]> git.proxmox.com Git - mirror_qemu.git/blob - target/riscv/cpu_helper.c
Merge tag 'pull-aspeed-20230302' of https://github.com/legoater/qemu into staging
[mirror_qemu.git] / target / riscv / cpu_helper.c
1 /*
2 * RISC-V CPU helpers for qemu.
3 *
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "pmu.h"
25 #include "exec/exec-all.h"
26 #include "instmap.h"
27 #include "tcg/tcg-op.h"
28 #include "trace.h"
29 #include "semihosting/common-semi.h"
30 #include "sysemu/cpu-timers.h"
31 #include "cpu_bits.h"
32 #include "debug.h"
33
34 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
35 {
36 #ifdef CONFIG_USER_ONLY
37 return 0;
38 #else
39 return env->priv;
40 #endif
41 }
42
43 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
44 target_ulong *cs_base, uint32_t *pflags)
45 {
46 CPUState *cs = env_cpu(env);
47 RISCVCPU *cpu = RISCV_CPU(cs);
48
49 uint32_t flags = 0;
50
51 *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
52 *cs_base = 0;
53
54 if (cpu->cfg.ext_zve32f) {
55 /*
56 * If env->vl equals to VLMAX, we can use generic vector operation
57 * expanders (GVEC) to accerlate the vector operations.
58 * However, as LMUL could be a fractional number. The maximum
59 * vector size can be operated might be less than 8 bytes,
60 * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
61 * only when maxsz >= 8 bytes.
62 */
63 uint32_t vlmax = vext_get_vlmax(cpu, env->vtype);
64 uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
65 uint32_t maxsz = vlmax << sew;
66 bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
67 (maxsz >= 8);
68 flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
69 flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
70 flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
71 FIELD_EX64(env->vtype, VTYPE, VLMUL));
72 flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
73 flags = FIELD_DP32(flags, TB_FLAGS, VTA,
74 FIELD_EX64(env->vtype, VTYPE, VTA));
75 flags = FIELD_DP32(flags, TB_FLAGS, VMA,
76 FIELD_EX64(env->vtype, VTYPE, VMA));
77 } else {
78 flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
79 }
80
81 #ifdef CONFIG_USER_ONLY
82 flags |= TB_FLAGS_MSTATUS_FS;
83 flags |= TB_FLAGS_MSTATUS_VS;
84 #else
85 flags |= cpu_mmu_index(env, 0);
86 if (riscv_cpu_fp_enabled(env)) {
87 flags |= env->mstatus & MSTATUS_FS;
88 }
89
90 if (riscv_cpu_vector_enabled(env)) {
91 flags |= env->mstatus & MSTATUS_VS;
92 }
93
94 if (riscv_has_ext(env, RVH)) {
95 if (env->priv == PRV_M ||
96 (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
97 (env->priv == PRV_U && !riscv_cpu_virt_enabled(env) &&
98 get_field(env->hstatus, HSTATUS_HU))) {
99 flags = FIELD_DP32(flags, TB_FLAGS, HLSX, 1);
100 }
101
102 flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_FS,
103 get_field(env->mstatus_hs, MSTATUS_FS));
104
105 flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_VS,
106 get_field(env->mstatus_hs, MSTATUS_VS));
107 }
108 if (cpu->cfg.debug && !icount_enabled()) {
109 flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled);
110 }
111 #endif
112
113 flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
114 if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) {
115 flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
116 }
117 if (env->cur_pmbase != 0) {
118 flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
119 }
120
121 *pflags = flags;
122 }
123
124 void riscv_cpu_update_mask(CPURISCVState *env)
125 {
126 target_ulong mask = -1, base = 0;
127 /*
128 * TODO: Current RVJ spec does not specify
129 * how the extension interacts with XLEN.
130 */
131 #ifndef CONFIG_USER_ONLY
132 if (riscv_has_ext(env, RVJ)) {
133 switch (env->priv) {
134 case PRV_M:
135 if (env->mmte & M_PM_ENABLE) {
136 mask = env->mpmmask;
137 base = env->mpmbase;
138 }
139 break;
140 case PRV_S:
141 if (env->mmte & S_PM_ENABLE) {
142 mask = env->spmmask;
143 base = env->spmbase;
144 }
145 break;
146 case PRV_U:
147 if (env->mmte & U_PM_ENABLE) {
148 mask = env->upmmask;
149 base = env->upmbase;
150 }
151 break;
152 default:
153 g_assert_not_reached();
154 }
155 }
156 #endif
157 if (env->xl == MXL_RV32) {
158 env->cur_pmmask = mask & UINT32_MAX;
159 env->cur_pmbase = base & UINT32_MAX;
160 } else {
161 env->cur_pmmask = mask;
162 env->cur_pmbase = base;
163 }
164 }
165
166 #ifndef CONFIG_USER_ONLY
167
168 /*
169 * The HS-mode is allowed to configure priority only for the
170 * following VS-mode local interrupts:
171 *
172 * 0 (Reserved interrupt, reads as zero)
173 * 1 Supervisor software interrupt
174 * 4 (Reserved interrupt, reads as zero)
175 * 5 Supervisor timer interrupt
176 * 8 (Reserved interrupt, reads as zero)
177 * 13 (Reserved interrupt)
178 * 14 "
179 * 15 "
180 * 16 "
181 * 17 "
182 * 18 "
183 * 19 "
184 * 20 "
185 * 21 "
186 * 22 "
187 * 23 "
188 */
189
190 static const int hviprio_index2irq[] = {
191 0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
192 static const int hviprio_index2rdzero[] = {
193 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
194
195 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
196 {
197 if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
198 return -EINVAL;
199 }
200
201 if (out_irq) {
202 *out_irq = hviprio_index2irq[index];
203 }
204
205 if (out_rdzero) {
206 *out_rdzero = hviprio_index2rdzero[index];
207 }
208
209 return 0;
210 }
211
212 /*
213 * Default priorities of local interrupts are defined in the
214 * RISC-V Advanced Interrupt Architecture specification.
