]> git.proxmox.com Git - mirror_qemu.git/blob - target/riscv/cpu_helper.c
target/riscv: Hoist second stage mode change to callers
[mirror_qemu.git] / target / riscv / cpu_helper.c
1 /*
2 * RISC-V CPU helpers for qemu.
3 *
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "internals.h"
25 #include "pmu.h"
26 #include "exec/exec-all.h"
27 #include "instmap.h"
28 #include "tcg/tcg-op.h"
29 #include "trace.h"
30 #include "semihosting/common-semi.h"
31 #include "sysemu/cpu-timers.h"
32 #include "cpu_bits.h"
33 #include "debug.h"
34
35 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
36 {
37 #ifdef CONFIG_USER_ONLY
38 return 0;
39 #else
40 bool virt = env->virt_enabled;
41 int mode = env->priv;
42
43 /* All priv -> mmu_idx mapping are here */
44 if (!ifetch) {
45 uint64_t status = env->mstatus;
46
47 if (mode == PRV_M && get_field(status, MSTATUS_MPRV)) {
48 mode = get_field(env->mstatus, MSTATUS_MPP);
49 virt = get_field(env->mstatus, MSTATUS_MPV);
50 if (virt) {
51 status = env->vsstatus;
52 }
53 }
54 if (mode == PRV_S && get_field(status, MSTATUS_SUM)) {
55 mode = MMUIdx_S_SUM;
56 }
57 }
58
59 return mode | (virt ? MMU_2STAGE_BIT : 0);
60 #endif
61 }
62
63 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
64 target_ulong *cs_base, uint32_t *pflags)
65 {
66 CPUState *cs = env_cpu(env);
67 RISCVCPU *cpu = RISCV_CPU(cs);
68 RISCVExtStatus fs, vs;
69 uint32_t flags = 0;
70
71 *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
72 *cs_base = 0;
73
74 if (cpu->cfg.ext_zve32f) {
75 /*
76 * If env->vl equals to VLMAX, we can use generic vector operation
77 * expanders (GVEC) to accerlate the vector operations.
78 * However, as LMUL could be a fractional number. The maximum
79 * vector size can be operated might be less than 8 bytes,
80 * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
81 * only when maxsz >= 8 bytes.
82 */
83 uint32_t vlmax = vext_get_vlmax(cpu, env->vtype);
84 uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
85 uint32_t maxsz = vlmax << sew;
86 bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
87 (maxsz >= 8);
88 flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
89 flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
90 flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
91 FIELD_EX64(env->vtype, VTYPE, VLMUL));
92 flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
93 flags = FIELD_DP32(flags, TB_FLAGS, VTA,
94 FIELD_EX64(env->vtype, VTYPE, VTA));
95 flags = FIELD_DP32(flags, TB_FLAGS, VMA,
96 FIELD_EX64(env->vtype, VTYPE, VMA));
97 flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0);
98 } else {
99 flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
100 }
101
102 #ifdef CONFIG_USER_ONLY
103 fs = EXT_STATUS_DIRTY;
104 vs = EXT_STATUS_DIRTY;
105 #else
106 flags = FIELD_DP32(flags, TB_FLAGS, PRIV, env->priv);
107
108 flags |= cpu_mmu_index(env, 0);
109 fs = get_field(env->mstatus, MSTATUS_FS);
110 vs = get_field(env->mstatus, MSTATUS_VS);
111
112 if (env->virt_enabled) {
113 flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1);
114 /*
115 * Merge DISABLED and !DIRTY states using MIN.
116 * We will set both fields when dirtying.
117 */
118 fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS));
119 vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS));
120 }
121
122 if (cpu->cfg.debug && !icount_enabled()) {
123 flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled);
124 }
125 #endif
126
127 flags = FIELD_DP32(flags, TB_FLAGS, FS, fs);
128 flags = FIELD_DP32(flags, TB_FLAGS, VS, vs);
129 flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
130 if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) {
131 flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
132 }
133 if (env->cur_pmbase != 0) {
134 flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
135 }
136
137 *pflags = flags;
138 }
139
140 void riscv_cpu_update_mask(CPURISCVState *env)
141 {
142 target_ulong mask = -1, base = 0;
143 /*
144 * TODO: Current RVJ spec does not specify
145 * how the extension interacts with XLEN.
146 */
147 #ifndef CONFIG_USER_ONLY
148 if (riscv_has_ext(env, RVJ)) {
149 switch (env->priv) {
150 case PRV_M:
151 if (env->mmte & M_PM_ENABLE) {
152 mask = env->mpmmask;
153 base = env->mpmbase;
154 }
155 break;
156 case PRV_S:
157 if (env->mmte & S_PM_ENABLE) {
158 mask = env->spmmask;
159 base = env->spmbase;
160 }
161 break;
162 case PRV_U:
163 if (env->mmte & U_PM_ENABLE) {
164 mask = env->upmmask;
165 base = env->upmbase;
166 }
167 break;
168 default:
169 g_assert_not_reached();
170 }
171 }
172 #endif
173 if (env->xl == MXL_RV32) {
174 env->cur_pmmask = mask & UINT32_MAX;
175 env->cur_pmbase = base & UINT32_MAX;
176 } else {
177 env->cur_pmmask = mask;
178 env->cur_pmbase = base;
179 }
180 }
181
182 #ifndef CONFIG_USER_ONLY
183
184 /*
185 * The HS-mode is allowed to configure priority only for the
186 * following VS-mode local interrupts:
187 *
188 * 0 (Reserved interrupt, reads as zero)
189 * 1 Supervisor software interrupt
190 * 4 (Reserved interrupt, reads as zero)
191 * 5 Supervisor timer interrupt
192 * 8 (Reserved interrupt, reads as zero)
193 * 13 (Reserved interrupt)
194 * 14 "
195 * 15 "
196 * 16 "
197 * 17 "
198 * 18 "
199 * 19 "
200 * 20 "
201 * 21 "
202 * 22 "
203 * 23 "
204 */
205
206 static const int hviprio_index2irq[] = {
207 0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
208 static const int hviprio_index2rdzero[] = {
209 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
210
211 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
212 {
213 if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
214 return -EINVAL;
215 }
216
217 if (out_irq) {
218 *out_irq = hviprio_index2irq[index];
219 }
220
221 if (out_rdzero) {
222 *out_rdzero = hviprio_index2rdzero[index];
223 }
224
225 return 0;
226 }
227
228 /*
229 * Default priorities of local interrupts are defined in the
230 * RISC-V Advanced Interrupt Architecture specification.
