]> git.proxmox.com Git - mirror_qemu.git/blob - target/riscv/cpu_helper.c
target/riscv: Add the force HS exception mode
[mirror_qemu.git] / target / riscv / cpu_helper.c
1 /*
2 * RISC-V CPU helpers for qemu.
3 *
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "tcg/tcg-op.h"
26 #include "trace.h"
27
28 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
29 {
30 #ifdef CONFIG_USER_ONLY
31 return 0;
32 #else
33 return env->priv;
34 #endif
35 }
36
37 #ifndef CONFIG_USER_ONLY
38 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
39 {
40 target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
41 target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
42 target_ulong pending = env->mip & env->mie;
43 target_ulong mie = env->priv < PRV_M || (env->priv == PRV_M && mstatus_mie);
44 target_ulong sie = env->priv < PRV_S || (env->priv == PRV_S && mstatus_sie);
45 target_ulong irqs = (pending & ~env->mideleg & -mie) |
46 (pending & env->mideleg & -sie);
47
48 if (irqs) {
49 return ctz64(irqs); /* since non-zero */
50 } else {
51 return EXCP_NONE; /* indicates no pending interrupt */
52 }
53 }
54 #endif
55
56 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
57 {
58 #if !defined(CONFIG_USER_ONLY)
59 if (interrupt_request & CPU_INTERRUPT_HARD) {
60 RISCVCPU *cpu = RISCV_CPU(cs);
61 CPURISCVState *env = &cpu->env;
62 int interruptno = riscv_cpu_local_irq_pending(env);
63 if (interruptno >= 0) {
64 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
65 riscv_cpu_do_interrupt(cs);
66 return true;
67 }
68 }
69 #endif
70 return false;
71 }
72
73 #if !defined(CONFIG_USER_ONLY)
74
75 /* Return true is floating point support is currently enabled */
76 bool riscv_cpu_fp_enabled(CPURISCVState *env)
77 {
78 if (env->mstatus & MSTATUS_FS) {
79 return true;
80 }
81
82 return false;
83 }
84
85 bool riscv_cpu_virt_enabled(CPURISCVState *env)
86 {
87 if (!riscv_has_ext(env, RVH)) {
88 return false;
89 }
90
91 return get_field(env->virt, VIRT_ONOFF);
92 }
93
94 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
95 {
96 if (!riscv_has_ext(env, RVH)) {
97 return;
98 }
99
100 env->virt = set_field(env->virt, VIRT_ONOFF, enable);
101 }
102
103 bool riscv_cpu_force_hs_excep_enabled(CPURISCVState *env)
104 {
105 if (!riscv_has_ext(env, RVH)) {
106 return false;
107 }
108
109 return get_field(env->virt, FORCE_HS_EXCEP);
110 }
111
112 void riscv_cpu_set_force_hs_excep(CPURISCVState *env, bool enable)
113 {
114 if (!riscv_has_ext(env, RVH)) {
115 return;
116 }
117
118 env->virt = set_field(env->virt, FORCE_HS_EXCEP, enable);
119 }
120
121 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
122 {
123 CPURISCVState *env = &cpu->env;
124 if (env->miclaim & interrupts) {
125 return -1;
126 } else {
127 env->miclaim |= interrupts;
128 return 0;
129 }
130 }
131
132 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
133 {
134 CPURISCVState *env = &cpu->env;
135 CPUState *cs = CPU(cpu);
136 uint32_t old = env->mip;
137 bool locked = false;
138
139 if (!qemu_mutex_iothread_locked()) {
140 locked = true;
141 qemu_mutex_lock_iothread();
142 }
143
144 env->mip = (env->mip & ~mask) | (value & mask);
145
146 if (env->mip) {
147 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
148 } else {
149 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
150 }
151
152 if (locked) {
153 qemu_mutex_unlock_iothread();
154 }
155
156 return old;
157 }
158
159 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
160 {
161 if (newpriv > PRV_M) {
162 g_assert_not_reached();
163 }
164 if (newpriv == PRV_H) {
165 newpriv = PRV_U;
166 }
167 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
168 env->priv = newpriv;
169
170 /*
171 * Clear the load reservation - otherwise a reservation placed in one
172 * context/process can be used by another, resulting in an SC succeeding
173 * incorrectly. Version 2.2 of the ISA specification explicitly requires
174 * this behaviour, while later revisions say that the kernel "should" use
175 * an SC instruction to force the yielding of a load reservation on a
176 * preemptive context switch. As a result, do both.