215 *
216 * ----------------------------------------------------------------
217 * Default |
218 * Priority | Major Interrupt Numbers
219 * ----------------------------------------------------------------
220 * Highest | 47, 23, 46, 45, 22, 44,
221 * | 43, 21, 42, 41, 20, 40
222 * |
223 * | 11 (0b), 3 (03), 7 (07)
224 * | 9 (09), 1 (01), 5 (05)
225 * | 12 (0c)
226 * | 10 (0a), 2 (02), 6 (06)
227 * |
228 * | 39, 19, 38, 37, 18, 36,
229 * Lowest | 35, 17, 34, 33, 16, 32
230 * ----------------------------------------------------------------
231 */
232 static const uint8_t default_iprio[64] = {
233 /* Custom interrupts 48 to 63 */
234 [63] = IPRIO_MMAXIPRIO,
235 [62] = IPRIO_MMAXIPRIO,
236 [61] = IPRIO_MMAXIPRIO,
237 [60] = IPRIO_MMAXIPRIO,
238 [59] = IPRIO_MMAXIPRIO,
239 [58] = IPRIO_MMAXIPRIO,
240 [57] = IPRIO_MMAXIPRIO,
241 [56] = IPRIO_MMAXIPRIO,
242 [55] = IPRIO_MMAXIPRIO,
243 [54] = IPRIO_MMAXIPRIO,
244 [53] = IPRIO_MMAXIPRIO,
245 [52] = IPRIO_MMAXIPRIO,
246 [51] = IPRIO_MMAXIPRIO,
247 [50] = IPRIO_MMAXIPRIO,
248 [49] = IPRIO_MMAXIPRIO,
249 [48] = IPRIO_MMAXIPRIO,
250
251 /* Custom interrupts 24 to 31 */
252 [31] = IPRIO_MMAXIPRIO,
253 [30] = IPRIO_MMAXIPRIO,
254 [29] = IPRIO_MMAXIPRIO,
255 [28] = IPRIO_MMAXIPRIO,
256 [27] = IPRIO_MMAXIPRIO,
257 [26] = IPRIO_MMAXIPRIO,
258 [25] = IPRIO_MMAXIPRIO,
259 [24] = IPRIO_MMAXIPRIO,
260
261 [47] = IPRIO_DEFAULT_UPPER,
262 [23] = IPRIO_DEFAULT_UPPER + 1,
263 [46] = IPRIO_DEFAULT_UPPER + 2,
264 [45] = IPRIO_DEFAULT_UPPER + 3,
265 [22] = IPRIO_DEFAULT_UPPER + 4,
266 [44] = IPRIO_DEFAULT_UPPER + 5,
267
268 [43] = IPRIO_DEFAULT_UPPER + 6,
269 [21] = IPRIO_DEFAULT_UPPER + 7,
270 [42] = IPRIO_DEFAULT_UPPER + 8,
271 [41] = IPRIO_DEFAULT_UPPER + 9,
272 [20] = IPRIO_DEFAULT_UPPER + 10,
273 [40] = IPRIO_DEFAULT_UPPER + 11,
274
275 [11] = IPRIO_DEFAULT_M,
276 [3] = IPRIO_DEFAULT_M + 1,
277 [7] = IPRIO_DEFAULT_M + 2,
278
279 [9] = IPRIO_DEFAULT_S,
280 [1] = IPRIO_DEFAULT_S + 1,
281 [5] = IPRIO_DEFAULT_S + 2,
282
283 [12] = IPRIO_DEFAULT_SGEXT,
284
285 [10] = IPRIO_DEFAULT_VS,
286 [2] = IPRIO_DEFAULT_VS + 1,
287 [6] = IPRIO_DEFAULT_VS + 2,
288
289 [39] = IPRIO_DEFAULT_LOWER,
290 [19] = IPRIO_DEFAULT_LOWER + 1,
291 [38] = IPRIO_DEFAULT_LOWER + 2,
292 [37] = IPRIO_DEFAULT_LOWER + 3,
293 [18] = IPRIO_DEFAULT_LOWER + 4,
294 [36] = IPRIO_DEFAULT_LOWER + 5,
295
296 [35] = IPRIO_DEFAULT_LOWER + 6,
297 [17] = IPRIO_DEFAULT_LOWER + 7,
298 [34] = IPRIO_DEFAULT_LOWER + 8,
299 [33] = IPRIO_DEFAULT_LOWER + 9,
300 [16] = IPRIO_DEFAULT_LOWER + 10,
301 [32] = IPRIO_DEFAULT_LOWER + 11,
302 };
303
304 uint8_t riscv_cpu_default_priority(int irq)
305 {
306 if (irq < 0 || irq > 63) {
307 return IPRIO_MMAXIPRIO;
308 }
309
310 return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
311 };
312
313 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
314 int extirq, unsigned int extirq_def_prio,
315 uint64_t pending, uint8_t *iprio)
316 {
317 RISCVCPU *cpu = env_archcpu(env);
318 int irq, best_irq = RISCV_EXCP_NONE;
319 unsigned int prio, best_prio = UINT_MAX;
320
321 if (!pending) {
322 return RISCV_EXCP_NONE;
323 }
324
325 irq = ctz64(pending);
326 if (!((extirq == IRQ_M_EXT) ? cpu->cfg.ext_smaia : cpu->cfg.ext_ssaia)) {
327 return irq;
328 }
329
330 pending = pending >> irq;
331 while (pending) {
332 prio = iprio[irq];
333 if (!prio) {
334 if (irq == extirq) {
335 prio = extirq_def_prio;
336 } else {
337 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
338 1 : IPRIO_MMAXIPRIO;
339 }
340 }
341 if ((pending & 0x1) && (prio <= best_prio)) {
342 best_irq = irq;
343 best_prio = prio;
344 }
345 irq++;
346 pending = pending >> 1;
347 }
348
349 return best_irq;
350 }
351
352 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
353 {
354 uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
355 uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
356 uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
357
358 return (env->mip | vsgein | vstip) & env->mie;
359 }
360
361 int riscv_cpu_mirq_pending(CPURISCVState *env)
362 {
363 uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
364 ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
365
366 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
367 irqs, env->miprio);
368 }
369
370 int riscv_cpu_sirq_pending(CPURISCVState *env)
371 {
372 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
373 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
374
375 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
376 irqs, env->siprio);
377 }
378
379 int riscv_cpu_vsirq_pending(CPURISCVState *env)
380 {
381 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
382 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
383
384 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
385 irqs >> 1, env->hviprio);
386 }
387
388 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
389 {
390 int virq;
391 uint64_t irqs, pending, mie, hsie, vsie;
392
393 /* Determine interrupt enable state of all privilege modes */
394 if (riscv_cpu_virt_enabled(env)) {
395 mie = 1;
396 hsie = 1;
397 vsie = (env->priv < PRV_S) ||
398 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
399 } else {
400 mie = (env->priv < PRV_M) ||
401 (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
402 hsie = (env->priv < PRV_S) ||
403 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
404 vsie = 0;
405 }
406
407 /* Determine all pending interrupts */
408 pending = riscv_cpu_all_pending(env);
409
410 /* Check M-mode interrupts */
411 irqs = pending & ~env->mideleg & -mie;
412 if (irqs) {
413 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
414 irqs, env->miprio);
415 }
416
417 /* Check HS-mode interrupts */
418 irqs = pending & env->mideleg & ~env->hideleg & -hsie;
419 if (irqs) {
420 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
421 irqs, env->siprio);
422 }
423
424 /* Check VS-mode interrupts */
425 irqs = pending & env->mideleg & env->hideleg & -vsie;
426 if (irqs) {
427 virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
428 irqs >> 1, env->hviprio);
429 return (virq <= 0) ? virq : virq + 1;
430 }
431
432 /* Indicate no pending interrupt */
433 return RISCV_EXCP_NONE;
434 }
435
436 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
437 {
438 if (interrupt_request & CPU_INTERRUPT_HARD) {
439 RISCVCPU *cpu = RISCV_CPU(cs);
440 CPURISCVState *env = &cpu->env;
441 int interruptno = riscv_cpu_local_irq_pending(env);
442 if (interruptno >= 0) {
443 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
444 riscv_cpu_do_interrupt(cs);
445 return true;
446 }
447 }
448 return false;
449 }
450
451 /* Return true is floating point support is currently enabled */
