]> git.proxmox.com Git - mirror_qemu.git/blob - target/riscv/fpu_helper.c
target/riscv: cpu: Add a new 'resetvec' property
[mirror_qemu.git] / target / riscv / fpu_helper.c
1 /*
2 * RISC-V FPU Emulation Helpers for QEMU.
3 *
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "qemu/host-utils.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
24 #include "fpu/softfloat.h"
25 #include "internals.h"
26
27 target_ulong riscv_cpu_get_fflags(CPURISCVState *env)
28 {
29 int soft = get_float_exception_flags(&env->fp_status);
30 target_ulong hard = 0;
31
32 hard |= (soft & float_flag_inexact) ? FPEXC_NX : 0;
33 hard |= (soft & float_flag_underflow) ? FPEXC_UF : 0;
34 hard |= (soft & float_flag_overflow) ? FPEXC_OF : 0;
35 hard |= (soft & float_flag_divbyzero) ? FPEXC_DZ : 0;
36 hard |= (soft & float_flag_invalid) ? FPEXC_NV : 0;
37
38 return hard;
39 }
40
41 void riscv_cpu_set_fflags(CPURISCVState *env, target_ulong hard)
42 {
43 int soft = 0;
44
45 soft |= (hard & FPEXC_NX) ? float_flag_inexact : 0;
46 soft |= (hard & FPEXC_UF) ? float_flag_underflow : 0;
47 soft |= (hard & FPEXC_OF) ? float_flag_overflow : 0;
48 soft |= (hard & FPEXC_DZ) ? float_flag_divbyzero : 0;
49 soft |= (hard & FPEXC_NV) ? float_flag_invalid : 0;
50
51 set_float_exception_flags(soft, &env->fp_status);
52 }
53
54 void helper_set_rounding_mode(CPURISCVState *env, uint32_t rm)
55 {
56 int softrm;
57
58 if (rm == 7) {
59 rm = env->frm;
60 }
61 switch (rm) {
62 case 0:
63 softrm = float_round_nearest_even;
64 break;
65 case 1:
66 softrm = float_round_to_zero;
67 break;
68 case 2:
69 softrm = float_round_down;
70 break;
71 case 3:
72 softrm = float_round_up;
73 break;
74 case 4:
75 softrm = float_round_ties_away;
76 break;
77 default:
78 riscv_raise_exception(env, RISCV_EXCP_ILLEGAL_INST, GETPC());
79 }
80
81 set_float_rounding_mode(softrm, &env->fp_status);
82 }
83
84 static uint64_t do_fmadd_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2,
85 uint64_t rs3, int flags)
86 {
87 float32 frs1 = check_nanbox_s(rs1);
88 float32 frs2 = check_nanbox_s(rs2);
89 float32 frs3 = check_nanbox_s(rs3);
90 return nanbox_s(float32_muladd(frs1, frs2, frs3, flags, &env->fp_status));
91 }
92
93 uint64_t helper_fmadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
94 uint64_t frs3)
95 {
96 return do_fmadd_s(env, frs1, frs2, frs3, 0);
97 }
98
99 uint64_t helper_fmadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
100 uint64_t frs3)
101 {
102 return float64_muladd(frs1, frs2, frs3, 0, &env->fp_status);
103 }
104
105 uint64_t helper_fmsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
106 uint64_t frs3)
107 {
108 return do_fmadd_s(env, frs1, frs2, frs3, float_muladd_negate_c);
109 }
110
111 uint64_t helper_fmsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
112 uint64_t frs3)
113 {
114 return float64_muladd(frs1, frs2, frs3, float_muladd_negate_c,
115 &env->fp_status);
116 }
117
118 uint64_t helper_fnmsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
119 uint64_t frs3)
120 {
121 return do_fmadd_s(env, frs1, frs2, frs3, float_muladd_negate_product);
122 }
123
124 uint64_t helper_fnmsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
125 uint64_t frs3)
126 {
127 return float64_muladd(frs1, frs2, frs3, float_muladd_negate_product,
128 &env->fp_status);
129 }
130
131 uint64_t helper_fnmadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
132 uint64_t frs3)
133 {
134 return do_fmadd_s(env, frs1, frs2, frs3,
135 float_muladd_negate_c | float_muladd_negate_product);
136 }
137