177 */
178 env->load_res = -1;
179 }
180
181 /* get_physical_address - get the physical address for this virtual address
182 *
183 * Do a page table walk to obtain the physical address corresponding to a
184 * virtual address. Returns 0 if the translation was successful
185 *
186 * Adapted from Spike's mmu_t::translate and mmu_t::walk
187 *
188 */
189 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
190 int *prot, target_ulong addr,
191 int access_type, int mmu_idx)
192 {
193 /* NOTE: the env->pc value visible here will not be
194 * correct, but the value visible to the exception handler
195 * (riscv_cpu_do_interrupt) is correct */
196 MemTxResult res;
197 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
198 int mode = mmu_idx;
199
200 if (mode == PRV_M && access_type != MMU_INST_FETCH) {
201 if (get_field(env->mstatus, MSTATUS_MPRV)) {
202 mode = get_field(env->mstatus, MSTATUS_MPP);
203 }
204 }
205
206 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
207 *physical = addr;
208 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
209 return TRANSLATE_SUCCESS;
210 }
211
212 *prot = 0;
213
214 hwaddr base;
215 int levels, ptidxbits, ptesize, vm, sum;
216 int mxr = get_field(env->mstatus, MSTATUS_MXR);
217
218 if (env->priv_ver >= PRIV_VERSION_1_10_0) {
219 base = (hwaddr)get_field(env->satp, SATP_PPN) << PGSHIFT;
220 sum = get_field(env->mstatus, MSTATUS_SUM);
221 vm = get_field(env->satp, SATP_MODE);
222 switch (vm) {
223 case VM_1_10_SV32:
224 levels = 2; ptidxbits = 10; ptesize = 4; break;
225 case VM_1_10_SV39:
226 levels = 3; ptidxbits = 9; ptesize = 8; break;
227 case VM_1_10_SV48:
228 levels = 4; ptidxbits = 9; ptesize = 8; break;
229 case VM_1_10_SV57:
230 levels = 5; ptidxbits = 9; ptesize = 8; break;
231 case VM_1_10_MBARE:
232 *physical = addr;
233 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
234 return TRANSLATE_SUCCESS;
235 default:
236 g_assert_not_reached();
237 }
238 } else {
239 base = (hwaddr)(env->sptbr) << PGSHIFT;
240 sum = !get_field(env->mstatus, MSTATUS_PUM);
241 vm = get_field(env->mstatus, MSTATUS_VM);
242 switch (vm) {
243 case VM_1_09_SV32:
244 levels = 2; ptidxbits = 10; ptesize = 4; break;
245 case VM_1_09_SV39:
246 levels = 3; ptidxbits = 9; ptesize = 8; break;
247 case VM_1_09_SV48:
248 levels = 4; ptidxbits = 9; ptesize = 8; break;
249 case VM_1_09_MBARE:
250 *physical = addr;
251 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
252 return TRANSLATE_SUCCESS;
253 default:
254 g_assert_not_reached();
255 }
256 }
257
258 CPUState *cs = env_cpu(env);
259 int va_bits = PGSHIFT + levels * ptidxbits;
260 target_ulong mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
261 target_ulong masked_msbs = (addr >> (va_bits - 1)) & mask;
262 if (masked_msbs != 0 && masked_msbs != mask) {
263 return TRANSLATE_FAIL;
264 }
265
266 int ptshift = (levels - 1) * ptidxbits;
267 int i;
268
269 #if !TCG_OVERSIZED_GUEST
270 restart:
271 #endif
272 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
273 target_ulong idx = (addr >> (PGSHIFT + ptshift)) &
274 ((1 << ptidxbits) - 1);
275
276 /* check that physical address of PTE is legal */
277 hwaddr pte_addr = base + idx * ptesize;
278
279 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
280 !pmp_hart_has_privs(env, pte_addr, sizeof(target_ulong),
281 1 << MMU_DATA_LOAD, PRV_S)) {
282 return TRANSLATE_PMP_FAIL;
283 }
284
285 #if defined(TARGET_RISCV32)
286 target_ulong pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
287 #elif defined(TARGET_RISCV64)
288 target_ulong pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
289 #endif
290 if (res != MEMTX_OK) {
291 return TRANSLATE_FAIL;
292 }
293
294 hwaddr ppn = pte >> PTE_PPN_SHIFT;
295
296 if (!(pte & PTE_V)) {
297 /* Invalid PTE */
298 return TRANSLATE_FAIL;