452 bool riscv_cpu_fp_enabled(CPURISCVState *env)
453 {
454 if (env->mstatus & MSTATUS_FS) {
455 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
456 return false;
457 }
458 return true;
459 }
460
461 return false;
462 }
463
464 /* Return true is vector support is currently enabled */
465 bool riscv_cpu_vector_enabled(CPURISCVState *env)
466 {
467 if (env->mstatus & MSTATUS_VS) {
468 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_VS)) {
469 return false;
470 }
471 return true;
472 }
473
474 return false;
475 }
476
477 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
478 {
479 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
480 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
481 MSTATUS64_UXL | MSTATUS_VS;
482
483 if (riscv_has_ext(env, RVF)) {
484 mstatus_mask |= MSTATUS_FS;
485 }
486 bool current_virt = riscv_cpu_virt_enabled(env);
487
488 g_assert(riscv_has_ext(env, RVH));
489
490 if (current_virt) {
491 /* Current V=1 and we are about to change to V=0 */
492 env->vsstatus = env->mstatus & mstatus_mask;
493 env->mstatus &= ~mstatus_mask;
494 env->mstatus |= env->mstatus_hs;
495
496 env->vstvec = env->stvec;
497 env->stvec = env->stvec_hs;
498
499 env->vsscratch = env->sscratch;
500 env->sscratch = env->sscratch_hs;
501
502 env->vsepc = env->sepc;
503 env->sepc = env->sepc_hs;
504
505 env->vscause = env->scause;
506 env->scause = env->scause_hs;
507
508 env->vstval = env->stval;
509 env->stval = env->stval_hs;
510
511 env->vsatp = env->satp;
512 env->satp = env->satp_hs;
513 } else {
514 /* Current V=0 and we are about to change to V=1 */
515 env->mstatus_hs = env->mstatus & mstatus_mask;
516 env->mstatus &= ~mstatus_mask;
517 env->mstatus |= env->vsstatus;
518
519 env->stvec_hs = env->stvec;
520 env->stvec = env->vstvec;
521
522 env->sscratch_hs = env->sscratch;
523 env->sscratch = env->vsscratch;
524
525 env->sepc_hs = env->sepc;
526 env->sepc = env->vsepc;
527
528 env->scause_hs = env->scause;
529 env->scause = env->vscause;
530
531 env->stval_hs = env->stval;
532 env->stval = env->vstval;
533
534 env->satp_hs = env->satp;
535 env->satp = env->vsatp;
536 }
537 }
538
539 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
540 {
541 if (!riscv_has_ext(env, RVH)) {
542 return 0;
543 }
544
545 return env->geilen;
546 }
547
548 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
549 {
550 if (!riscv_has_ext(env, RVH)) {
551 return;
552 }
553
554 if (geilen > (TARGET_LONG_BITS - 1)) {
555 return;
556 }
557
558 env->geilen = geilen;
559 }
560
561 bool riscv_cpu_virt_enabled(CPURISCVState *env)
562 {
563 if (!riscv_has_ext(env, RVH)) {
564 return false;
565 }
566
567 return get_field(env->virt, VIRT_ONOFF);
568 }
569
570 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
571 {
572 if (!riscv_has_ext(env, RVH)) {
573 return;
574 }
575
576 /* Flush the TLB on all virt mode changes. */
577 if (get_field(env->virt, VIRT_ONOFF) != enable) {
578 tlb_flush(env_cpu(env));
579 }
580
581 env->virt = set_field(env->virt, VIRT_ONOFF, enable);
582
583 if (enable) {
584 /*
585 * The guest external interrupts from an interrupt controller are
586 * delivered only when the Guest/VM is running (i.e. V=1). This means
587 * any guest external interrupt which is triggered while the Guest/VM
588 * is not running (i.e. V=0) will be missed on QEMU resulting in guest
589 * with sluggish response to serial console input and other I/O events.
590 *
591 * To solve this, we check and inject interrupt after setting V=1.
592 */
593 riscv_cpu_update_mip(env_archcpu(env), 0, 0);
594 }
595 }
596
597 bool riscv_cpu_two_stage_lookup(int mmu_idx)
598 {
599 return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
600 }
601
602 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
603 {
604 CPURISCVState *env = &cpu->env;
605 if (env->miclaim & interrupts) {
606 return -1;
607 } else {
608 env->miclaim |= interrupts;
609 return 0;
610 }
611 }
612
613 uint64_t riscv_cpu_update_mip(RISCVCPU *cpu, uint64_t mask, uint64_t value)
614 {
615 CPURISCVState *env = &cpu->env;
616 CPUState *cs = CPU(cpu);
617 uint64_t gein, vsgein = 0, vstip = 0, old = env->mip;
618
619 if (riscv_cpu_virt_enabled(env)) {
620 gein = get_field(env->hstatus, HSTATUS_VGEIN);
621 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
622 }
623
624 vstip = env->vstime_irq ? MIP_VSTIP : 0;
625
626 QEMU_IOTHREAD_LOCK_GUARD();
627
628 env->mip = (env->mip & ~mask) | (value & mask);
629
630 if (env->mip | vsgein | vstip) {
631 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
632 } else {
633 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
634 }
635
636 return old;
637 }
638
639 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
640 void *arg)
641 {
642 env->rdtime_fn = fn;
643 env->rdtime_fn_arg = arg;
644 }
645
646 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
647 int (*rmw_fn)(void *arg,
648 target_ulong reg,
649 target_ulong *val,
650 target_ulong new_val,
651 target_ulong write_mask),
652 void *rmw_fn_arg)
653 {
654 if (priv <= PRV_M) {
655 env->aia_ireg_rmw_fn[priv] = rmw_fn;
656 env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
657 }
658 }
659
660 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
661 {
662 if (newpriv > PRV_M) {
663 g_assert_not_reached();
664 }
665 if (newpriv == PRV_H) {
666 newpriv = PRV_U;
667 }
668 if (icount_enabled() && newpriv != env->priv) {
669 riscv_itrigger_update_priv(env);
670 }
671 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
672 env->priv = newpriv;
673 env->xl = cpu_recompute_xl(env);
674 riscv_cpu_update_mask(env);
675
676 /*
677 * Clear the load reservation - otherwise a reservation placed in one
678 * context/process can be used by another, resulting in an SC succeeding
679 * incorrectly. Version 2.2 of the ISA specification explicitly requires
680 * this behaviour, while later revisions say that the kernel "should" use
681 * an SC instruction to force the yielding of a load reservation on a
682 * preemptive context switch. As a result, do both.
683 */
684 env->load_res = -1;
685 }
686
687 /*
688 * get_physical_address_pmp - check PMP permission for this physical address
689 *
690 * Match the PMP region and check permission for this physical address and it's
691 * TLB page. Returns 0 if the permission checking was successful
692 *
693 * @env: CPURISCVState
694 * @prot: The returned protection attributes
695 * @tlb_size: TLB page size containing addr. It could be modified after PMP
696 * permission checking. NULL if not set TLB page for addr.
697 * @addr: The physical address to be checked permission
698 * @access_type: The type of MMU access
699 * @mode: Indicates current privilege level.
