]> git.proxmox.com Git - mirror_qemu.git/blob - target/riscv/pmp.c
Merge tag 'migration-20230302-pull-request' of https://gitlab.com/juan.quintela/qemu...
[mirror_qemu.git] / target / riscv / pmp.c
1 /*
2 * QEMU RISC-V PMP (Physical Memory Protection)
3 *
4 * Author: Daire McNamara, daire.mcnamara@emdalo.com
5 * Ivan Griffin, ivan.griffin@emdalo.com
6 *
7 * This provides a RISC-V Physical Memory Protection implementation
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms and conditions of the GNU General Public License,
11 * version 2 or later, as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "qemu/osdep.h"
23 #include "qemu/log.h"
24 #include "qapi/error.h"
25 #include "cpu.h"
26 #include "trace.h"
27 #include "exec/exec-all.h"
28
29 static void pmp_write_cfg(CPURISCVState *env, uint32_t addr_index,
30 uint8_t val);
31 static uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t addr_index);
32 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index);
33
34 /*
35 * Accessor method to extract address matching type 'a field' from cfg reg
36 */
37 static inline uint8_t pmp_get_a_field(uint8_t cfg)
38 {
39 uint8_t a = cfg >> 3;
40 return a & 0x3;
41 }
42
43 /*
44 * Check whether a PMP is locked or not.
45 */
46 static inline int pmp_is_locked(CPURISCVState *env, uint32_t pmp_index)
47 {
48
49 if (env->pmp_state.pmp[pmp_index].cfg_reg & PMP_LOCK) {
50 return 1;
51 }
52
53 /* Top PMP has no 'next' to check */
54 if ((pmp_index + 1u) >= MAX_RISCV_PMPS) {
55 return 0;
56 }
57
58 return 0;
59 }
60
61 /*
62 * Count the number of active rules.
63 */
64 uint32_t pmp_get_num_rules(CPURISCVState *env)
65 {
66 return env->pmp_state.num_rules;
67 }
68
69 /*
70 * Accessor to get the cfg reg for a specific PMP/HART
71 */
72 static inline uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t pmp_index)
73 {
74 if (pmp_index < MAX_RISCV_PMPS) {
75 return env->pmp_state.pmp[pmp_index].cfg_reg;
76 }
77
78 return 0;
79 }
80
81
82 /*
83 * Accessor to set the cfg reg for a specific PMP/HART
84 * Bounds checks and relevant lock bit.
85 */
86 static void pmp_write_cfg(CPURISCVState *env, uint32_t pmp_index, uint8_t val)
87 {
88 if (pmp_index < MAX_RISCV_PMPS) {
89 bool locked = true;
90
91 if (riscv_cpu_cfg(env)->epmp) {
92 /* mseccfg.RLB is set */
93 if (MSECCFG_RLB_ISSET(env)) {
94 locked = false;
95 }
96
97 /* mseccfg.MML is not set */
98 if (!MSECCFG_MML_ISSET(env) && !pmp_is_locked(env, pmp_index)) {
99 locked = false;
100 }
101
102 /* mseccfg.MML is set */
103 if (MSECCFG_MML_ISSET(env)) {
104 /* not adding execute bit */
105 if ((val & PMP_LOCK) != 0 && (val & PMP_EXEC) != PMP_EXEC) {
106 locked = false;
107 }
108 /* shared region and not adding X bit */
109 if ((val & PMP_LOCK) != PMP_LOCK &&
110 (val & 0x7) != (PMP_WRITE | PMP_EXEC)) {
111 locked = false;
112 }
113 }
114 } else {
115 if (!pmp_is_locked(env, pmp_index)) {
116 locked = false;
117 }
118 }
119
120 if (locked) {
121 qemu_log_mask(LOG_GUEST_ERROR, "ignoring pmpcfg write - locked\n");
122 } else {
123 env->pmp_state.pmp[pmp_index].cfg_reg = val;
124 pmp_update_rule(env, pmp_index);
125 }
126 } else {
127 qemu_log_mask(LOG_GUEST_ERROR,
128 "ignoring pmpcfg write - out of bounds\n");
129 }
130 }
131
132 static void pmp_decode_napot(target_ulong a, target_ulong *sa, target_ulong *ea)
133 {
134 /*
135 aaaa...aaa0 8-byte NAPOT range
136 aaaa...aa01 16-byte NAPOT range
137 aaaa...a011 32-byte NAPOT range
138 ...