299 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
300 /* Inner PTE, continue walking */
301 base = ppn << PGSHIFT;
302 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
303 /* Reserved leaf PTE flags: PTE_W */
304 return TRANSLATE_FAIL;
305 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
306 /* Reserved leaf PTE flags: PTE_W + PTE_X */
307 return TRANSLATE_FAIL;
308 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
309 (!sum || access_type == MMU_INST_FETCH))) {
310 /* User PTE flags when not U mode and mstatus.SUM is not set,
311 or the access type is an instruction fetch */
312 return TRANSLATE_FAIL;
313 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
314 /* Supervisor PTE flags when not S mode */
315 return TRANSLATE_FAIL;
316 } else if (ppn & ((1ULL << ptshift) - 1)) {
317 /* Misaligned PPN */
318 return TRANSLATE_FAIL;
319 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
320 ((pte & PTE_X) && mxr))) {
321 /* Read access check failed */
322 return TRANSLATE_FAIL;
323 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
324 /* Write access check failed */
325 return TRANSLATE_FAIL;
326 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
327 /* Fetch access check failed */
328 return TRANSLATE_FAIL;
329 } else {
330 /* if necessary, set accessed and dirty bits. */
331 target_ulong updated_pte = pte | PTE_A |
332 (access_type == MMU_DATA_STORE ? PTE_D : 0);
333
334 /* Page table updates need to be atomic with MTTCG enabled */
335 if (updated_pte != pte) {
336 /*
337 * - if accessed or dirty bits need updating, and the PTE is
338 * in RAM, then we do so atomically with a compare and swap.
339 * - if the PTE is in IO space or ROM, then it can't be updated
340 * and we return TRANSLATE_FAIL.
341 * - if the PTE changed by the time we went to update it, then
342 * it is no longer valid and we must re-walk the page table.
343 */
344 MemoryRegion *mr;
345 hwaddr l = sizeof(target_ulong), addr1;
346 mr = address_space_translate(cs->as, pte_addr,
347 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
348 if (memory_region_is_ram(mr)) {
349 target_ulong *pte_pa =
350 qemu_map_ram_ptr(mr->ram_block, addr1);
351 #if TCG_OVERSIZED_GUEST
352 /* MTTCG is not enabled on oversized TCG guests so
353 * page table updates do not need to be atomic */
354 *pte_pa = pte = updated_pte;
355 #else
356 target_ulong old_pte =
357 atomic_cmpxchg(pte_pa, pte, updated_pte);
358 if (old_pte != pte) {
359 goto restart;
360 } else {
361 pte = updated_pte;
362 }
363 #endif
364 } else {
365 /* misconfigured PTE in ROM (AD bits are not preset) or
366 * PTE is in IO space and can't be updated atomically */
367 return TRANSLATE_FAIL;
368 }
369 }
370
371 /* for superpage mappings, make a fake leaf PTE for the TLB's
372 benefit. */
373 target_ulong vpn = addr >> PGSHIFT;
374 *physical = (ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT;
375
376 /* set permissions on the TLB entry */
377 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
378 *prot |= PAGE_READ;
379 }
380 if ((pte & PTE_X)) {
381 *prot |= PAGE_EXEC;
382 }
383 /* add write permission on stores or if the page is already dirty,
384 so that we TLB miss on later writes to update the dirty bit */
385 if ((pte & PTE_W) &&
386 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
387 *prot |= PAGE_WRITE;
388 }
389 return TRANSLATE_SUCCESS;
390 }
391 }
392 return TRANSLATE_FAIL;
393 }
394
395 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
396 MMUAccessType access_type, bool pmp_violation)
397 {
398 CPUState *cs = env_cpu(env);
399 int page_fault_exceptions =
400 (env->priv_ver >= PRIV_VERSION_1_10_0) &&
401 get_field(env->satp, SATP_MODE) != VM_1_10_MBARE &&
402 !pmp_violation;
403 switch (access_type) {
404 case MMU_INST_FETCH:
405 cs->exception_index = page_fault_exceptions ?