700 */
701 static int get_physical_address_pmp(CPURISCVState *env, int *prot,
702 target_ulong *tlb_size, hwaddr addr,
703 int size, MMUAccessType access_type,
704 int mode)
705 {
706 pmp_priv_t pmp_priv;
707 int pmp_index = -1;
708
709 if (!riscv_cpu_cfg(env)->pmp) {
710 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
711 return TRANSLATE_SUCCESS;
712 }
713
714 pmp_index = pmp_hart_has_privs(env, addr, size, 1 << access_type,
715 &pmp_priv, mode);
716 if (pmp_index < 0) {
717 *prot = 0;
718 return TRANSLATE_PMP_FAIL;
719 }
720
721 *prot = pmp_priv_to_page_prot(pmp_priv);
722 if ((tlb_size != NULL) && pmp_index != MAX_RISCV_PMPS) {
723 target_ulong tlb_sa = addr & ~(TARGET_PAGE_SIZE - 1);
724 target_ulong tlb_ea = tlb_sa + TARGET_PAGE_SIZE - 1;
725
726 *tlb_size = pmp_get_tlb_size(env, pmp_index, tlb_sa, tlb_ea);
727 }
728
729 return TRANSLATE_SUCCESS;
730 }
731
732 /* get_physical_address - get the physical address for this virtual address
733 *
734 * Do a page table walk to obtain the physical address corresponding to a
735 * virtual address. Returns 0 if the translation was successful
736 *
737 * Adapted from Spike's mmu_t::translate and mmu_t::walk
738 *
739 * @env: CPURISCVState
740 * @physical: This will be set to the calculated physical address
741 * @prot: The returned protection attributes
742 * @addr: The virtual address to be translated
743 * @fault_pte_addr: If not NULL, this will be set to fault pte address
744 * when a error occurs on pte address translation.
745 * This will already be shifted to match htval.
746 * @access_type: The type of MMU access
747 * @mmu_idx: Indicates current privilege level
748 * @first_stage: Are we in first stage translation?
749 * Second stage is used for hypervisor guest translation
750 * @two_stage: Are we going to perform two stage translation
751 * @is_debug: Is this access from a debugger or the monitor?
752 */
753 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
754 int *prot, target_ulong addr,
755 target_ulong *fault_pte_addr,
756 int access_type, int mmu_idx,
757 bool first_stage, bool two_stage,
758 bool is_debug)
759 {
760 /* NOTE: the env->pc value visible here will not be
761 * correct, but the value visible to the exception handler
762 * (riscv_cpu_do_interrupt) is correct */
763 MemTxResult res;
764 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
765 int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
766 bool use_background = false;
767 hwaddr ppn;
768 RISCVCPU *cpu = env_archcpu(env);
769 int napot_bits = 0;
770 target_ulong napot_mask;
771
772 /*
773 * Check if we should use the background registers for the two
774 * stage translation. We don't need to check if we actually need
775 * two stage translation as that happened before this function
776 * was called. Background registers will be used if the guest has
777 * forced a two stage translation to be on (in HS or M mode).
778 */
779 if (!riscv_cpu_virt_enabled(env) && two_stage) {
780 use_background = true;
781 }
782
783 /* MPRV does not affect the virtual-machine load/store
784 instructions, HLV, HLVX, and HSV. */
785 if (riscv_cpu_two_stage_lookup(mmu_idx)) {
786 mode = get_field(env->hstatus, HSTATUS_SPVP);
787 } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
788 if (get_field(env->mstatus, MSTATUS_MPRV)) {
789 mode = get_field(env->mstatus, MSTATUS_MPP);
790 }
791 }
792
793 if (first_stage == false) {
794 /* We are in stage 2 translation, this is similar to stage 1. */
795 /* Stage 2 is always taken as U-mode */
796 mode = PRV_U;
797 }
798
799 if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) {
800 *physical = addr;
801 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
802 return TRANSLATE_SUCCESS;
803 }
804
805 *prot = 0;
806
807 hwaddr base;
808 int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
809
810 if (first_stage == true) {
811 mxr = get_field(env->mstatus, MSTATUS_MXR);
812 } else {
813 mxr = get_field(env->vsstatus, MSTATUS_MXR);
814 }
815
816 if (first_stage == true) {
817 if (use_background) {
818 if (riscv_cpu_mxl(env) == MXL_RV32) {
819 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
820 vm = get_field(env->vsatp, SATP32_MODE);
821 } else {
822 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
823 vm = get_field(env->vsatp, SATP64_MODE);
824 }
825 } else {
826 if (riscv_cpu_mxl(env) == MXL_RV32) {
827 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
828 vm = get_field(env->satp, SATP32_MODE);
829 } else {
830 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
831 vm = get_field(env->satp, SATP64_MODE);
832 }
833 }
834 widened = 0;
835 } else {
836 if (riscv_cpu_mxl(env) == MXL_RV32) {
837 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
838 vm = get_field(env->hgatp, SATP32_MODE);
839 } else {
840 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
841 vm = get_field(env->hgatp, SATP64_MODE);
842 }
843 widened = 2;
844 }
845 /* status.SUM will be ignored if execute on background */
846 sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug;
847 switch (vm) {
848 case VM_1_10_SV32:
849 levels = 2; ptidxbits = 10; ptesize = 4; break;
850 case VM_1_10_SV39:
851 levels = 3; ptidxbits = 9; ptesize = 8; break;
852 case VM_1_10_SV48:
853 levels = 4; ptidxbits = 9; ptesize = 8; break;
854 case VM_1_10_SV57:
855 levels = 5; ptidxbits = 9; ptesize = 8; break;
856 case VM_1_10_MBARE:
857 *physical = addr;
858 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
859 return TRANSLATE_SUCCESS;
860 default:
861 g_assert_not_reached();
862 }
863
864 CPUState *cs = env_cpu(env);
865 int va_bits = PGSHIFT + levels * ptidxbits + widened;
866 target_ulong mask, masked_msbs;
867
868 if (TARGET_LONG_BITS > (va_bits - 1)) {
869 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
870 } else {
871 mask = 0;
872 }
873 masked_msbs = (addr >> (va_bits - 1)) & mask;
874
875 if (masked_msbs != 0 && masked_msbs != mask) {
876 return TRANSLATE_FAIL;
877 }
878
879 int ptshift = (levels - 1) * ptidxbits;
880 int i;
881
882 #if !TCG_OVERSIZED_GUEST
883 restart:
884 #endif
885 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
886 target_ulong idx;
887 if (i == 0) {
888 idx = (addr >> (PGSHIFT + ptshift)) &
889 ((1 << (ptidxbits + widened)) - 1);
890 } else {
891 idx = (addr >> (PGSHIFT + ptshift)) &
892 ((1 << ptidxbits) - 1);
893 }
894
895 /* check that physical address of PTE is legal */
896 hwaddr pte_addr;
897
898 if (two_stage && first_stage) {
899 int vbase_prot;
900 hwaddr vbase;
901
902 /* Do the second stage translation on the base PTE address. */
903 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
904 base, NULL, MMU_DATA_LOAD,
905 mmu_idx, false, true,
906 is_debug);
907
908 if (vbase_ret != TRANSLATE_SUCCESS) {
909 if (fault_pte_addr) {