138 uint64_t helper_fnmadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
139 uint64_t frs3)
140 {
141 return float64_muladd(frs1, frs2, frs3, float_muladd_negate_c |
142 float_muladd_negate_product, &env->fp_status);
143 }
144
145 uint64_t helper_fadd_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
146 {
147 float32 frs1 = check_nanbox_s(rs1);
148 float32 frs2 = check_nanbox_s(rs2);
149 return nanbox_s(float32_add(frs1, frs2, &env->fp_status));
150 }
151
152 uint64_t helper_fsub_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
153 {
154 float32 frs1 = check_nanbox_s(rs1);
155 float32 frs2 = check_nanbox_s(rs2);
156 return nanbox_s(float32_sub(frs1, frs2, &env->fp_status));
157 }
158
159 uint64_t helper_fmul_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
160 {
161 float32 frs1 = check_nanbox_s(rs1);
162 float32 frs2 = check_nanbox_s(rs2);
163 return nanbox_s(float32_mul(frs1, frs2, &env->fp_status));
164 }
165
166 uint64_t helper_fdiv_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
167 {
168 float32 frs1 = check_nanbox_s(rs1);
169 float32 frs2 = check_nanbox_s(rs2);
170 return nanbox_s(float32_div(frs1, frs2, &env->fp_status));
171 }
172
173 uint64_t helper_fmin_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
174 {
175 float32 frs1 = check_nanbox_s(rs1);
176 float32 frs2 = check_nanbox_s(rs2);
177 return nanbox_s(float32_minnum(frs1, frs2, &env->fp_status));
178 }
179
180 uint64_t helper_fmax_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
181 {
182 float32 frs1 = check_nanbox_s(rs1);
183 float32 frs2 = check_nanbox_s(rs2);
184 return nanbox_s(float32_maxnum(frs1, frs2, &env->fp_status));
185 }
186
187 uint64_t helper_fsqrt_s(CPURISCVState *env, uint64_t rs1)
188 {
189 float32 frs1 = check_nanbox_s(rs1);
190 return nanbox_s(float32_sqrt(frs1, &env->fp_status));
191 }
192
193 target_ulong helper_fle_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
194 {
195 float32 frs1 = check_nanbox_s(rs1);
196 float32 frs2 = check_nanbox_s(rs2);
197 return float32_le(frs1, frs2, &env->fp_status);
198 }
199
200 target_ulong helper_flt_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
201 {
202 float32 frs1 = check_nanbox_s(rs1);
203 float32 frs2 = check_nanbox_s(rs2);
204 return float32_lt(frs1, frs2, &env->fp_status);
205 }
206
207 target_ulong helper_feq_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
208 {
209 float32 frs1 = check_nanbox_s(rs1);
210 float32 frs2 = check_nanbox_s(rs2);
211 return float32_eq_quiet(frs1, frs2, &env->fp_status);
212 }
213
214 target_ulong helper_fcvt_w_s(CPURISCVState *env, uint64_t rs1)
215 {
216 float32 frs1 = check_nanbox_s(rs1);
217 return float32_to_int32(frs1, &env->fp_status);
218 }
219
220 target_ulong helper_fcvt_wu_s(CPURISCVState *env, uint64_t rs1)
221 {
222 float32 frs1 = check_nanbox_s(rs1);
223 return (int32_t)float32_to_uint32(frs1, &env->fp_status);
224 }
225
226 #if defined(TARGET_RISCV64)
227 uint64_t helper_fcvt_l_s(CPURISCVState *env, uint64_t rs1)
228 {
229 float32 frs1 = check_nanbox_s(rs1);
230 return float32_to_int64(frs1, &env->fp_status);
231 }
232
233 uint64_t helper_fcvt_lu_s(CPURISCVState *env, uint64_t rs1)
234 {
235 float32 frs1 = check_nanbox_s(rs1);
236 return float32_to_uint64(frs1, &env->fp_status);
237 }
238 #endif
239
240 uint64_t helper_fcvt_s_w(CPURISCVState *env, target_ulong rs1)
241 {
242 return nanbox_s(int32_to_float32((int32_t)rs1, &env->fp_status));
243 }
244
245 uint64_t helper_fcvt_s_wu(CPURISCVState *env, target_ulong rs1)
246 {
247 return nanbox_s(uint32_to_float32((uint32_t)rs1, &env->fp_status));