406 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
407 break;
408 case MMU_DATA_LOAD:
409 cs->exception_index = page_fault_exceptions ?
410 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
411 break;
412 case MMU_DATA_STORE:
413 cs->exception_index = page_fault_exceptions ?
414 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
415 break;
416 default:
417 g_assert_not_reached();
418 }
419 env->badaddr = address;
420 }
421
422 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
423 {
424 RISCVCPU *cpu = RISCV_CPU(cs);
425 hwaddr phys_addr;
426 int prot;
427 int mmu_idx = cpu_mmu_index(&cpu->env, false);
428
429 if (get_physical_address(&cpu->env, &phys_addr, &prot, addr, 0, mmu_idx)) {
430 return -1;
431 }
432 return phys_addr;
433 }
434
435 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
436 vaddr addr, unsigned size,
437 MMUAccessType access_type,
438 int mmu_idx, MemTxAttrs attrs,
439 MemTxResult response, uintptr_t retaddr)
440 {
441 RISCVCPU *cpu = RISCV_CPU(cs);
442 CPURISCVState *env = &cpu->env;
443
444 if (access_type == MMU_DATA_STORE) {
445 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
446 } else {
447 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
448 }
449
450 env->badaddr = addr;
451 riscv_raise_exception(&cpu->env, cs->exception_index, retaddr);
452 }
453
454 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
455 MMUAccessType access_type, int mmu_idx,
456 uintptr_t retaddr)
457 {
458 RISCVCPU *cpu = RISCV_CPU(cs);
459 CPURISCVState *env = &cpu->env;
460 switch (access_type) {
461 case MMU_INST_FETCH:
462 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
463 break;
464 case MMU_DATA_LOAD:
465 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
466 break;
467 case MMU_DATA_STORE:
468 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
469 break;
470 default:
471 g_assert_not_reached();
472 }
473 env->badaddr = addr;
474 riscv_raise_exception(env, cs->exception_index, retaddr);
475 }
476 #endif
477
478 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
479 MMUAccessType access_type, int mmu_idx,
480 bool probe, uintptr_t retaddr)
481 {
482 RISCVCPU *cpu = RISCV_CPU(cs);
483 CPURISCVState *env = &cpu->env;
484 #ifndef CONFIG_USER_ONLY
485 hwaddr pa = 0;
486 int prot;
487 bool pmp_violation = false;
488 int ret = TRANSLATE_FAIL;
489 int mode = mmu_idx;
490
491 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
492 __func__, address, access_type, mmu_idx);
493
494 ret = get_physical_address(env, &pa, &prot, address, access_type, mmu_idx);
495
496 if (mode == PRV_M && access_type != MMU_INST_FETCH) {
497 if (get_field(env->mstatus, MSTATUS_MPRV)) {
498 mode = get_field(env->mstatus, MSTATUS_MPP);
499 }
500 }
501
502 qemu_log_mask(CPU_LOG_MMU,
503 "%s address=%" VADDR_PRIx " ret %d physical " TARGET_FMT_plx
504 " prot %d\n", __func__, address, ret, pa, prot);
505
506 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
507 (ret == TRANSLATE_SUCCESS) &&
508 !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) {
509 ret = TRANSLATE_PMP_FAIL;
510 }
511 if (ret == TRANSLATE_PMP_FAIL) {
512 pmp_violation = true;
513 }
514 if (ret == TRANSLATE_SUCCESS) {
515 tlb_set_page(cs, address & TARGET_PAGE_MASK, pa & TARGET_PAGE_MASK,
516 prot, mmu_idx, TARGET_PAGE_SIZE);
517 return true;
518 } else if (probe) {
519 return false;
520 } else {
521 raise_mmu_exception(env, address, access_type, pmp_violation);
522 riscv_raise_exception(env, cs->exception_index, retaddr);
523 }
524 #else
525 switch (access_type) {
526 case MMU_INST_FETCH:
527 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
528 break;
529 case MMU_DATA_LOAD:
530 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
531 break;
532 case MMU_DATA_STORE:
533 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
534 break;
535 default:
536 g_assert_not_reached();
537 }
538 env->badaddr = address;
539 cpu_loop_exit_restore(cs, retaddr);
540 #endif
541 }
542
543 /*
544 * Handle Traps
545 *
546 * Adapted from Spike's processor_t::take_trap.