910 *fault_pte_addr = (base + idx * ptesize) >> 2;
911 }
912 return TRANSLATE_G_STAGE_FAIL;
913 }
914
915 pte_addr = vbase + idx * ptesize;
916 } else {
917 pte_addr = base + idx * ptesize;
918 }
919
920 int pmp_prot;
921 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
922 sizeof(target_ulong),
923 MMU_DATA_LOAD, PRV_S);
924 if (pmp_ret != TRANSLATE_SUCCESS) {
925 return TRANSLATE_PMP_FAIL;
926 }
927
928 target_ulong pte;
929 if (riscv_cpu_mxl(env) == MXL_RV32) {
930 pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
931 } else {
932 pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
933 }
934
935 if (res != MEMTX_OK) {
936 return TRANSLATE_FAIL;
937 }
938
939 bool pbmte = env->menvcfg & MENVCFG_PBMTE;
940 bool hade = env->menvcfg & MENVCFG_HADE;
941
942 if (first_stage && two_stage && riscv_cpu_virt_enabled(env)) {
943 pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE);
944 hade = hade && (env->henvcfg & HENVCFG_HADE);
945 }
946
947 if (riscv_cpu_sxl(env) == MXL_RV32) {
948 ppn = pte >> PTE_PPN_SHIFT;
949 } else if (pbmte || cpu->cfg.ext_svnapot) {
950 ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
951 } else {
952 ppn = pte >> PTE_PPN_SHIFT;
953 if ((pte & ~(target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT) {
954 return TRANSLATE_FAIL;
955 }
956 }
957
958 if (!(pte & PTE_V)) {
959 /* Invalid PTE */
960 return TRANSLATE_FAIL;
961 } else if (!pbmte && (pte & PTE_PBMT)) {
962 return TRANSLATE_FAIL;
963 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
964 /* Inner PTE, continue walking */
965 if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
966 return TRANSLATE_FAIL;
967 }
968 base = ppn << PGSHIFT;
969 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
970 /* Reserved leaf PTE flags: PTE_W */
971 return TRANSLATE_FAIL;
972 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
973 /* Reserved leaf PTE flags: PTE_W + PTE_X */
974 return TRANSLATE_FAIL;
975 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
976 (!sum || access_type == MMU_INST_FETCH))) {
977 /* User PTE flags when not U mode and mstatus.SUM is not set,
978 or the access type is an instruction fetch */
979 return TRANSLATE_FAIL;
980 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
981 /* Supervisor PTE flags when not S mode */
982 return TRANSLATE_FAIL;
983 } else if (ppn & ((1ULL << ptshift) - 1)) {
984 /* Misaligned PPN */
985 return TRANSLATE_FAIL;
986 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
987 ((pte & PTE_X) && mxr))) {
988 /* Read access check failed */
989 return TRANSLATE_FAIL;
990 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
991 /* Write access check failed */
992 return TRANSLATE_FAIL;
993 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
994 /* Fetch access check failed */
995 return TRANSLATE_FAIL;
996 } else {
997 /* if necessary, set accessed and dirty bits. */
998 target_ulong updated_pte = pte | PTE_A |
999 (access_type == MMU_DATA_STORE ? PTE_D : 0);
1000
1001 /* Page table updates need to be atomic with MTTCG enabled */
1002 if (updated_pte != pte) {
1003 if (!hade) {
1004 return TRANSLATE_FAIL;
1005 }
1006
1007 /*
1008 * - if accessed or dirty bits need updating, and the PTE is
1009 * in RAM, then we do so atomically with a compare and swap.
1010 * - if the PTE is in IO space or ROM, then it can't be updated
1011 * and we return TRANSLATE_FAIL.
1012 * - if the PTE changed by the time we went to update it, then
1013 * it is no longer valid and we must re-walk the page table.
1014 */
1015 MemoryRegion *mr;
1016 hwaddr l = sizeof(target_ulong), addr1;
1017 mr = address_space_translate(cs->as, pte_addr,
1018 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
1019 if (memory_region_is_ram(mr)) {
1020 target_ulong *pte_pa =
1021 qemu_map_ram_ptr(mr->ram_block, addr1);
1022 #if TCG_OVERSIZED_GUEST
1023 /* MTTCG is not enabled on oversized TCG guests so
1024 * page table updates do not need to be atomic */
1025 *pte_pa = pte = updated_pte;
1026 #else
1027 target_ulong old_pte =
1028 qatomic_cmpxchg(pte_pa, pte, updated_pte);
1029 if (old_pte != pte) {
1030 goto restart;
1031 } else {
1032 pte = updated_pte;
1033 }
1034 #endif
1035 } else {
1036 /* misconfigured PTE in ROM (AD bits are not preset) or
1037 * PTE is in IO space and can't be updated atomically */
1038 return TRANSLATE_FAIL;
1039 }
1040 }
1041
1042 /* for superpage mappings, make a fake leaf PTE for the TLB's
1043 benefit. */
1044 target_ulong vpn = addr >> PGSHIFT;
1045
1046 if (cpu->cfg.ext_svnapot && (pte & PTE_N)) {
1047 napot_bits = ctzl(ppn) + 1;
1048 if ((i != (levels - 1)) || (napot_bits != 4)) {
1049 return TRANSLATE_FAIL;
1050 }
1051 }
1052
1053 napot_mask = (1 << napot_bits) - 1;
1054 *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1055 (vpn & (((target_ulong)1 << ptshift) - 1))
1056 ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1057
1058 /* set permissions on the TLB entry */
1059 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
1060 *prot |= PAGE_READ;
1061 }
1062 if ((pte & PTE_X)) {
1063 *prot |= PAGE_EXEC;
1064 }
1065 /* add write permission on stores or if the page is already dirty,
1066 so that we TLB miss on later writes to update the dirty bit */
1067 if ((pte & PTE_W) &&
1068 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
1069 *prot |= PAGE_WRITE;
1070 }
1071 return TRANSLATE_SUCCESS;
1072 }
1073 }
1074 return TRANSLATE_FAIL;
1075 }
1076
1077 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1078 MMUAccessType access_type, bool pmp_violation,
1079 bool first_stage, bool two_stage,
1080 bool two_stage_indirect)
1081 {
1082 CPUState *cs = env_cpu(env);
1083 int page_fault_exceptions, vm;
1084 uint64_t stap_mode;
1085
1086 if (riscv_cpu_mxl(env) == MXL_RV32) {
1087 stap_mode = SATP32_MODE;
1088 } else {
1089 stap_mode = SATP64_MODE;
1090 }
1091
1092 if (first_stage) {
1093 vm = get_field(env->satp, stap_mode);
1094 } else {
1095 vm = get_field(env->hgatp, stap_mode);
1096 }
1097
1098 page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1099
1100 switch (access_type) {
1101 case MMU_INST_FETCH:
1102 if (riscv_cpu_virt_enabled(env) && !first_stage) {
1103 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1104 } else {
1105 cs->exception_index = page_fault_exceptions ?
1106 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1107 }
1108 break;
1109 case MMU_DATA_LOAD:
1110 if (two_stage && !first_stage) {
1111 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1112 } else {
1113 cs->exception_index = page_fault_exceptions ?
1114 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1115 }
1116 break;
1117 case MMU_DATA_STORE:
1118 if (two_stage && !first_stage) {
1119 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1120 } else {
1121 cs->exception_index = page_fault_exceptions ?