139 aa01...1111 2^XLEN-byte NAPOT range
140 a011...1111 2^(XLEN+1)-byte NAPOT range
141 0111...1111 2^(XLEN+2)-byte NAPOT range
142 1111...1111 Reserved
143 */
144 a = (a << 2) | 0x3;
145 *sa = a & (a + 1);
146 *ea = a | (a + 1);
147 }
148
149 void pmp_update_rule_addr(CPURISCVState *env, uint32_t pmp_index)
150 {
151 uint8_t this_cfg = env->pmp_state.pmp[pmp_index].cfg_reg;
152 target_ulong this_addr = env->pmp_state.pmp[pmp_index].addr_reg;
153 target_ulong prev_addr = 0u;
154 target_ulong sa = 0u;
155 target_ulong ea = 0u;
156
157 if (pmp_index >= 1u) {
158 prev_addr = env->pmp_state.pmp[pmp_index - 1].addr_reg;
159 }
160
161 switch (pmp_get_a_field(this_cfg)) {
162 case PMP_AMATCH_OFF:
163 sa = 0u;
164 ea = -1;
165 break;
166
167 case PMP_AMATCH_TOR:
168 sa = prev_addr << 2; /* shift up from [xx:0] to [xx+2:2] */
169 ea = (this_addr << 2) - 1u;
170 if (sa > ea) {
171 sa = ea = 0u;
172 }
173 break;
174
175 case PMP_AMATCH_NA4:
176 sa = this_addr << 2; /* shift up from [xx:0] to [xx+2:2] */
177 ea = (sa + 4u) - 1u;
178 break;
179
180 case PMP_AMATCH_NAPOT:
181 pmp_decode_napot(this_addr, &sa, &ea);
182 break;
183
184 default:
185 sa = 0u;
186 ea = 0u;
187 break;
188 }
189
190 env->pmp_state.addr[pmp_index].sa = sa;
191 env->pmp_state.addr[pmp_index].ea = ea;
192 }
193
194 void pmp_update_rule_nums(CPURISCVState *env)
195 {
196 int i;
197
198 env->pmp_state.num_rules = 0;
199 for (i = 0; i < MAX_RISCV_PMPS; i++) {
200 const uint8_t a_field =
201 pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg);
202 if (PMP_AMATCH_OFF != a_field) {
203 env->pmp_state.num_rules++;
204 }
205 }
206 }
207
208 /* Convert cfg/addr reg values here into simple 'sa' --> start address and 'ea'
209 * end address values.
210 * This function is called relatively infrequently whereas the check that
211 * an address is within a pmp rule is called often, so optimise that one
212 */
213 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index)
214 {
215 pmp_update_rule_addr(env, pmp_index);
216 pmp_update_rule_nums(env);
217 }
218
219 static int pmp_is_in_range(CPURISCVState *env, int pmp_index, target_ulong addr)
220 {
221 int result = 0;
222
223 if ((addr >= env->pmp_state.addr[pmp_index].sa)
224 && (addr <= env->pmp_state.addr[pmp_index].ea)) {
225 result = 1;
226 } else {
227 result = 0;
228 }
229
230 return result;
231 }
232
233 /*
234 * Check if the address has required RWX privs when no PMP entry is matched.
235 */
236 static bool pmp_hart_has_privs_default(CPURISCVState *env, target_ulong addr,
237 target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs,
238 target_ulong mode)
239 {
240 bool ret;
241
242 if (riscv_cpu_cfg(env)->epmp) {
243 if (MSECCFG_MMWP_ISSET(env)) {
244 /*
245 * The Machine Mode Whitelist Policy (mseccfg.MMWP) is set
246 * so we default to deny all, even for M-mode.