231 *
232 * ----------------------------------------------------------------
233 * Default |
234 * Priority | Major Interrupt Numbers
235 * ----------------------------------------------------------------
236 * Highest | 47, 23, 46, 45, 22, 44,
237 * | 43, 21, 42, 41, 20, 40
238 * |
239 * | 11 (0b), 3 (03), 7 (07)
240 * | 9 (09), 1 (01), 5 (05)
241 * | 12 (0c)
242 * | 10 (0a), 2 (02), 6 (06)
243 * |
244 * | 39, 19, 38, 37, 18, 36,
245 * Lowest | 35, 17, 34, 33, 16, 32
246 * ----------------------------------------------------------------
247 */
248 static const uint8_t default_iprio[64] = {
249 /* Custom interrupts 48 to 63 */
250 [63] = IPRIO_MMAXIPRIO,
251 [62] = IPRIO_MMAXIPRIO,
252 [61] = IPRIO_MMAXIPRIO,
253 [60] = IPRIO_MMAXIPRIO,
254 [59] = IPRIO_MMAXIPRIO,
255 [58] = IPRIO_MMAXIPRIO,
256 [57] = IPRIO_MMAXIPRIO,
257 [56] = IPRIO_MMAXIPRIO,
258 [55] = IPRIO_MMAXIPRIO,
259 [54] = IPRIO_MMAXIPRIO,
260 [53] = IPRIO_MMAXIPRIO,
261 [52] = IPRIO_MMAXIPRIO,
262 [51] = IPRIO_MMAXIPRIO,
263 [50] = IPRIO_MMAXIPRIO,
264 [49] = IPRIO_MMAXIPRIO,
265 [48] = IPRIO_MMAXIPRIO,
266
267 /* Custom interrupts 24 to 31 */
268 [31] = IPRIO_MMAXIPRIO,
269 [30] = IPRIO_MMAXIPRIO,
270 [29] = IPRIO_MMAXIPRIO,
271 [28] = IPRIO_MMAXIPRIO,
272 [27] = IPRIO_MMAXIPRIO,
273 [26] = IPRIO_MMAXIPRIO,
274 [25] = IPRIO_MMAXIPRIO,
275 [24] = IPRIO_MMAXIPRIO,
276
277 [47] = IPRIO_DEFAULT_UPPER,
278 [23] = IPRIO_DEFAULT_UPPER + 1,
279 [46] = IPRIO_DEFAULT_UPPER + 2,
280 [45] = IPRIO_DEFAULT_UPPER + 3,
281 [22] = IPRIO_DEFAULT_UPPER + 4,
282 [44] = IPRIO_DEFAULT_UPPER + 5,
283
284 [43] = IPRIO_DEFAULT_UPPER + 6,
285 [21] = IPRIO_DEFAULT_UPPER + 7,
286 [42] = IPRIO_DEFAULT_UPPER + 8,
287 [41] = IPRIO_DEFAULT_UPPER + 9,
288 [20] = IPRIO_DEFAULT_UPPER + 10,
289 [40] = IPRIO_DEFAULT_UPPER + 11,
290
291 [11] = IPRIO_DEFAULT_M,
292 [3] = IPRIO_DEFAULT_M + 1,
293 [7] = IPRIO_DEFAULT_M + 2,
294
295 [9] = IPRIO_DEFAULT_S,
296 [1] = IPRIO_DEFAULT_S + 1,
297 [5] = IPRIO_DEFAULT_S + 2,
298
299 [12] = IPRIO_DEFAULT_SGEXT,
300
301 [10] = IPRIO_DEFAULT_VS,
302 [2] = IPRIO_DEFAULT_VS + 1,
303 [6] = IPRIO_DEFAULT_VS + 2,
304
305 [39] = IPRIO_DEFAULT_LOWER,
306 [19] = IPRIO_DEFAULT_LOWER + 1,
307 [38] = IPRIO_DEFAULT_LOWER + 2,
308 [37] = IPRIO_DEFAULT_LOWER + 3,
309 [18] = IPRIO_DEFAULT_LOWER + 4,
310 [36] = IPRIO_DEFAULT_LOWER + 5,
311
312 [35] = IPRIO_DEFAULT_LOWER + 6,
313 [17] = IPRIO_DEFAULT_LOWER + 7,
314 [34] = IPRIO_DEFAULT_LOWER + 8,
315 [33] = IPRIO_DEFAULT_LOWER + 9,
316 [16] = IPRIO_DEFAULT_LOWER + 10,
317 [32] = IPRIO_DEFAULT_LOWER + 11,
318 };
319
320 uint8_t riscv_cpu_default_priority(int irq)
321 {
322 if (irq < 0 || irq > 63) {
323 return IPRIO_MMAXIPRIO;
324 }
325
326 return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
327 };
328
329 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
330 int extirq, unsigned int extirq_def_prio,
331 uint64_t pending, uint8_t *iprio)
332 {
333 int irq, best_irq = RISCV_EXCP_NONE;
334 unsigned int prio, best_prio = UINT_MAX;
335
336 if (!pending) {
337 return RISCV_EXCP_NONE;
338 }
339
340 irq = ctz64(pending);
341 if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia :
342 riscv_cpu_cfg(env)->ext_ssaia)) {
343 return irq;
344 }
345
346 pending = pending >> irq;
347 while (pending) {
348 prio = iprio[irq];
349 if (!prio) {
350 if (irq == extirq) {
351 prio = extirq_def_prio;
352 } else {
353 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
354 1 : IPRIO_MMAXIPRIO;
355 }
356 }
357 if ((pending & 0x1) && (prio <= best_prio)) {
358 best_irq = irq;
359 best_prio = prio;
360 }
361 irq++;
362 pending = pending >> 1;
363 }
364
365 return best_irq;
366 }
367
368 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
369 {
370 uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
371 uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
372 uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
373
374 return (env->mip | vsgein | vstip) & env->mie;
375 }
376
377 int riscv_cpu_mirq_pending(CPURISCVState *env)
378 {
379 uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
380 ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
381
382 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
383 irqs, env->miprio);
384 }
385
386 int riscv_cpu_sirq_pending(CPURISCVState *env)
387 {
388 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
389 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
390
391 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
392 irqs, env->siprio);
393 }
394
395 int riscv_cpu_vsirq_pending(CPURISCVState *env)
396 {
397 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
398 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
399
400 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
401 irqs >> 1, env->hviprio);
402 }
403
404 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
405 {
406 int virq;
407 uint64_t irqs, pending, mie, hsie, vsie;
408
409 /* Determine interrupt enable state of all privilege modes */
410 if (env->virt_enabled) {
411 mie = 1;
412 hsie = 1;
413 vsie = (env->priv < PRV_S) ||
414 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
415 } else {
416 mie = (env->priv < PRV_M) ||
417 (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
418 hsie = (env->priv < PRV_S) ||
419 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
420 vsie = 0;
421 }
422
423 /* Determine all pending interrupts */
424 pending = riscv_cpu_all_pending(env);
425
426 /* Check M-mode interrupts */
427 irqs = pending & ~env->mideleg & -mie;
428 if (irqs) {
429 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
430 irqs, env->miprio);
431 }
432
433 /* Check HS-mode interrupts */
434 irqs = pending & env->mideleg & ~env->hideleg & -hsie;
435 if (irqs) {
436 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
437 irqs, env->siprio);
438 }
439
440 /* Check VS-mode interrupts */
441 irqs = pending & env->mideleg & env->hideleg & -vsie;
442 if (irqs) {
443 virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
444 irqs >> 1, env->hviprio);
445 return (virq <= 0) ? virq : virq + 1;
446 }
447
448 /* Indicate no pending interrupt */
449 return RISCV_EXCP_NONE;
450 }
451
452 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
453 {
454 if (interrupt_request & CPU_INTERRUPT_HARD) {
455 RISCVCPU *cpu = RISCV_CPU(cs);
456 CPURISCVState *env = &cpu->env;
457 int interruptno = riscv_cpu_local_irq_pending(env);
458 if (interruptno >= 0) {