1122 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1123 }
1124 break;
1125 default:
1126 g_assert_not_reached();
1127 }
1128 env->badaddr = address;
1129 env->two_stage_lookup = two_stage;
1130 env->two_stage_indirect_lookup = two_stage_indirect;
1131 }
1132
1133 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1134 {
1135 RISCVCPU *cpu = RISCV_CPU(cs);
1136 CPURISCVState *env = &cpu->env;
1137 hwaddr phys_addr;
1138 int prot;
1139 int mmu_idx = cpu_mmu_index(&cpu->env, false);
1140
1141 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1142 true, riscv_cpu_virt_enabled(env), true)) {
1143 return -1;
1144 }
1145
1146 if (riscv_cpu_virt_enabled(env)) {
1147 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1148 0, mmu_idx, false, true, true)) {
1149 return -1;
1150 }
1151 }
1152
1153 return phys_addr & TARGET_PAGE_MASK;
1154 }
1155
1156 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1157 vaddr addr, unsigned size,
1158 MMUAccessType access_type,
1159 int mmu_idx, MemTxAttrs attrs,
1160 MemTxResult response, uintptr_t retaddr)
1161 {
1162 RISCVCPU *cpu = RISCV_CPU(cs);
1163 CPURISCVState *env = &cpu->env;
1164
1165 if (access_type == MMU_DATA_STORE) {
1166 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1167 } else if (access_type == MMU_DATA_LOAD) {
1168 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1169 } else {
1170 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1171 }
1172
1173 env->badaddr = addr;
1174 env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
1175 riscv_cpu_two_stage_lookup(mmu_idx);
1176 env->two_stage_indirect_lookup = false;
1177 cpu_loop_exit_restore(cs, retaddr);
1178 }
1179
1180 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1181 MMUAccessType access_type, int mmu_idx,
1182 uintptr_t retaddr)
1183 {
1184 RISCVCPU *cpu = RISCV_CPU(cs);
1185 CPURISCVState *env = &cpu->env;
1186 switch (access_type) {
1187 case MMU_INST_FETCH:
1188 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1189 break;
1190 case MMU_DATA_LOAD:
1191 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1192 break;
1193 case MMU_DATA_STORE:
1194 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1195 break;
1196 default:
1197 g_assert_not_reached();
1198 }
1199 env->badaddr = addr;
1200 env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
1201 riscv_cpu_two_stage_lookup(mmu_idx);
1202 env->two_stage_indirect_lookup = false;
1203 cpu_loop_exit_restore(cs, retaddr);
1204 }
1205
1206
1207 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1208 {
1209 enum riscv_pmu_event_idx pmu_event_type;
1210
1211 switch (access_type) {
1212 case MMU_INST_FETCH:
1213 pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1214 break;
1215 case MMU_DATA_LOAD:
1216 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1217 break;
1218 case MMU_DATA_STORE:
1219 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1220 break;
1221 default:
1222 return;
1223 }
1224
1225 riscv_pmu_incr_ctr(cpu, pmu_event_type);
1226 }
1227
1228 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1229 MMUAccessType access_type, int mmu_idx,
1230 bool probe, uintptr_t retaddr)
1231 {
1232 RISCVCPU *cpu = RISCV_CPU(cs);
1233 CPURISCVState *env = &cpu->env;
1234 vaddr im_address;
1235 hwaddr pa = 0;
1236 int prot, prot2, prot_pmp;
1237 bool pmp_violation = false;
1238 bool first_stage_error = true;
1239 bool two_stage_lookup = false;
1240 bool two_stage_indirect_error = false;
1241 int ret = TRANSLATE_FAIL;
1242 int mode = mmu_idx;
1243 /* default TLB page size */
1244 target_ulong tlb_size = TARGET_PAGE_SIZE;
1245
1246 env->guest_phys_fault_addr = 0;
1247
1248 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1249 __func__, address, access_type, mmu_idx);
1250
1251 /* MPRV does not affect the virtual-machine load/store
1252 instructions, HLV, HLVX, and HSV. */
1253 if (riscv_cpu_two_stage_lookup(mmu_idx)) {
1254 mode = get_field(env->hstatus, HSTATUS_SPVP);
1255 } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
1256 get_field(env->mstatus, MSTATUS_MPRV)) {
1257 mode = get_field(env->mstatus, MSTATUS_MPP);
1258 if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
1259 two_stage_lookup = true;
1260 }
1261 }
1262
1263 pmu_tlb_fill_incr_ctr(cpu, access_type);
1264 if (riscv_cpu_virt_enabled(env) ||
1265 ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
1266 access_type != MMU_INST_FETCH)) {
1267 /* Two stage lookup */
1268 ret = get_physical_address(env, &pa, &prot, address,
1269 &env->guest_phys_fault_addr, access_type,
1270 mmu_idx, true, true, false);
1271
1272 /*
1273 * A G-stage exception may be triggered during two state lookup.
1274 * And the env->guest_phys_fault_addr has already been set in
1275 * get_physical_address().
1276 */
1277 if (ret == TRANSLATE_G_STAGE_FAIL) {
1278 first_stage_error = false;
1279 two_stage_indirect_error = true;
1280 access_type = MMU_DATA_LOAD;
1281 }
1282
1283 qemu_log_mask(CPU_LOG_MMU,
1284 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1285 HWADDR_FMT_plx " prot %d\n",
1286 __func__, address, ret, pa, prot);
1287
1288 if (ret == TRANSLATE_SUCCESS) {
1289 /* Second stage lookup */
1290 im_address = pa;
1291
1292 ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1293 access_type, mmu_idx, false, true,
1294 false);
1295
1296 qemu_log_mask(CPU_LOG_MMU,
1297 "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
1298 HWADDR_FMT_plx " prot %d\n",
1299 __func__, im_address, ret, pa, prot2);
1300
1301 prot &= prot2;
1302
1303 if (ret == TRANSLATE_SUCCESS) {
1304 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1305 size, access_type, mode);
1306
1307 qemu_log_mask(CPU_LOG_MMU,
1308 "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1309 " %d tlb_size " TARGET_FMT_lu "\n",
1310 __func__, pa, ret, prot_pmp, tlb_size);
1311
1312 prot &= prot_pmp;
1313 }
1314
1315 if (ret != TRANSLATE_SUCCESS) {
1316 /*
1317 * Guest physical address translation failed, this is a HS
1318 * level exception
1319 */
1320 first_stage_error = false;
1321 env->guest_phys_fault_addr = (im_address |
1322 (address &
1323 (TARGET_PAGE_SIZE - 1))) >> 2;
1324 }
1325 }
1326 } else {
1327 /* Single stage lookup */
1328 ret = get_physical_address(env, &pa, &prot, address, NULL,
1329 access_type, mmu_idx, true, false, false);
1330
1331 qemu_log_mask(CPU_LOG_MMU,
1332 "%s address=%" VADDR_PRIx " ret %d physical "
1333 HWADDR_FMT_plx " prot %d\n",
1334 __func__, address, ret, pa, prot);
1335
1336 if (ret == TRANSLATE_SUCCESS) {
1337 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1338 size, access_type, mode);
1339
1340 qemu_log_mask(CPU_LOG_MMU,
1341 "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1342 " %d tlb_size " TARGET_FMT_lu "\n",
1343 __func__, pa, ret, prot_pmp, tlb_size);
1344
1345 prot &= prot_pmp;
1346 }
1347 }
1348
1349 if (ret == TRANSLATE_PMP_FAIL) {
1350 pmp_violation = true;
1351 }
1352
1353 if (ret == TRANSLATE_SUCCESS) {
1354 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1355 prot, mmu_idx, tlb_size);
1356 return true;
1357 } else if (probe) {
1358 return false;
1359 } else {
1360 raise_mmu_exception(env, address, access_type, pmp_violation,
1361 first_stage_error,
1362 riscv_cpu_virt_enabled(env) ||
1363 riscv_cpu_two_stage_lookup(mmu_idx),
1364 two_stage_indirect_error);
1365 cpu_loop_exit_restore(cs, retaddr);
1366 }
1367
1368 return true;
1369 }
1370
1371 static target_ulong riscv_transformed_insn(CPURISCVState *env,
1372 target_ulong insn,
1373 target_ulong taddr)
1374 {
1375 target_ulong xinsn = 0;
1376 target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1377
1378 /*
1379 * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1380 * be uncompressed. The Quadrant 1 of RVC instruction space need
1381 * not be transformed because these instructions won't generate
1382 * any load/store trap.