247 */
248 *allowed_privs = 0;
249 return false;
250 } else if (MSECCFG_MML_ISSET(env)) {
251 /*
252 * The Machine Mode Lockdown (mseccfg.MML) bit is set
253 * so we can only execute code in M-mode with an applicable
254 * rule. Other modes are disabled.
255 */
256 if (mode == PRV_M && !(privs & PMP_EXEC)) {
257 ret = true;
258 *allowed_privs = PMP_READ | PMP_WRITE;
259 } else {
260 ret = false;
261 *allowed_privs = 0;
262 }
263
264 return ret;
265 }
266 }
267
268 if (!riscv_cpu_cfg(env)->pmp || (mode == PRV_M)) {
269 /*
270 * Privileged spec v1.10 states if HW doesn't implement any PMP entry
271 * or no PMP entry matches an M-Mode access, the access succeeds.
272 */
273 ret = true;
274 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
275 } else {
276 /*
277 * Other modes are not allowed to succeed if they don't * match a rule,
278 * but there are rules. We've checked for no rule earlier in this
279 * function.
280 */
281 ret = false;
282 *allowed_privs = 0;
283 }
284
285 return ret;
286 }
287
288
289 /*
290 * Public Interface
291 */
292
293 /*
294 * Check if the address has required RWX privs to complete desired operation
295 * Return PMP rule index if a pmp rule match
296 * Return MAX_RISCV_PMPS if default match
297 * Return negtive value if no match
298 */
299 int pmp_hart_has_privs(CPURISCVState *env, target_ulong addr,
300 target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs,
301 target_ulong mode)
302 {
303 int i = 0;
304 int ret = -1;
305 int pmp_size = 0;
306 target_ulong s = 0;
307 target_ulong e = 0;
308
309 /* Short cut if no rules */
310 if (0 == pmp_get_num_rules(env)) {
311 if (pmp_hart_has_privs_default(env, addr, size, privs,
312 allowed_privs, mode)) {
313 ret = MAX_RISCV_PMPS;
314 }
315 }
316
317 if (size == 0) {
318 if (riscv_cpu_cfg(env)->mmu) {
319 /*
320 * If size is unknown (0), assume that all bytes
321 * from addr to the end of the page will be accessed.
322 */
323 pmp_size = -(addr | TARGET_PAGE_MASK);
324 } else {
325 pmp_size = sizeof(target_ulong);
326 }
327 } else {
328 pmp_size = size;
329 }
330
331 /* 1.10 draft priv spec states there is an implicit order
332 from low to high */
333 for (i = 0; i < MAX_RISCV_PMPS; i++) {
334 s = pmp_is_in_range(env, i, addr);
335 e = pmp_is_in_range(env, i, addr + pmp_size - 1);
336
337 /* partially inside */
338 if ((s + e) == 1) {
339 qemu_log_mask(LOG_GUEST_ERROR,
340 "pmp violation - access is partially inside\n");
341 ret = -1;
342 break;
343 }
344
345 /* fully inside */
346 const uint8_t a_field =
347 pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg);
348
349 /*
350 * Convert the PMP permissions to match the truth table in the
351 * ePMP spec.
352 */
353 const uint8_t epmp_operation =
354 ((env->pmp_state.pmp[i].cfg_reg & PMP_LOCK) >> 4) |
355 ((env->pmp_state.pmp[i].cfg_reg & PMP_READ) << 2) |
356 (env->pmp_state.pmp[i].cfg_reg & PMP_WRITE) |
357 ((env->pmp_state.pmp[i].cfg_reg & PMP_EXEC) >> 2);
358
359 if (((s + e) == 2) && (PMP_AMATCH_OFF != a_field)) {
360 /*
361 * If the PMP entry is not off and the address is in range,
362 * do the priv check
363 */
364 if (!MSECCFG_MML_ISSET(env)) {
365 /*
366 * If mseccfg.MML Bit is not set, do pmp priv check
367 * This will always apply to regular PMP.
