doing VS-stage page table walk.
1632 */
1633 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1634 } else {
1635 /*
1636 * The "Addr. Offset" field in transformed instruction is
1637 * non-zero only for misaligned access.
1638 */
1639 tinst = riscv_transformed_insn(env, env->bins, tval);
1640 }
1641 break;
1642 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1643 case RISCV_EXCP_INST_ADDR_MIS:
1644 case RISCV_EXCP_INST_ACCESS_FAULT:
1645 case RISCV_EXCP_INST_PAGE_FAULT:
1646 write_gva = env->two_stage_lookup;
1647 tval = env->badaddr;
1648 if (env->two_stage_indirect_lookup) {
1649 /*
1650 * special pseudoinstruction for G-stage fault taken while
1651 * doing VS-stage page table walk.
1652 */
1653 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1654 }
1655 break;
1656 case RISCV_EXCP_ILLEGAL_INST:
1657 case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
1658 tval = env->bins;
1659 break;
1660 case RISCV_EXCP_BREAKPOINT:
1661 if (cs->watchpoint_hit) {
1662 tval = cs->watchpoint_hit->hitaddr;
1663 cs->watchpoint_hit = NULL;
1664 }
1665 break;
1666 default:
1667 break;
1668 }
1669 /* ecall is dispatched as one cause so translate based on mode */
1670 if (cause == RISCV_EXCP_U_ECALL) {
1671 assert(env->priv <= 3);
1672
1673 if (env->priv == PRV_M) {
1674 cause = RISCV_EXCP_M_ECALL;
1675 } else if (env->priv == PRV_S && env->virt_enabled) {
1676 cause = RISCV_EXCP_VS_ECALL;
1677 } else if (env->priv == PRV_S && !env->virt_enabled) {
1678 cause = RISCV_EXCP_S_ECALL;
1679 } else if (env->priv == PRV_U) {
1680 cause = RISCV_EXCP_U_ECALL;
1681 }
1682 }
1683 }
1684
1685 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1686 riscv_cpu_get_trap_name(cause, async));
1687
1688 qemu_log_mask(CPU_LOG_INT,
1689 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1690 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1691 __func__, env->mhartid, async, cause, env->pc, tval,
1692 riscv_cpu_get_trap_name(cause, async));
1693
1694 if (env->priv <= PRV_S &&
1695 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1696 /* handle the trap in S-mode */
1697 if (riscv_has_ext(env, RVH)) {
1698 uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1699
1700 if (env->virt_enabled && ((hdeleg >> cause) & 1)) {
1701 /* Trap to VS mode */
1702 /*
1703 * See if we need to adjust cause. Yes if its VS mode interrupt
1704 * no if hypervisor has delegated one of hs mode's interrupt
1705 */
1706 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1707 cause == IRQ_VS_EXT) {
1708 cause = cause - 1;
1709 }
1710 write_gva = false;
1711 } else if (env->virt_enabled) {
1712 /* Trap into HS mode, from virt */
1713 riscv_cpu_swap_hypervisor_regs(env);
1714 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1715 env->priv);
1716 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true);
1717
1718 htval = env->guest_phys_fault_addr;
1719
1720 riscv_cpu_set_virt_enabled(env, 0);
1721 } else {
1722 /* Trap into HS mode */
1723 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1724 htval = env->guest_phys_fault_addr;
1725 }
1726 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1727 }
1728
1729 s = env->mstatus;
1730 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1731 s = set_field(s, MSTATUS_SPP, env->priv);
1732 s = set_field(s, MSTATUS_SIE, 0);
1733 env->mstatus = s;
1734 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1735 env->sepc = env->pc;
1736 env->stval = tval;
1737 env->htval = htval;
1738 env->htinst = tinst;
1739 env->pc = (env->stvec >> 2 << 2) +
1740 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1741 riscv_cpu_set_mode(env, PRV_S);
1742 } else {
1743 /* handle the trap in M-mode */
1744 if (riscv_has_ext(env, RVH)) {
1745 if (env->virt_enabled) {
1746 riscv_cpu_swap_hypervisor_regs(env);
1747 }
1748 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1749 env->virt_enabled);
1750 if (env->virt_enabled && tval) {
1751 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1752 }
1753
1754 mtval2 = env->guest_phys_fault_addr;
1755
1756 /* Trapping to M mode, virt is disabled */
1757 riscv_cpu_set_virt_enabled(env, 0);
1758 }
1759
1760 s = env->mstatus;
1761 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1762 s = set_field(s, MSTATUS_MPP, env->priv);
1763 s = set_field(s, MSTATUS_MIE, 0);
1764 env->mstatus = s;
1765 env->mcause = cause | ~(((target_ulong)-1) >> async);
1766 env->mepc = env->pc;
1767 env->mtval = tval;
1768 env->mtval2 = mtval2;
1769 env->mtinst = tinst;
1770 env->pc = (env->mtvec >> 2 << 2) +
1771 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1772 riscv_cpu_set_mode(env, PRV_M);
1773 }
1774
1775 /*
1776 * NOTE: it is not necessary to yield load reservations here. It is only
1777 * necessary for an SC from "another hart" to cause a load reservation
1778 * to be yielded. Refer to the memory consistency model section of the
1779 * RISC-V ISA Specification.
1780 */
1781
1782 env->two_stage_lookup = false;
1783 env->two_stage_indirect_lookup = false;
1784 #endif
1785 cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
1786 }