1383 */
1384
1385 if ((insn & 0x3) != 0x3) {
1386 /* Transform 16bit instruction into 32bit instruction */
1387 switch (GET_C_OP(insn)) {
1388 case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1389 switch (GET_C_FUNC(insn)) {
1390 case OPC_RISC_C_FUNC_FLD_LQ:
1391 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1392 xinsn = OPC_RISC_FLD;
1393 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1394 access_rs1 = GET_C_RS1S(insn);
1395 access_imm = GET_C_LD_IMM(insn);
1396 access_size = 8;
1397 }
1398 break;
1399 case OPC_RISC_C_FUNC_LW: /* C.LW */
1400 xinsn = OPC_RISC_LW;
1401 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1402 access_rs1 = GET_C_RS1S(insn);
1403 access_imm = GET_C_LW_IMM(insn);
1404 access_size = 4;
1405 break;
1406 case OPC_RISC_C_FUNC_FLW_LD:
1407 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1408 xinsn = OPC_RISC_FLW;
1409 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1410 access_rs1 = GET_C_RS1S(insn);
1411 access_imm = GET_C_LW_IMM(insn);
1412 access_size = 4;
1413 } else { /* C.LD (RV64/RV128) */
1414 xinsn = OPC_RISC_LD;
1415 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1416 access_rs1 = GET_C_RS1S(insn);
1417 access_imm = GET_C_LD_IMM(insn);
1418 access_size = 8;
1419 }
1420 break;
1421 case OPC_RISC_C_FUNC_FSD_SQ:
1422 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1423 xinsn = OPC_RISC_FSD;
1424 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1425 access_rs1 = GET_C_RS1S(insn);
1426 access_imm = GET_C_SD_IMM(insn);
1427 access_size = 8;
1428 }
1429 break;
1430 case OPC_RISC_C_FUNC_SW: /* C.SW */
1431 xinsn = OPC_RISC_SW;
1432 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1433 access_rs1 = GET_C_RS1S(insn);
1434 access_imm = GET_C_SW_IMM(insn);
1435 access_size = 4;
1436 break;
1437 case OPC_RISC_C_FUNC_FSW_SD:
1438 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1439 xinsn = OPC_RISC_FSW;
1440 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1441 access_rs1 = GET_C_RS1S(insn);
1442 access_imm = GET_C_SW_IMM(insn);
1443 access_size = 4;
1444 } else { /* C.SD (RV64/RV128) */
1445 xinsn = OPC_RISC_SD;
1446 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1447 access_rs1 = GET_C_RS1S(insn);
1448 access_imm = GET_C_SD_IMM(insn);
1449 access_size = 8;
1450 }
1451 break;
1452 default:
1453 break;
1454 }
1455 break;
1456 case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1457 switch (GET_C_FUNC(insn)) {
1458 case OPC_RISC_C_FUNC_FLDSP_LQSP:
1459 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1460 xinsn = OPC_RISC_FLD;
1461 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1462 access_rs1 = 2;
1463 access_imm = GET_C_LDSP_IMM(insn);
1464 access_size = 8;
1465 }
1466 break;
1467 case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1468 xinsn = OPC_RISC_LW;
1469 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1470 access_rs1 = 2;
1471 access_imm = GET_C_LWSP_IMM(insn);
1472 access_size = 4;
1473 break;
1474 case OPC_RISC_C_FUNC_FLWSP_LDSP:
1475 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1476 xinsn = OPC_RISC_FLW;
1477 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1478 access_rs1 = 2;
1479 access_imm = GET_C_LWSP_IMM(insn);
1480 access_size = 4;
1481 } else { /* C.LDSP (RV64/RV128) */
1482 xinsn = OPC_RISC_LD;
1483 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1484 access_rs1 = 2;
1485 access_imm = GET_C_LDSP_IMM(insn);
1486 access_size = 8;
1487 }
1488 break;
1489 case OPC_RISC_C_FUNC_FSDSP_SQSP:
1490 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1491 xinsn = OPC_RISC_FSD;
1492 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1493 access_rs1 = 2;
1494 access_imm = GET_C_SDSP_IMM(insn);
1495 access_size = 8;
1496 }
1497 break;
1498 case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1499 xinsn = OPC_RISC_SW;
1500 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1501 access_rs1 = 2;
1502 access_imm = GET_C_SWSP_IMM(insn);
1503 access_size = 4;
1504 break;
1505 case 7:
1506 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1507 xinsn = OPC_RISC_FSW;
1508 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1509 access_rs1 = 2;
1510 access_imm = GET_C_SWSP_IMM(insn);
1511 access_size = 4;
1512 } else { /* C.SDSP (RV64/RV128) */
1513 xinsn = OPC_RISC_SD;
1514 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1515 access_rs1 = 2;
1516 access_imm = GET_C_SDSP_IMM(insn);
1517 access_size = 8;
1518 }
1519 break;
1520 default:
1521 break;
1522 }
1523 break;
1524 default:
1525 break;
1526 }
1527
1528 /*
1529 * Clear Bit1 of transformed instruction to indicate that
1530 * original insruction was a 16bit instruction
1531 */
1532 xinsn &= ~((target_ulong)0x2);
1533 } else {
1534 /* Transform 32bit (or wider) instructions */
1535 switch (MASK_OP_MAJOR(insn)) {
1536 case OPC_RISC_ATOMIC:
1537 xinsn = insn;
1538 access_rs1 = GET_RS1(insn);
1539 access_size = 1 << GET_FUNCT3(insn);
1540 break;
1541 case OPC_RISC_LOAD:
1542 case OPC_RISC_FP_LOAD:
1543 xinsn = SET_I_IMM(insn, 0);
1544 access_rs1 = GET_RS1(insn);
1545 access_imm = GET_IMM(insn);
1546 access_size = 1 << GET_FUNCT3(insn);
1547 break;
1548 case OPC_RISC_STORE:
1549 case OPC_RISC_FP_STORE:
1550 xinsn = SET_S_IMM(insn, 0);
1551 access_rs1 = GET_RS1(insn);
1552 access_imm = GET_STORE_IMM(insn);
1553 access_size = 1 << GET_FUNCT3(insn);
1554 break;
1555 case OPC_RISC_SYSTEM:
1556 if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1557 xinsn = insn;
1558 access_rs1 = GET_RS1(insn);
1559 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1560 access_size = 1 << access_size;
1561 }
1562 break;
1563 default:
1564 break;
1565 }
1566 }
1567
1568 if (access_size) {
1569 xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1570 (access_size - 1));
1571 }
1572
1573 return xinsn;
1574 }
1575 #endif /* !CONFIG_USER_ONLY */
1576
1577 /*
1578 * Handle Traps
1579 *
1580 * Adapted from Spike's processor_t::take_trap.