248 }
249
250 #if defined(TARGET_RISCV64)
251 uint64_t helper_fcvt_s_l(CPURISCVState *env, uint64_t rs1)
252 {
253 return nanbox_s(int64_to_float32(rs1, &env->fp_status));
254 }
255
256 uint64_t helper_fcvt_s_lu(CPURISCVState *env, uint64_t rs1)
257 {
258 return nanbox_s(uint64_to_float32(rs1, &env->fp_status));
259 }
260 #endif
261
262 target_ulong helper_fclass_s(uint64_t rs1)
263 {
264 float32 frs1 = check_nanbox_s(rs1);
265 return fclass_s(frs1);
266 }
267
268 uint64_t helper_fadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
269 {
270 return float64_add(frs1, frs2, &env->fp_status);
271 }
272
273 uint64_t helper_fsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
274 {
275 return float64_sub(frs1, frs2, &env->fp_status);
276 }
277
278 uint64_t helper_fmul_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
279 {
280 return float64_mul(frs1, frs2, &env->fp_status);
281 }
282
283 uint64_t helper_fdiv_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
284 {
285 return float64_div(frs1, frs2, &env->fp_status);
286 }
287
288 uint64_t helper_fmin_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
289 {
290 return float64_minnum(frs1, frs2, &env->fp_status);
291 }
292
293 uint64_t helper_fmax_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
294 {
295 return float64_maxnum(frs1, frs2, &env->fp_status);
296 }
297
298 uint64_t helper_fcvt_s_d(CPURISCVState *env, uint64_t rs1)
299 {
300 return nanbox_s(float64_to_float32(rs1, &env->fp_status));
301 }
302
303 uint64_t helper_fcvt_d_s(CPURISCVState *env, uint64_t rs1)
304 {
305 float32 frs1 = check_nanbox_s(rs1);
306 return float32_to_float64(frs1, &env->fp_status);
307 }
308
309 uint64_t helper_fsqrt_d(CPURISCVState *env, uint64_t frs1)
310 {
311 return float64_sqrt(frs1, &env->fp_status);
312 }
313
314 target_ulong helper_fle_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
315 {
316 return float64_le(frs1, frs2, &env->fp_status);
317 }
318
319 target_ulong helper_flt_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
320 {
321 return float64_lt(frs1, frs2, &env->fp_status);
322 }
323
324 target_ulong helper_feq_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
325 {
326 return float64_eq_quiet(frs1, frs2, &env->fp_status);
327 }
328
329 target_ulong helper_fcvt_w_d(CPURISCVState *env, uint64_t frs1)
330 {
331 return float64_to_int32(frs1, &env->fp_status);
332 }
333
334 target_ulong helper_fcvt_wu_d(CPURISCVState *env, uint64_t frs1)
335 {
336 return (int32_t)float64_to_uint32(frs1, &env->fp_status);
337 }
338
339 #if defined(TARGET_RISCV64)
340 uint64_t helper_fcvt_l_d(CPURISCVState *env, uint64_t frs1)
341 {
342 return float64_to_int64(frs1, &env->fp_status);
343 }
344
345 uint64_t helper_fcvt_lu_d(CPURISCVState *env, uint64_t frs1)
346 {
347 return float64_to_uint64(frs1, &env->fp_status);
348 }
349 #endif
350
351 uint64_t helper_fcvt_d_w(CPURISCVState *env, target_ulong rs1)
352 {
353 return int32_to_float64((int32_t)rs1, &env->fp_status);
354 }
355
356 uint64_t helper_fcvt_d_wu(CPURISCVState *env, target_ulong rs1)
357 {
358 return uint32_to_float64((uint32_t)rs1, &env->fp_status);
359 }
360
361 #if defined(TARGET_RISCV64)
362 uint64_t helper_fcvt_d_l(CPURISCVState *env, uint64_t rs1)
363 {
364 return int64_to_float64(rs1, &env->fp_status);
365 }
366
367 uint64_t helper_fcvt_d_lu(CPURISCVState *env, uint64_t rs1)
368 {
369 return uint64_to_float64(rs1, &env->fp_status);
370 }
371 #endif
372
373 target_ulong helper_fclass_d(uint64_t frs1)
374 {
375 return fclass_d(frs1);
376 }