459 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
460 riscv_cpu_do_interrupt(cs);
461 return true;
462 }
463 }
464 return false;
465 }
466
467 /* Return true is floating point support is currently enabled */
468 bool riscv_cpu_fp_enabled(CPURISCVState *env)
469 {
470 if (env->mstatus & MSTATUS_FS) {
471 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) {
472 return false;
473 }
474 return true;
475 }
476
477 return false;
478 }
479
480 /* Return true is vector support is currently enabled */
481 bool riscv_cpu_vector_enabled(CPURISCVState *env)
482 {
483 if (env->mstatus & MSTATUS_VS) {
484 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) {
485 return false;
486 }
487 return true;
488 }
489
490 return false;
491 }
492
493 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
494 {
495 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
496 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
497 MSTATUS64_UXL | MSTATUS_VS;
498
499 if (riscv_has_ext(env, RVF)) {
500 mstatus_mask |= MSTATUS_FS;
501 }
502 bool current_virt = env->virt_enabled;
503
504 g_assert(riscv_has_ext(env, RVH));
505
506 if (current_virt) {
507 /* Current V=1 and we are about to change to V=0 */
508 env->vsstatus = env->mstatus & mstatus_mask;
509 env->mstatus &= ~mstatus_mask;
510 env->mstatus |= env->mstatus_hs;
511
512 env->vstvec = env->stvec;
513 env->stvec = env->stvec_hs;
514
515 env->vsscratch = env->sscratch;
516 env->sscratch = env->sscratch_hs;
517
518 env->vsepc = env->sepc;
519 env->sepc = env->sepc_hs;
520
521 env->vscause = env->scause;
522 env->scause = env->scause_hs;
523
524 env->vstval = env->stval;
525 env->stval = env->stval_hs;
526
527 env->vsatp = env->satp;
528 env->satp = env->satp_hs;
529 } else {
530 /* Current V=0 and we are about to change to V=1 */
531 env->mstatus_hs = env->mstatus & mstatus_mask;
532 env->mstatus &= ~mstatus_mask;
533 env->mstatus |= env->vsstatus;
534
535 env->stvec_hs = env->stvec;
536 env->stvec = env->vstvec;
537
538 env->sscratch_hs = env->sscratch;
539 env->sscratch = env->vsscratch;
540
541 env->sepc_hs = env->sepc;
542 env->sepc = env->vsepc;
543
544 env->scause_hs = env->scause;
545 env->scause = env->vscause;
546
547 env->stval_hs = env->stval;
548 env->stval = env->vstval;
549
550 env->satp_hs = env->satp;
551 env->satp = env->vsatp;
552 }
553 }
554
555 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
556 {
557 if (!riscv_has_ext(env, RVH)) {
558 return 0;
559 }
560
561 return env->geilen;
562 }
563
564 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
565 {
566 if (!riscv_has_ext(env, RVH)) {
567 return;
568 }
569
570 if (geilen > (TARGET_LONG_BITS - 1)) {
571 return;
572 }
573
574 env->geilen = geilen;
575 }
576
577 /* This function can only be called to set virt when RVH is enabled */
578 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
579 {
580 /* Flush the TLB on all virt mode changes. */
581 if (env->virt_enabled != enable) {
582 tlb_flush(env_cpu(env));
583 }
584
585 env->virt_enabled = enable;
586
587 if (enable) {
588 /*
589 * The guest external interrupts from an interrupt controller are
590 * delivered only when the Guest/VM is running (i.e. V=1). This means
591 * any guest external interrupt which is triggered while the Guest/VM
592 * is not running (i.e. V=0) will be missed on QEMU resulting in guest
593 * with sluggish response to serial console input and other I/O events.
594 *
595 * To solve this, we check and inject interrupt after setting V=1.
596 */
597 riscv_cpu_update_mip(env, 0, 0);
598 }
599 }
600
601 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
602 {
603 CPURISCVState *env = &cpu->env;
604 if (env->miclaim & interrupts) {
605 return -1;
606 } else {
607 env->miclaim |= interrupts;
608 return 0;
609 }
610 }
611
612 uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask,
613 uint64_t value)
614 {
615 CPUState *cs = env_cpu(env);
616 uint64_t gein, vsgein = 0, vstip = 0, old = env->mip;
617
618 if (env->virt_enabled) {
619 gein = get_field(env->hstatus, HSTATUS_VGEIN);
620 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
621 }
622
623 vstip = env->vstime_irq ? MIP_VSTIP : 0;
624
625 QEMU_IOTHREAD_LOCK_GUARD();
626
627 env->mip = (env->mip & ~mask) | (value & mask);
628
629 if (env->mip | vsgein | vstip) {
630 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
631 } else {
632 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
633 }
634
635 return old;
636 }
637
638 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
639 void *arg)
640 {
641 env->rdtime_fn = fn;
642 env->rdtime_fn_arg = arg;
643 }
644
645 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
646 int (*rmw_fn)(void *arg,
647 target_ulong reg,
648 target_ulong *val,
649 target_ulong new_val,
650 target_ulong write_mask),
651 void *rmw_fn_arg)
652 {
653 if (priv <= PRV_M) {
654 env->aia_ireg_rmw_fn[priv] = rmw_fn;
655 env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
656 }
657 }
658
659 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
660 {
661 g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED);
662
663 if (icount_enabled() && newpriv != env->priv) {
664 riscv_itrigger_update_priv(env);
665 }
666 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
667 env->priv = newpriv;
668 env->xl = cpu_recompute_xl(env);
669 riscv_cpu_update_mask(env);
670
671 /*
672 * Clear the load reservation - otherwise a reservation placed in one
673 * context/process can be used by another, resulting in an SC succeeding
674 * incorrectly. Version 2.2 of the ISA specification explicitly requires
675 * this behaviour, while later revisions say that the kernel "should" use
676 * an SC instruction to force the yielding of a load reservation on a
677 * preemptive context switch. As a result, do both.
678 */
679 env->load_res = -1;
680 }
681
682 /*
683 * get_physical_address_pmp - check PMP permission for this physical address
684 *
685 * Match the PMP region and check permission for this physical address and it's
686 * TLB page. Returns 0 if the permission checking was successful
687 *
688 * @env: CPURISCVState
689 * @prot: The returned protection attributes
690 * @tlb_size: TLB page size containing addr. It could be modified after PMP
691 * permission checking. NULL if not set TLB page for addr.
692 * @addr: The physical address to be checked permission
693 * @access_type: The type of MMU access
694 * @mode: Indicates current privilege level.