1581 *
1582 */
1583 void riscv_cpu_do_interrupt(CPUState *cs)
1584 {
1585 #if !defined(CONFIG_USER_ONLY)
1586
1587 RISCVCPU *cpu = RISCV_CPU(cs);
1588 CPURISCVState *env = &cpu->env;
1589 bool write_gva = false;
1590 uint64_t s;
1591
1592 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1593 * so we mask off the MSB and separate into trap type and cause.
1594 */
1595 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1596 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1597 uint64_t deleg = async ? env->mideleg : env->medeleg;
1598 target_ulong tval = 0;
1599 target_ulong tinst = 0;
1600 target_ulong htval = 0;
1601 target_ulong mtval2 = 0;
1602
1603 if (cause == RISCV_EXCP_SEMIHOST) {
1604 do_common_semihosting(cs);
1605 env->pc += 4;
1606 return;
1607 }
1608
1609 if (!async) {
1610 /* set tval to badaddr for traps with address information */
1611 switch (cause) {
1612 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1613 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1614 case RISCV_EXCP_LOAD_ADDR_MIS:
1615 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1616 case RISCV_EXCP_LOAD_ACCESS_FAULT:
1617 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1618 case RISCV_EXCP_LOAD_PAGE_FAULT:
1619 case RISCV_EXCP_STORE_PAGE_FAULT:
1620 write_gva = env->two_stage_lookup;
1621 tval = env->badaddr;
1622 if (env->two_stage_indirect_lookup) {
1623 /*
1624 * special pseudoinstruction for G-stage fault taken while
1625 * doing VS-stage page table walk.
1626 */
1627 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1628 } else {
1629 /*
1630 * The "Addr. Offset" field in transformed instruction is
1631 * non-zero only for misaligned access.
1632 */
1633 tinst = riscv_transformed_insn(env, env->bins, tval);
1634 }
1635 break;
1636 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1637 case RISCV_EXCP_INST_ADDR_MIS:
1638 case RISCV_EXCP_INST_ACCESS_FAULT:
1639 case RISCV_EXCP_INST_PAGE_FAULT:
1640 write_gva = env->two_stage_lookup;
1641 tval = env->badaddr;
1642 if (env->two_stage_indirect_lookup) {
1643 /*
1644 * special pseudoinstruction for G-stage fault taken while
1645 * doing VS-stage page table walk.
1646 */
1647 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1648 }
1649 break;
1650 case RISCV_EXCP_ILLEGAL_INST:
1651 case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
1652 tval = env->bins;
1653 break;
1654 case RISCV_EXCP_BREAKPOINT:
1655 if (cs->watchpoint_hit) {
1656 tval = cs->watchpoint_hit->hitaddr;
1657 cs->watchpoint_hit = NULL;
1658 }
1659 break;
1660 default:
1661 break;
1662 }
1663 /* ecall is dispatched as one cause so translate based on mode */
1664 if (cause == RISCV_EXCP_U_ECALL) {
1665 assert(env->priv <= 3);
1666
1667 if (env->priv == PRV_M) {
1668 cause = RISCV_EXCP_M_ECALL;
1669 } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
1670 cause = RISCV_EXCP_VS_ECALL;
1671 } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
1672 cause = RISCV_EXCP_S_ECALL;
1673 } else if (env->priv == PRV_U) {
1674 cause = RISCV_EXCP_U_ECALL;
1675 }
1676 }
1677 }
1678
1679 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1680 riscv_cpu_get_trap_name(cause, async));
1681
1682 qemu_log_mask(CPU_LOG_INT,
1683 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1684 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1685 __func__, env->mhartid, async, cause, env->pc, tval,
1686 riscv_cpu_get_trap_name(cause, async));
1687
1688 if (env->priv <= PRV_S &&
1689 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1690 /* handle the trap in S-mode */
1691 if (riscv_has_ext(env, RVH)) {
1692 uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1693
1694 if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1)) {
1695 /* Trap to VS mode */
1696 /*
1697 * See if we need to adjust cause. Yes if its VS mode interrupt
1698 * no if hypervisor has delegated one of hs mode's interrupt
1699 */
1700 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1701 cause == IRQ_VS_EXT) {
1702 cause = cause - 1;
1703 }
1704 write_gva = false;
1705 } else if (riscv_cpu_virt_enabled(env)) {
1706 /* Trap into HS mode, from virt */
1707 riscv_cpu_swap_hypervisor_regs(env);
1708 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1709 env->priv);
1710 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
1711 riscv_cpu_virt_enabled(env));
1712
1713
1714 htval = env->guest_phys_fault_addr;
1715
1716 riscv_cpu_set_virt_enabled(env, 0);
1717 } else {
1718 /* Trap into HS mode */
1719 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1720 htval = env->guest_phys_fault_addr;
1721 }
1722 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1723 }
1724
1725 s = env->mstatus;
1726 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1727 s = set_field(s, MSTATUS_SPP, env->priv);
1728 s = set_field(s, MSTATUS_SIE, 0);
1729 env->mstatus = s;
1730 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1731 env->sepc = env->pc;
1732 env->stval = tval;
1733 env->htval = htval;
1734 env->htinst = tinst;
1735 env->pc = (env->stvec >> 2 << 2) +
1736 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1737 riscv_cpu_set_mode(env, PRV_S);
1738 } else {
1739 /* handle the trap in M-mode */
1740 if (riscv_has_ext(env, RVH)) {
1741 if (riscv_cpu_virt_enabled(env)) {
1742 riscv_cpu_swap_hypervisor_regs(env);
1743 }
1744 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1745 riscv_cpu_virt_enabled(env));
1746 if (riscv_cpu_virt_enabled(env) && tval) {
1747 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1748 }
1749
1750 mtval2 = env->guest_phys_fault_addr;
1751
1752 /* Trapping to M mode, virt is disabled */
1753 riscv_cpu_set_virt_enabled(env, 0);
1754 }
1755
1756 s = env->mstatus;
1757 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1758 s = set_field(s, MSTATUS_MPP, env->priv);
1759 s = set_field(s, MSTATUS_MIE, 0);
1760 env->mstatus = s;
1761 env->mcause = cause | ~(((target_ulong)-1) >> async);
1762 env->mepc = env->pc;
1763 env->mtval = tval;
1764 env->mtval2 = mtval2;
1765 env->mtinst = tinst;
1766 env->pc = (env->mtvec >> 2 << 2) +
1767 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1768 riscv_cpu_set_mode(env, PRV_M);
1769 }
1770
1771 /* NOTE: it is not necessary to yield load reservations here. It is only
1772 * necessary for an SC from "another hart" to cause a load reservation
1773 * to be yielded. Refer to the memory consistency model section of the
1774 * RISC-V ISA Specification.
1775 */
1776
1777 env->two_stage_lookup = false;
1778 env->two_stage_indirect_lookup = false;
1779 #endif
1780 cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
1781 }