547 *
548 */
549 void riscv_cpu_do_interrupt(CPUState *cs)
550 {
551 #if !defined(CONFIG_USER_ONLY)
552
553 RISCVCPU *cpu = RISCV_CPU(cs);
554 CPURISCVState *env = &cpu->env;
555
556 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
557 * so we mask off the MSB and separate into trap type and cause.
558 */
559 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
560 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
561 target_ulong deleg = async ? env->mideleg : env->medeleg;
562 target_ulong tval = 0;
563
564 static const int ecall_cause_map[] = {
565 [PRV_U] = RISCV_EXCP_U_ECALL,
566 [PRV_S] = RISCV_EXCP_S_ECALL,
567 [PRV_H] = RISCV_EXCP_VS_ECALL,
568 [PRV_M] = RISCV_EXCP_M_ECALL
569 };
570
571 if (!async) {
572 /* set tval to badaddr for traps with address information */
573 switch (cause) {
574 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
575 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
576 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
577 case RISCV_EXCP_INST_ADDR_MIS:
578 case RISCV_EXCP_INST_ACCESS_FAULT:
579 case RISCV_EXCP_LOAD_ADDR_MIS:
580 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
581 case RISCV_EXCP_LOAD_ACCESS_FAULT:
582 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
583 case RISCV_EXCP_INST_PAGE_FAULT:
584 case RISCV_EXCP_LOAD_PAGE_FAULT:
585 case RISCV_EXCP_STORE_PAGE_FAULT:
586 tval = env->badaddr;
587 break;
588 default:
589 break;
590 }
591 /* ecall is dispatched as one cause so translate based on mode */
592 if (cause == RISCV_EXCP_U_ECALL) {
593 assert(env->priv <= 3);
594 cause = ecall_cause_map[env->priv];
595 }
596 }
597
598 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, cause < 23 ?
599 (async ? riscv_intr_names : riscv_excp_names)[cause] : "(unknown)");
600
601 if (env->priv <= PRV_S &&
602 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
603 /* handle the trap in S-mode */
604 target_ulong s = env->mstatus;
605 s = set_field(s, MSTATUS_SPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
606 get_field(s, MSTATUS_SIE) : get_field(s, MSTATUS_UIE << env->priv));
607 s = set_field(s, MSTATUS_SPP, env->priv);
608 s = set_field(s, MSTATUS_SIE, 0);
609 env->mstatus = s;
610 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
611 env->sepc = env->pc;
612 env->sbadaddr = tval;
613 env->pc = (env->stvec >> 2 << 2) +
614 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
615 riscv_cpu_set_mode(env, PRV_S);
616 } else {
617 /* handle the trap in M-mode */
618 target_ulong s = env->mstatus;
619 s = set_field(s, MSTATUS_MPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
620 get_field(s, MSTATUS_MIE) : get_field(s, MSTATUS_UIE << env->priv));
621 s = set_field(s, MSTATUS_MPP, env->priv);
622 s = set_field(s, MSTATUS_MIE, 0);
623 env->mstatus = s;
624 env->mcause = cause | ~(((target_ulong)-1) >> async);
625 env->mepc = env->pc;
626 env->mbadaddr = tval;
627 env->pc = (env->mtvec >> 2 << 2) +
628 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
629 riscv_cpu_set_mode(env, PRV_M);
630 }
631
632 /* NOTE: it is not necessary to yield load reservations here. It is only
633 * necessary for an SC from "another hart" to cause a load reservation
634 * to be yielded. Refer to the memory consistency model section of the
635 * RISC-V ISA Specification.
636 */
637
638 #endif
639 cs->exception_index = EXCP_NONE; /* mark handled to qemu */
640 }