695 */
696 static int get_physical_address_pmp(CPURISCVState *env, int *prot,
697 target_ulong *tlb_size, hwaddr addr,
698 int size, MMUAccessType access_type,
699 int mode)
700 {
701 pmp_priv_t pmp_priv;
702 int pmp_index = -1;
703
704 if (!riscv_cpu_cfg(env)->pmp) {
705 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
706 return TRANSLATE_SUCCESS;
707 }
708
709 pmp_index = pmp_hart_has_privs(env, addr, size, 1 << access_type,
710 &pmp_priv, mode);
711 if (pmp_index < 0) {
712 *prot = 0;
713 return TRANSLATE_PMP_FAIL;
714 }
715
716 *prot = pmp_priv_to_page_prot(pmp_priv);
717 if ((tlb_size != NULL) && pmp_index != MAX_RISCV_PMPS) {
718 target_ulong tlb_sa = addr & ~(TARGET_PAGE_SIZE - 1);
719 target_ulong tlb_ea = tlb_sa + TARGET_PAGE_SIZE - 1;
720
721 *tlb_size = pmp_get_tlb_size(env, pmp_index, tlb_sa, tlb_ea);
722 }
723
724 return TRANSLATE_SUCCESS;
725 }
726
727 /*
728 * get_physical_address - get the physical address for this virtual address
729 *
730 * Do a page table walk to obtain the physical address corresponding to a
731 * virtual address. Returns 0 if the translation was successful
732 *
733 * Adapted from Spike's mmu_t::translate and mmu_t::walk
734 *
735 * @env: CPURISCVState
736 * @physical: This will be set to the calculated physical address
737 * @prot: The returned protection attributes
738 * @addr: The virtual address or guest physical address to be translated
739 * @fault_pte_addr: If not NULL, this will be set to fault pte address
740 * when a error occurs on pte address translation.
741 * This will already be shifted to match htval.
742 * @access_type: The type of MMU access
743 * @mmu_idx: Indicates current privilege level
744 * @first_stage: Are we in first stage translation?
745 * Second stage is used for hypervisor guest translation
746 * @two_stage: Are we going to perform two stage translation
747 * @is_debug: Is this access from a debugger or the monitor?
748 */
749 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
750 int *prot, vaddr addr,
751 target_ulong *fault_pte_addr,
752 int access_type, int mmu_idx,
753 bool first_stage, bool two_stage,
754 bool is_debug)
755 {
756 /*
757 * NOTE: the env->pc value visible here will not be
758 * correct, but the value visible to the exception handler
759 * (riscv_cpu_do_interrupt) is correct
760 */
761 MemTxResult res;
762 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
763 int mode = mmuidx_priv(mmu_idx);
764 bool use_background = false;
765 hwaddr ppn;
766 int napot_bits = 0;
767 target_ulong napot_mask;
768
769 /*
770 * Check if we should use the background registers for the two
771 * stage translation. We don't need to check if we actually need
772 * two stage translation as that happened before this function
773 * was called. Background registers will be used if the guest has
774 * forced a two stage translation to be on (in HS or M mode).
775 */
776 if (!env->virt_enabled && two_stage) {
777 use_background = true;
778 }
779
780 if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) {
781 *physical = addr;
782 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
783 return TRANSLATE_SUCCESS;
784 }
785
786 *prot = 0;
787
788 hwaddr base;
789 int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
790
791 if (first_stage == true) {
792 mxr = get_field(env->mstatus, MSTATUS_MXR);
793 } else {
794 mxr = get_field(env->vsstatus, MSTATUS_MXR);
795 }
796
797 if (first_stage == true) {
798 if (use_background) {
799 if (riscv_cpu_mxl(env) == MXL_RV32) {
800 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
801 vm = get_field(env->vsatp, SATP32_MODE);
802 } else {
803 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
804 vm = get_field(env->vsatp, SATP64_MODE);
805 }
806 } else {
807 if (riscv_cpu_mxl(env) == MXL_RV32) {
808 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
809 vm = get_field(env->satp, SATP32_MODE);
810 } else {
811 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
812 vm = get_field(env->satp, SATP64_MODE);
813 }
814 }
815 widened = 0;
816 } else {
817 if (riscv_cpu_mxl(env) == MXL_RV32) {
818 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
819 vm = get_field(env->hgatp, SATP32_MODE);
820 } else {
821 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
822 vm = get_field(env->hgatp, SATP64_MODE);
823 }
824 widened = 2;
825 }
826 sum = mmuidx_sum(mmu_idx) || is_debug;
827 switch (vm) {
828 case VM_1_10_SV32:
829 levels = 2; ptidxbits = 10; ptesize = 4; break;
830 case VM_1_10_SV39:
831 levels = 3; ptidxbits = 9; ptesize = 8; break;
832 case VM_1_10_SV48:
833 levels = 4; ptidxbits = 9; ptesize = 8; break;
834 case VM_1_10_SV57:
835 levels = 5; ptidxbits = 9; ptesize = 8; break;
836 case VM_1_10_MBARE:
837 *physical = addr;
838 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
839 return TRANSLATE_SUCCESS;
840 default:
841 g_assert_not_reached();
842 }
843
844 CPUState *cs = env_cpu(env);
845 int va_bits = PGSHIFT + levels * ptidxbits + widened;
846 target_ulong mask, masked_msbs;
847
848 if (TARGET_LONG_BITS > (va_bits - 1)) {
849 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
850 } else {
851 mask = 0;
852 }
853 masked_msbs = (addr >> (va_bits - 1)) & mask;
854
855 if (masked_msbs != 0 && masked_msbs != mask) {
856 return TRANSLATE_FAIL;
857 }
858
859 int ptshift = (levels - 1) * ptidxbits;
860 int i;
861
862 #if !TCG_OVERSIZED_GUEST
863 restart:
864 #endif
865 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
866 target_ulong idx;
867 if (i == 0) {
868 idx = (addr >> (PGSHIFT + ptshift)) &
869 ((1 << (ptidxbits + widened)) - 1);
870 } else {
871 idx = (addr >> (PGSHIFT + ptshift)) &
872 ((1 << ptidxbits) - 1);
873 }
874
875 /* check that physical address of PTE is legal */
876 hwaddr pte_addr;
877
878 if (two_stage && first_stage) {
879 int vbase_prot;
880 hwaddr vbase;
881
882 /* Do the second stage translation on the base PTE address. */
883 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
884 base, NULL, MMU_DATA_LOAD,
885 MMUIdx_U, false, true,
886 is_debug);
887
888 if (vbase_ret != TRANSLATE_SUCCESS) {
889 if (fault_pte_addr) {
890 *fault_pte_addr = (base + idx * ptesize) >> 2;
891 }
892 return TRANSLATE_G_STAGE_FAIL;
893 }
894
895 pte_addr = vbase + idx * ptesize;
896 } else {
897 pte_addr = base + idx * ptesize;
898 }
899
900 int pmp_prot;
901 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
902 sizeof(target_ulong),
903 MMU_DATA_LOAD, PRV_S);
904 if (pmp_ret != TRANSLATE_SUCCESS) {