368 */
369 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
370 if ((mode != PRV_M) || pmp_is_locked(env, i)) {
371 *allowed_privs &= env->pmp_state.pmp[i].cfg_reg;
372 }
373 } else {
374 /*
375 * If mseccfg.MML Bit set, do the enhanced pmp priv check
376 */
377 if (mode == PRV_M) {
378 switch (epmp_operation) {
379 case 0:
380 case 1:
381 case 4:
382 case 5:
383 case 6:
384 case 7:
385 case 8:
386 *allowed_privs = 0;
387 break;
388 case 2:
389 case 3:
390 case 14:
391 *allowed_privs = PMP_READ | PMP_WRITE;
392 break;
393 case 9:
394 case 10:
395 *allowed_privs = PMP_EXEC;
396 break;
397 case 11:
398 case 13:
399 *allowed_privs = PMP_READ | PMP_EXEC;
400 break;
401 case 12:
402 case 15:
403 *allowed_privs = PMP_READ;
404 break;
405 default:
406 g_assert_not_reached();
407 }
408 } else {
409 switch (epmp_operation) {
410 case 0:
411 case 8:
412 case 9:
413 case 12:
414 case 13:
415 case 14:
416 *allowed_privs = 0;
417 break;
418 case 1:
419 case 10:
420 case 11:
421 *allowed_privs = PMP_EXEC;
422 break;
423 case 2:
424 case 4:
425 case 15:
426 *allowed_privs = PMP_READ;
427 break;
428 case 3:
429 case 6:
430 *allowed_privs = PMP_READ | PMP_WRITE;
431 break;
432 case 5:
433 *allowed_privs = PMP_READ | PMP_EXEC;
434 break;
435 case 7:
436 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
437 break;
438 default:
439 g_assert_not_reached();
440 }
441 }
442 }
443
444 /*
445 * If matching address range was found, the protection bits
446 * defined with PMP must be used. We shouldn't fallback on
447 * finding default privileges.
448 */
449 ret = i;
450 break;
451 }
452 }
453
454 /* No rule matched */
455 if (ret == -1) {
456 if (pmp_hart_has_privs_default(env, addr, size, privs,
457 allowed_privs, mode)) {
458 ret = MAX_RISCV_PMPS;
459 }
460 }
461
462 return ret;
463 }
464
465 /*
466 * Handle a write to a pmpcfg CSR
467 */
468 void pmpcfg_csr_write(CPURISCVState *env, uint32_t reg_index,
469 target_ulong val)
470 {
471 int i;
472 uint8_t cfg_val;
473 int pmpcfg_nums = 2 << riscv_cpu_mxl(env);
474
475 trace_pmpcfg_csr_write(env->mhartid, reg_index, val);
476
477 for (i = 0; i < pmpcfg_nums; i++) {
478 cfg_val = (val >> 8 * i) & 0xff;
479 pmp_write_cfg(env, (reg_index * 4) + i, cfg_val);
480 }
481
482 /* If PMP permission of any addr has been changed, flush TLB pages. */
483 tlb_flush(env_cpu(env));
484 }
485
486
487 /*
488 * Handle a read from a pmpcfg CSR
489 */
490 target_ulong pmpcfg_csr_read(CPURISCVState *env, uint32_t reg_index)
491 {
492 int i;
493 target_ulong cfg_val = 0;
494 target_ulong val = 0;
495 int pmpcfg_nums = 2 << riscv_cpu_mxl(env);
496
497 for (i = 0; i < pmpcfg_nums; i++) {
498 val = pmp_read_cfg(env, (reg_index * 4) + i);
499 cfg_val |= (val << (i * 8));
500 }
501 trace_pmpcfg_csr_read(env->mhartid, reg_index, cfg_val);
502
503 return cfg_val;
504 }
505
506
507 /*
508 * Handle a write to a pmpaddr CSR
509 */
510 void pmpaddr_csr_write(CPURISCVState *env, uint32_t addr_index,
511 target_ulong val)
512 {
513 trace_pmpaddr_csr_write(env->mhartid, addr_index, val);
514
515 if (addr_index < MAX_RISCV_PMPS) {
516 /*
517 * In TOR mode, need to check the lock bit of the next pmp
518 * (if there is a next).