905 return TRANSLATE_PMP_FAIL;
906 }
907
908 target_ulong pte;
909 if (riscv_cpu_mxl(env) == MXL_RV32) {
910 pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
911 } else {
912 pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
913 }
914
915 if (res != MEMTX_OK) {
916 return TRANSLATE_FAIL;
917 }
918
919 bool pbmte = env->menvcfg & MENVCFG_PBMTE;
920 bool hade = env->menvcfg & MENVCFG_HADE;
921
922 if (first_stage && two_stage && env->virt_enabled) {
923 pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE);
924 hade = hade && (env->henvcfg & HENVCFG_HADE);
925 }
926
927 if (riscv_cpu_sxl(env) == MXL_RV32) {
928 ppn = pte >> PTE_PPN_SHIFT;
929 } else if (pbmte || riscv_cpu_cfg(env)->ext_svnapot) {
930 ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
931 } else {
932 ppn = pte >> PTE_PPN_SHIFT;
933 if ((pte & ~(target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT) {
934 return TRANSLATE_FAIL;
935 }
936 }
937
938 if (!(pte & PTE_V)) {
939 /* Invalid PTE */
940 return TRANSLATE_FAIL;
941 } else if (!pbmte && (pte & PTE_PBMT)) {
942 return TRANSLATE_FAIL;
943 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
944 /* Inner PTE, continue walking */
945 if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
946 return TRANSLATE_FAIL;
947 }
948 base = ppn << PGSHIFT;
949 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
950 /* Reserved leaf PTE flags: PTE_W */
951 return TRANSLATE_FAIL;
952 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
953 /* Reserved leaf PTE flags: PTE_W + PTE_X */
954 return TRANSLATE_FAIL;
955 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
956 (!sum || access_type == MMU_INST_FETCH))) {
957 /* User PTE flags when not U mode and mstatus.SUM is not set,
958 or the access type is an instruction fetch */
959 return TRANSLATE_FAIL;
960 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
961 /* Supervisor PTE flags when not S mode */
962 return TRANSLATE_FAIL;
963 } else if (ppn & ((1ULL << ptshift) - 1)) {
964 /* Misaligned PPN */
965 return TRANSLATE_FAIL;
966 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
967 ((pte & PTE_X) && mxr))) {
968 /* Read access check failed */
969 return TRANSLATE_FAIL;
970 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
971 /* Write access check failed */
972 return TRANSLATE_FAIL;
973 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
974 /* Fetch access check failed */
975 return TRANSLATE_FAIL;
976 } else {
977 /* if necessary, set accessed and dirty bits. */
978 target_ulong updated_pte = pte | PTE_A |
979 (access_type == MMU_DATA_STORE ? PTE_D : 0);
980
981 /* Page table updates need to be atomic with MTTCG enabled */
982 if (updated_pte != pte) {
983 if (!hade) {
984 return TRANSLATE_FAIL;
985 }
986
987 /*
988 * - if accessed or dirty bits need updating, and the PTE is
989 * in RAM, then we do so atomically with a compare and swap.
990 * - if the PTE is in IO space or ROM, then it can't be updated
991 * and we return TRANSLATE_FAIL.
992 * - if the PTE changed by the time we went to update it, then
993 * it is no longer valid and we must re-walk the page table.
994 */
995 MemoryRegion *mr;
996 hwaddr l = sizeof(target_ulong), addr1;
997 mr = address_space_translate(cs->as, pte_addr, &addr1, &l,
998 false, MEMTXATTRS_UNSPECIFIED);
999 if (memory_region_is_ram(mr)) {
1000 target_ulong *pte_pa =
1001 qemu_map_ram_ptr(mr->ram_block, addr1);
1002 #if TCG_OVERSIZED_GUEST
1003 /*
1004 * MTTCG is not enabled on oversized TCG guests so
1005 * page table updates do not need to be atomic
1006 */
1007 *pte_pa = pte = updated_pte;
1008 #else
1009 target_ulong old_pte =
1010 qatomic_cmpxchg(pte_pa, pte, updated_pte);
1011 if (old_pte != pte) {
1012 goto restart;
1013 } else {
1014 pte = updated_pte;
1015 }
1016 #endif
1017 } else {
1018 /*
1019 * misconfigured PTE in ROM (AD bits are not preset) or
1020 * PTE is in IO space and can't be updated atomically
1021 */
1022 return TRANSLATE_FAIL;
1023 }
1024 }
1025
1026 /*
1027 * for superpage mappings, make a fake leaf PTE for the TLB's
1028 * benefit.
1029 */
1030 target_ulong vpn = addr >> PGSHIFT;
1031
1032 if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
1033 napot_bits = ctzl(ppn) + 1;
1034 if ((i != (levels - 1)) || (napot_bits != 4)) {
1035 return TRANSLATE_FAIL;
1036 }
1037 }
1038
1039 napot_mask = (1 << napot_bits) - 1;
1040 *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1041 (vpn & (((target_ulong)1 << ptshift) - 1))
1042 ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1043
1044 /* set permissions on the TLB entry */
1045 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
1046 *prot |= PAGE_READ;
1047 }
1048 if (pte & PTE_X) {
1049 *prot |= PAGE_EXEC;
1050 }
1051 /*
1052 * add write permission on stores or if the page is already dirty,
1053 * so that we TLB miss on later writes to update the dirty bit
1054 */
1055 if ((pte & PTE_W) &&
1056 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
1057 *prot |= PAGE_WRITE;
1058 }
1059 return TRANSLATE_SUCCESS;
1060 }
1061 }
1062 return TRANSLATE_FAIL;
1063 }
1064
1065 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1066 MMUAccessType access_type, bool pmp_violation,
1067 bool first_stage, bool two_stage,
1068 bool two_stage_indirect)
1069 {
1070 CPUState *cs = env_cpu(env);
1071 int page_fault_exceptions, vm;
1072 uint64_t stap_mode;
1073
1074 if (riscv_cpu_mxl(env) == MXL_RV32) {
1075 stap_mode = SATP32_MODE;
1076 } else {
1077 stap_mode = SATP64_MODE;
1078 }
1079
1080 if (first_stage) {
1081 vm = get_field(env->satp, stap_mode);
1082 } else {
1083 vm = get_field(env->hgatp, stap_mode);
1084 }
1085
1086 page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1087
1088 switch (access_type) {
1089 case MMU_INST_FETCH:
1090 if (env->virt_enabled && !first_stage) {
1091 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1092 } else {
1093 cs->exception_index = page_fault_exceptions ?
1094 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1095 }
1096 break;
1097 case MMU_DATA_LOAD:
1098 if (two_stage && !first_stage) {
1099 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1100 } else {
1101 cs->exception_index = page_fault_exceptions ?
1102 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1103 }
1104 break;
1105 case MMU_DATA_STORE:
1106 if (two_stage && !first_stage) {
1107 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1108 } else {
1109 cs->exception_index = page_fault_exceptions ?
1110 RISCV_EXCP_STORE_PAGE_FAULT :
1111 RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1112 }
1113 break;
1114 default:
1115 g_assert_not_reached();
1116 }
1117 env->badaddr = address;
1118 env->two_stage_lookup = two_stage;
1119 env->two_stage_indirect_lookup = two_stage_indirect;
1120 }
1121
1122 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1123 {
1124 RISCVCPU *cpu = RISCV_CPU(cs);
1125 CPURISCVState *env = &cpu->env;
1126 hwaddr phys_addr;
1127 int prot;
1128 int mmu_idx = cpu_mmu_index(&cpu->env, false);
1129
1130 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1131 true, env->virt_enabled, true)) {
1132 return -1;
1133 }
1134
1135 if (env->virt_enabled) {
1136 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1137 0, mmu_idx, false, true, true)) {
1138 return -1;
1139 }
1140 }
1141
1142 return phys_addr & TARGET_PAGE_MASK;
1143 }
1144
1145 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1146 vaddr addr, unsigned size,
1147 MMUAccessType access_type,
1148 int mmu_idx, MemTxAttrs attrs,
1149 MemTxResult response, uintptr_t retaddr)
1150 {
1151 RISCVCPU *cpu = RISCV_CPU(cs);
1152 CPURISCVState *env = &cpu->env;
1153
1154 if (access_type == MMU_DATA_STORE) {
1155 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1156 } else if (access_type == MMU_DATA_LOAD) {
1157 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1158 } else {
1159 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1160 }
1161
1162 env->badaddr = addr;
1163 env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1164 env->two_stage_indirect_lookup = false;
1165 cpu_loop_exit_restore(cs, retaddr);
1166 }
1167
1168 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1169 MMUAccessType access_type, int mmu_idx,
1170 uintptr_t retaddr)
1171 {
1172 RISCVCPU *cpu = RISCV_CPU(cs);
1173 CPURISCVState *env = &cpu->env;
1174 switch (access_type) {
1175 case MMU_INST_FETCH:
1176 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1177 break;
1178 case MMU_DATA_LOAD:
1179 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1180 break;
1181 case MMU_DATA_STORE:
1182 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1183 break;
1184 default:
1185 g_assert_not_reached();
1186 }
1187 env->badaddr = addr;
1188 env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1189 env->two_stage_indirect_lookup = false;
1190 cpu_loop_exit_restore(cs, retaddr);
1191 }
1192
1193
1194 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1195 {
1196 enum riscv_pmu_event_idx pmu_event_type;
1197
1198 switch (access_type) {
1199 case MMU_INST_FETCH:
1200 pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1201 break;
1202 case MMU_DATA_LOAD:
1203 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1204 break;
1205 case MMU_DATA_STORE:
1206 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1207 break;
1208 default:
1209 return;
1210 }
1211
1212 riscv_pmu_incr_ctr(cpu, pmu_event_type);
1213 }
1214
1215 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1216 MMUAccessType access_type, int mmu_idx,
1217 bool probe, uintptr_t retaddr)
1218 {
1219 RISCVCPU *cpu = RISCV_CPU(cs);
1220 CPURISCVState *env = &cpu->env;
1221 vaddr im_address;
1222 hwaddr pa = 0;
1223 int prot, prot2, prot_pmp;
1224 bool pmp_violation = false;
1225 bool first_stage_error = true;
1226 bool two_stage_lookup = mmuidx_2stage(mmu_idx);
1227 bool two_stage_indirect_error = false;
1228 int ret = TRANSLATE_FAIL;
1229 int mode = mmu_idx;
1230 /* default TLB page size */
1231 target_ulong tlb_size = TARGET_PAGE_SIZE;
1232
1233 env->guest_phys_fault_addr = 0;
1234
1235 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1236 __func__, address, access_type, mmu_idx);
1237
1238 pmu_tlb_fill_incr_ctr(cpu, access_type);
1239 if (two_stage_lookup) {
1240 /* Two stage lookup */
1241 ret = get_physical_address(env, &pa, &prot, address,
1242 &env->guest_phys_fault_addr, access_type,
1243 mmu_idx, true, true, false);
1244
1245 /*
1246 * A G-stage exception may be triggered during two state lookup.
1247 * And the env->guest_phys_fault_addr has already been set in
1248 * get_physical_address().
1249 */
1250 if (ret == TRANSLATE_G_STAGE_FAIL) {
1251 first_stage_error = false;
1252 two_stage_indirect_error = true;
1253 access_type = MMU_DATA_LOAD;
1254 }
1255
1256 qemu_log_mask(CPU_LOG_MMU,
1257 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1258 HWADDR_FMT_plx " prot %d\n",
1259 __func__, address, ret, pa, prot);
1260
1261 if (ret == TRANSLATE_SUCCESS) {
1262 /* Second stage lookup */
1263 im_address = pa;
1264
1265 ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1266 access_type, MMUIdx_U, false, true,
1267 false);
1268
1269 qemu_log_mask(CPU_LOG_MMU,
1270 "%s 2nd-stage address=%" VADDR_PRIx
1271 " ret %d physical "
1272 HWADDR_FMT_plx " prot %d\n",
1273 __func__, im_address, ret, pa, prot2);
1274
1275 prot &= prot2;
1276
1277 if (ret == TRANSLATE_SUCCESS) {
1278 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1279 size, access_type, mode);
1280
1281 qemu_log_mask(CPU_LOG_MMU,
1282 "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1283 " %d tlb_size " TARGET_FMT_lu "\n",
1284 __func__, pa, ret, prot_pmp, tlb_size);
1285
1286 prot &= prot_pmp;
1287 }
1288
1289 if (ret != TRANSLATE_SUCCESS) {
1290 /*
1291 * Guest physical address translation failed, this is a HS
1292 * level exception
1293 */
1294 first_stage_error = false;
1295 env->guest_phys_fault_addr = (im_address |
1296 (address &
1297 (TARGET_PAGE_SIZE - 1))) >> 2;
1298 }
1299 }
1300 } else {
1301 /* Single stage lookup */
1302 ret = get_physical_address(env, &pa, &prot, address, NULL,
1303 access_type, mmu_idx, true, false, false);
1304
1305 qemu_log_mask(CPU_LOG_MMU,
1306 "%s address=%" VADDR_PRIx " ret %d physical "
1307 HWADDR_FMT_plx " prot %d\n",
1308 __func__, address, ret, pa, prot);
1309
1310 if (ret == TRANSLATE_SUCCESS) {
1311 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1312 size, access_type, mode);
1313
1314 qemu_log_mask(CPU_LOG_MMU,
1315 "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1316 " %d tlb_size " TARGET_FMT_lu "\n",
1317 __func__, pa, ret, prot_pmp, tlb_size);
1318
1319 prot &= prot_pmp;
1320 }
1321 }
1322
1323 if (ret == TRANSLATE_PMP_FAIL) {
1324 pmp_violation = true;
1325 }
1326
1327 if (ret == TRANSLATE_SUCCESS) {
1328 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1329 prot, mmu_idx, tlb_size);
1330 return true;
1331 } else if (probe) {
1332 return false;
1333 } else {
1334 raise_mmu_exception(env, address, access_type, pmp_violation,
1335 first_stage_error, two_stage_lookup,
1336 two_stage_indirect_error);
1337 cpu_loop_exit_restore(cs, retaddr);
1338 }
1339
1340 return true;
1341 }
1342
1343 static target_ulong riscv_transformed_insn(CPURISCVState *env,
1344 target_ulong insn,
1345 target_ulong taddr)
1346 {
1347 target_ulong xinsn = 0;
1348 target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1349
1350 /*
1351 * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1352 * be uncompressed. The Quadrant 1 of RVC instruction space need
1353 * not be transformed because these instructions won't generate
1354 * any load/store trap.