519 */
520 if (addr_index + 1 < MAX_RISCV_PMPS) {
521 uint8_t pmp_cfg = env->pmp_state.pmp[addr_index + 1].cfg_reg;
522
523 if (pmp_cfg & PMP_LOCK &&
524 PMP_AMATCH_TOR == pmp_get_a_field(pmp_cfg)) {
525 qemu_log_mask(LOG_GUEST_ERROR,
526 "ignoring pmpaddr write - pmpcfg + 1 locked\n");
527 return;
528 }
529 }
530
531 if (!pmp_is_locked(env, addr_index)) {
532 env->pmp_state.pmp[addr_index].addr_reg = val;
533 pmp_update_rule(env, addr_index);
534 } else {
535 qemu_log_mask(LOG_GUEST_ERROR,
536 "ignoring pmpaddr write - locked\n");
537 }
538 } else {
539 qemu_log_mask(LOG_GUEST_ERROR,
540 "ignoring pmpaddr write - out of bounds\n");
541 }
542 }
543
544
545 /*
546 * Handle a read from a pmpaddr CSR
547 */
548 target_ulong pmpaddr_csr_read(CPURISCVState *env, uint32_t addr_index)
549 {
550 target_ulong val = 0;
551
552 if (addr_index < MAX_RISCV_PMPS) {
553 val = env->pmp_state.pmp[addr_index].addr_reg;
554 trace_pmpaddr_csr_read(env->mhartid, addr_index, val);
555 } else {
556 qemu_log_mask(LOG_GUEST_ERROR,
557 "ignoring pmpaddr read - out of bounds\n");
558 }
559
560 return val;
561 }
562
563 /*
564 * Handle a write to a mseccfg CSR
565 */
566 void mseccfg_csr_write(CPURISCVState *env, target_ulong val)
567 {
568 int i;
569
570 trace_mseccfg_csr_write(env->mhartid, val);
571
572 /* RLB cannot be enabled if it's already 0 and if any regions are locked */
573 if (!MSECCFG_RLB_ISSET(env)) {
574 for (i = 0; i < MAX_RISCV_PMPS; i++) {
575 if (pmp_is_locked(env, i)) {
576 val &= ~MSECCFG_RLB;
577 break;
578 }
579 }
580 }
581
582 /* Sticky bits */
583 val |= (env->mseccfg & (MSECCFG_MMWP | MSECCFG_MML));
584
585 env->mseccfg = val;
586 }
587
588 /*
589 * Handle a read from a mseccfg CSR
590 */
591 target_ulong mseccfg_csr_read(CPURISCVState *env)
592 {
593 trace_mseccfg_csr_read(env->mhartid, env->mseccfg);
594 return env->mseccfg;
595 }
596
597 /*
598 * Calculate the TLB size if the start address or the end address of
599 * PMP entry is presented in the TLB page.
600 */
601 target_ulong pmp_get_tlb_size(CPURISCVState *env, int pmp_index,
602 target_ulong tlb_sa, target_ulong tlb_ea)
603 {
604 target_ulong pmp_sa = env->pmp_state.addr[pmp_index].sa;
605 target_ulong pmp_ea = env->pmp_state.addr[pmp_index].ea;
606
607 if (pmp_sa <= tlb_sa && pmp_ea >= tlb_ea) {
608 return TARGET_PAGE_SIZE;
609 } else {
610 /*
611 * At this point we have a tlb_size that is the smallest possible size
612 * That fits within a TARGET_PAGE_SIZE and the PMP region.
613 *
614 * If the size is less then TARGET_PAGE_SIZE we drop the size to 1.
615 * This means the result isn't cached in the TLB and is only used for
616 * a single translation.
617 */
618 return 1;
619 }
620 }
621
622 /*
623 * Convert PMP privilege to TLB page privilege.
624 */
625 int pmp_priv_to_page_prot(pmp_priv_t pmp_priv)
626 {
627 int prot = 0;
628
629 if (pmp_priv & PMP_READ) {
630 prot |= PAGE_READ;
631 }
632 if (pmp_priv & PMP_WRITE) {
633 prot |= PAGE_WRITE;
634 }
635 if (pmp_priv & PMP_EXEC) {
636 prot |= PAGE_EXEC;
637 }
638
639 return prot;
640 }