1355 */
1356
1357 if ((insn & 0x3) != 0x3) {
1358 /* Transform 16bit instruction into 32bit instruction */
1359 switch (GET_C_OP(insn)) {
1360 case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1361 switch (GET_C_FUNC(insn)) {
1362 case OPC_RISC_C_FUNC_FLD_LQ:
1363 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1364 xinsn = OPC_RISC_FLD;
1365 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1366 access_rs1 = GET_C_RS1S(insn);
1367 access_imm = GET_C_LD_IMM(insn);
1368 access_size = 8;
1369 }
1370 break;
1371 case OPC_RISC_C_FUNC_LW: /* C.LW */
1372 xinsn = OPC_RISC_LW;
1373 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1374 access_rs1 = GET_C_RS1S(insn);
1375 access_imm = GET_C_LW_IMM(insn);
1376 access_size = 4;
1377 break;
1378 case OPC_RISC_C_FUNC_FLW_LD:
1379 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1380 xinsn = OPC_RISC_FLW;
1381 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1382 access_rs1 = GET_C_RS1S(insn);
1383 access_imm = GET_C_LW_IMM(insn);
1384 access_size = 4;
1385 } else { /* C.LD (RV64/RV128) */
1386 xinsn = OPC_RISC_LD;
1387 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1388 access_rs1 = GET_C_RS1S(insn);
1389 access_imm = GET_C_LD_IMM(insn);
1390 access_size = 8;
1391 }
1392 break;
1393 case OPC_RISC_C_FUNC_FSD_SQ:
1394 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1395 xinsn = OPC_RISC_FSD;
1396 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1397 access_rs1 = GET_C_RS1S(insn);
1398 access_imm = GET_C_SD_IMM(insn);
1399 access_size = 8;
1400 }
1401 break;
1402 case OPC_RISC_C_FUNC_SW: /* C.SW */
1403 xinsn = OPC_RISC_SW;
1404 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1405 access_rs1 = GET_C_RS1S(insn);
1406 access_imm = GET_C_SW_IMM(insn);
1407 access_size = 4;
1408 break;
1409 case OPC_RISC_C_FUNC_FSW_SD:
1410 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1411 xinsn = OPC_RISC_FSW;
1412 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1413 access_rs1 = GET_C_RS1S(insn);
1414 access_imm = GET_C_SW_IMM(insn);
1415 access_size = 4;
1416 } else { /* C.SD (RV64/RV128) */
1417 xinsn = OPC_RISC_SD;
1418 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1419 access_rs1 = GET_C_RS1S(insn);
1420 access_imm = GET_C_SD_IMM(insn);
1421 access_size = 8;
1422 }
1423 break;
1424 default:
1425 break;
1426 }
1427 break;
1428 case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1429 switch (GET_C_FUNC(insn)) {
1430 case OPC_RISC_C_FUNC_FLDSP_LQSP:
1431 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1432 xinsn = OPC_RISC_FLD;
1433 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1434 access_rs1 = 2;
1435 access_imm = GET_C_LDSP_IMM(insn);
1436 access_size = 8;
1437 }
1438 break;
1439 case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1440 xinsn = OPC_RISC_LW;
1441 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1442 access_rs1 = 2;
1443 access_imm = GET_C_LWSP_IMM(insn);
1444 access_size = 4;
1445 break;
1446 case OPC_RISC_C_FUNC_FLWSP_LDSP:
1447 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1448 xinsn = OPC_RISC_FLW;
1449 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1450 access_rs1 = 2;
1451 access_imm = GET_C_LWSP_IMM(insn);
1452 access_size = 4;
1453 } else { /* C.LDSP (RV64/RV128) */
1454 xinsn = OPC_RISC_LD;
1455 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1456 access_rs1 = 2;
1457 access_imm = GET_C_LDSP_IMM(insn);
1458 access_size = 8;
1459 }
1460 break;
1461 case OPC_RISC_C_FUNC_FSDSP_SQSP:
1462 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1463 xinsn = OPC_RISC_FSD;
1464 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1465 access_rs1 = 2;
1466 access_imm = GET_C_SDSP_IMM(insn);
1467 access_size = 8;
1468 }
1469 break;
1470 case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1471 xinsn = OPC_RISC_SW;
1472 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1473 access_rs1 = 2;
1474 access_imm = GET_C_SWSP_IMM(insn);
1475 access_size = 4;
1476 break;
1477 case 7:
1478 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1479 xinsn = OPC_RISC_FSW;
1480 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1481 access_rs1 = 2;
1482 access_imm = GET_C_SWSP_IMM(insn);
1483 access_size = 4;
1484 } else { /* C.SDSP (RV64/RV128) */
1485 xinsn = OPC_RISC_SD;
1486 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1487 access_rs1 = 2;
1488 access_imm = GET_C_SDSP_IMM(insn);
1489 access_size = 8;
1490 }
1491 break;
1492 default:
1493 break;
1494 }
1495 break;
1496 default:
1497 break;
1498 }
1499
1500 /*
1501 * Clear Bit1 of transformed instruction to indicate that
1502 * original insruction was a 16bit instruction
1503 */
1504 xinsn &= ~((target_ulong)0x2);
1505 } else {
1506 /* Transform 32bit (or wider) instructions */
1507 switch (MASK_OP_MAJOR(insn)) {
1508 case OPC_RISC_ATOMIC:
1509 xinsn = insn;
1510 access_rs1 = GET_RS1(insn);
1511 access_size = 1 << GET_FUNCT3(insn);
1512 break;
1513 case OPC_RISC_LOAD:
1514 case OPC_RISC_FP_LOAD:
1515 xinsn = SET_I_IMM(insn, 0);
1516 access_rs1 = GET_RS1(insn);
1517 access_imm = GET_IMM(insn);
1518 access_size = 1 << GET_FUNCT3(insn);
1519 break;
1520 case OPC_RISC_STORE:
1521 case OPC_RISC_FP_STORE:
1522 xinsn = SET_S_IMM(insn, 0);
1523 access_rs1 = GET_RS1(insn);
1524 access_imm = GET_STORE_IMM(insn);
1525 access_size = 1 << GET_FUNCT3(insn);
1526 break;
1527 case OPC_RISC_SYSTEM:
1528 if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1529 xinsn = insn;
1530 access_rs1 = GET_RS1(insn);
1531 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1532 access_size = 1 << access_size;
1533 }
1534 break;
1535 default:
1536 break;
1537 }
1538 }
1539
1540 if (access_size) {
1541 xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1542 (access_size - 1));
1543 }
1544
1545 return xinsn;
1546 }
1547 #endif /* !CONFIG_USER_ONLY */
1548
1549 /*
1550 * Handle Traps
1551 *
1552 * Adapted from Spike's processor_t::take_trap.
1553 *
1554 */
1555 void riscv_cpu_do_interrupt(CPUState *cs)
1556 {
1557 #if !defined(CONFIG_USER_ONLY)
1558
1559 RISCVCPU *cpu = RISCV_CPU(cs);
1560 CPURISCVState *env = &cpu->env;
1561 bool write_gva = false;
1562 uint64_t s;
1563
1564 /*
1565 * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1566 * so we mask off the MSB and separate into trap type and cause.
1567 */
1568 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1569 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1570 uint64_t deleg = async ? env->mideleg : env->medeleg;
1571 target_ulong tval = 0;
1572 target_ulong tinst = 0;
1573 target_ulong htval = 0;
1574 target_ulong mtval2 = 0;
1575
1576 if (cause == RISCV_EXCP_SEMIHOST) {
1577 do_common_semihosting(cs);
1578 env->pc += 4;
1579 return;
1580 }
1581
1582 if (!async) {
1583 /* set tval to badaddr for traps with address information */
1584 switch (cause) {
1585 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1586 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1587 case RISCV_EXCP_LOAD_ADDR_MIS:
1588 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1589 case RISCV_EXCP_LOAD_ACCESS_FAULT:
1590 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1591 case RISCV_EXCP_LOAD_PAGE_FAULT:
1592 case RISCV_EXCP_STORE_PAGE_FAULT:
1593 write_gva = env->two_stage_lookup;
1594 tval = env->badaddr;
1595 if (env->two_stage_indirect_lookup) {
1596 /*
1597 * special pseudoinstruction for G-stage fault taken while
1598 * doing VS-stage page table walk.
1599 */
1600 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1601 } else {
1602 /*
1603 * The "Addr. Offset" field in transformed instruction is
1604 * non-zero only for misaligned access.
1605 */
1606 tinst = riscv_transformed_insn(env, env->bins, tval);
1607 }
1608 break;
1609 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1610 case RISCV_EXCP_INST_ADDR_MIS:
1611 case RISCV_EXCP_INST_ACCESS_FAULT:
1612 case RISCV_EXCP_INST_PAGE_FAULT:
1613 write_gva = env->two_stage_lookup;
1614 tval = env->badaddr;
1615 if (env->two_stage_indirect_lookup) {
1616 /*
1617 * special pseudoinstruction for G-stage fault taken while
1618 * doing VS-stage page table walk.
1619 */
1620 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1621 }
1622 break;
1623 case RISCV_EXCP_ILLEGAL_INST:
1624 case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
1625 tval = env->bins;
1626 break;
1627 case RISCV_EXCP_BREAKPOINT:
1628 if (cs->watchpoint_hit) {
1629 tval = cs->watchpoint_hit->hitaddr;
1630 cs->watchpoint_hit = NULL;
1631 }
1632 break;
1633 default:
1634 break;
1635 }
1636 /* ecall is dispatched as one cause so translate based on mode */
1637 if (cause == RISCV_EXCP_U_ECALL) {
1638 assert(env->priv <= 3);
1639
1640 if (env->priv == PRV_M) {
1641 cause = RISCV_EXCP_M_ECALL;
1642 } else if (env->priv == PRV_S && env->virt_enabled) {
1643 cause = RISCV_EXCP_VS_ECALL;
1644 } else if (env->priv == PRV_S && !env->virt_enabled) {
1645 cause = RISCV_EXCP_S_ECALL;
1646 } else if (env->priv == PRV_U) {
1647 cause = RISCV_EXCP_U_ECALL;
1648 }
1649 }
1650 }
1651
1652 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1653 riscv_cpu_get_trap_name(cause, async));
1654
1655 qemu_log_mask(CPU_LOG_INT,
1656 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1657 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1658 __func__, env->mhartid, async, cause, env->pc, tval,
1659 riscv_cpu_get_trap_name(cause, async));
1660
1661 if (env->priv <= PRV_S &&
1662 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1663 /* handle the trap in S-mode */
1664 if (riscv_has_ext(env, RVH)) {
1665 uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1666
1667 if (env->virt_enabled && ((hdeleg >> cause) & 1)) {
1668 /* Trap to VS mode */
1669 /*
1670 * See if we need to adjust cause. Yes if its VS mode interrupt
1671 * no if hypervisor has delegated one of hs mode's interrupt
1672 */
1673 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1674 cause == IRQ_VS_EXT) {
1675 cause = cause - 1;
1676 }
1677 write_gva = false;
1678 } else if (env->virt_enabled) {
1679 /* Trap into HS mode, from virt */
1680 riscv_cpu_swap_hypervisor_regs(env);
1681 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1682 env->priv);
1683 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true);
1684
1685 htval = env->guest_phys_fault_addr;
1686
1687 riscv_cpu_set_virt_enabled(env, 0);
1688 } else {
1689 /* Trap into HS mode */
1690 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1691 htval = env->guest_phys_fault_addr;
1692 }
1693 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1694 }
1695
1696 s = env->mstatus;
1697 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1698 s = set_field(s, MSTATUS_SPP, env->priv);
1699 s = set_field(s, MSTATUS_SIE, 0);
1700 env->mstatus = s;
1701 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1702 env->sepc = env->pc;
1703 env->stval = tval;
1704 env->htval = htval;
1705 env->htinst = tinst;
1706 env->pc = (env->stvec >> 2 << 2) +
1707 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1708 riscv_cpu_set_mode(env, PRV_S);
1709 } else {
1710 /* handle the trap in M-mode */
1711 if (riscv_has_ext(env, RVH)) {
1712 if (env->virt_enabled) {
1713 riscv_cpu_swap_hypervisor_regs(env);
1714 }
1715 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1716 env->virt_enabled);
1717 if (env->virt_enabled && tval) {
1718 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1719 }
1720
1721 mtval2 = env->guest_phys_fault_addr;
1722
1723 /* Trapping to M mode, virt is disabled */
1724 riscv_cpu_set_virt_enabled(env, 0);
1725 }
1726
1727 s = env->mstatus;
1728 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1729 s = set_field(s, MSTATUS_MPP, env->priv);
1730 s = set_field(s, MSTATUS_MIE, 0);
1731 env->mstatus = s;
1732 env->mcause = cause | ~(((target_ulong)-1) >> async);
1733 env->mepc = env->pc;
1734 env->mtval = tval;
1735 env->mtval2 = mtval2;
1736 env->mtinst = tinst;
1737 env->pc = (env->mtvec >> 2 << 2) +
1738 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1739 riscv_cpu_set_mode(env, PRV_M);
1740 }
1741
1742 /*
1743 * NOTE: it is not necessary to yield load reservations here. It is only
1744 * necessary for an SC from "another hart" to cause a load reservation
1745 * to be yielded. Refer to the memory consistency model section of the
1746 * RISC-V ISA Specification.
1747 */
1748
1749 env->two_stage_lookup = false;
1750 env->two_stage_indirect_lookup = false;
1751 #endif
1752 cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
1753 }