]> git.proxmox.com Git - mirror_qemu.git/blob - target/riscv/pmp.c
Merge tag 'pull-riscv-to-apply-20221014' of https://github.com/alistair23/qemu into...
[mirror_qemu.git] / target / riscv / pmp.c
1 /*
2 * QEMU RISC-V PMP (Physical Memory Protection)
3 *
4 * Author: Daire McNamara, daire.mcnamara@emdalo.com
5 * Ivan Griffin, ivan.griffin@emdalo.com
6 *
7 * This provides a RISC-V Physical Memory Protection implementation
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms and conditions of the GNU General Public License,
11 * version 2 or later, as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "qemu/osdep.h"
23 #include "qemu/log.h"
24 #include "qapi/error.h"
25 #include "cpu.h"
26 #include "trace.h"
27 #include "exec/exec-all.h"
28
29 static void pmp_write_cfg(CPURISCVState *env, uint32_t addr_index,
30 uint8_t val);
31 static uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t addr_index);
32 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index);
33
34 /*
35 * Accessor method to extract address matching type 'a field' from cfg reg
36 */
37 static inline uint8_t pmp_get_a_field(uint8_t cfg)
38 {
39 uint8_t a = cfg >> 3;
40 return a & 0x3;
41 }
42
43 /*
44 * Check whether a PMP is locked or not.
45 */
46 static inline int pmp_is_locked(CPURISCVState *env, uint32_t pmp_index)
47 {
48
49 if (env->pmp_state.pmp[pmp_index].cfg_reg & PMP_LOCK) {
50 return 1;
51 }
52
53 /* Top PMP has no 'next' to check */
54 if ((pmp_index + 1u) >= MAX_RISCV_PMPS) {
55 return 0;
56 }
57
58 return 0;
59 }
60
61 /*
62 * Count the number of active rules.
63 */
64 uint32_t pmp_get_num_rules(CPURISCVState *env)
65 {
66 return env->pmp_state.num_rules;
67 }
68
69 /*
70 * Accessor to get the cfg reg for a specific PMP/HART
71 */
72 static inline uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t pmp_index)
73 {
74 if (pmp_index < MAX_RISCV_PMPS) {
75 return env->pmp_state.pmp[pmp_index].cfg_reg;
76 }
77
78 return 0;
79 }
80
81
82 /*
83 * Accessor to set the cfg reg for a specific PMP/HART
84 * Bounds checks and relevant lock bit.
85 */
86 static void pmp_write_cfg(CPURISCVState *env, uint32_t pmp_index, uint8_t val)
87 {
88 if (pmp_index < MAX_RISCV_PMPS) {
89 bool locked = true;
90
91 if (riscv_feature(env, RISCV_FEATURE_EPMP)) {
92 /* mseccfg.RLB is set */
93 if (MSECCFG_RLB_ISSET(env)) {
94 locked = false;
95 }
96
97 /* mseccfg.MML is not set */
98 if (!MSECCFG_MML_ISSET(env) && !pmp_is_locked(env, pmp_index)) {
99 locked = false;
100 }
101
102 /* mseccfg.MML is set */
103 if (MSECCFG_MML_ISSET(env)) {
104 /* not adding execute bit */
105 if ((val & PMP_LOCK) != 0 && (val & PMP_EXEC) != PMP_EXEC) {
106 locked = false;
107 }
108 /* shared region and not adding X bit */
109 if ((val & PMP_LOCK) != PMP_LOCK &&
110 (val & 0x7) != (PMP_WRITE | PMP_EXEC)) {
111 locked = false;
112 }
113 }
114 } else {
115 if (!pmp_is_locked(env, pmp_index)) {
116 locked = false;
117 }
118 }
119
120 if (locked) {
121 qemu_log_mask(LOG_GUEST_ERROR, "ignoring pmpcfg write - locked\n");
122 } else {
123 env->pmp_state.pmp[pmp_index].cfg_reg = val;
124 pmp_update_rule(env, pmp_index);
125 }
126 } else {
127 qemu_log_mask(LOG_GUEST_ERROR,
128 "ignoring pmpcfg write - out of bounds\n");
129 }
130 }
131
132 static void pmp_decode_napot(target_ulong a, target_ulong *sa, target_ulong *ea)
133 {
134 /*
135 aaaa...aaa0 8-byte NAPOT range
136 aaaa...aa01 16-byte NAPOT range
137 aaaa...a011 32-byte NAPOT range
138 ...
139 aa01...1111 2^XLEN-byte NAPOT range
140 a011...1111 2^(XLEN+1)-byte NAPOT range
141 0111...1111 2^(XLEN+2)-byte NAPOT range
142 1111...1111 Reserved
143 */
144 a = (a << 2) | 0x3;
145 *sa = a & (a + 1);
146 *ea = a | (a + 1);
147 }
148
149 void pmp_update_rule_addr(CPURISCVState *env, uint32_t pmp_index)
150 {
151 uint8_t this_cfg = env->pmp_state.pmp[pmp_index].cfg_reg;
152 target_ulong this_addr = env->pmp_state.pmp[pmp_index].addr_reg;
153 target_ulong prev_addr = 0u;
154 target_ulong sa = 0u;
155 target_ulong ea = 0u;
156
157 if (pmp_index >= 1u) {
158 prev_addr = env->pmp_state.pmp[pmp_index - 1].addr_reg;
159 }
160
161 switch (pmp_get_a_field(this_cfg)) {
162 case PMP_AMATCH_OFF:
163 sa = 0u;
164 ea = -1;
165 break;
166
167 case PMP_AMATCH_TOR:
168 sa = prev_addr << 2; /* shift up from [xx:0] to [xx+2:2] */
169 ea = (this_addr << 2) - 1u;
170 if (sa > ea) {
171 sa = ea = 0u;
172 }
173 break;
174
175 case PMP_AMATCH_NA4:
176 sa = this_addr << 2; /* shift up from [xx:0] to [xx+2:2] */
177 ea = (sa + 4u) - 1u;
178 break;
179
180 case PMP_AMATCH_NAPOT:
181 pmp_decode_napot(this_addr, &sa, &ea);
182 break;
183
184 default:
185 sa = 0u;
186 ea = 0u;
187 break;
188 }
189
190 env->pmp_state.addr[pmp_index].sa = sa;
191 env->pmp_state.addr[pmp_index].ea = ea;
192 }
193
194 void pmp_update_rule_nums(CPURISCVState *env)
195 {
196 int i;
197
198 env->pmp_state.num_rules = 0;
199 for (i = 0; i < MAX_RISCV_PMPS; i++) {
200 const uint8_t a_field =
201 pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg);
202 if (PMP_AMATCH_OFF != a_field) {
203 env->pmp_state.num_rules++;
204 }
205 }
206 }
207
208 /* Convert cfg/addr reg values here into simple 'sa' --> start address and 'ea'
209 * end address values.
210 * This function is called relatively infrequently whereas the check that
211 * an address is within a pmp rule is called often, so optimise that one
212 */
213 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index)
214 {
215 pmp_update_rule_addr(env, pmp_index);
216 pmp_update_rule_nums(env);
217 }
218
219 static int pmp_is_in_range(CPURISCVState *env, int pmp_index, target_ulong addr)
220 {
221 int result = 0;
222
223 if ((addr >= env->pmp_state.addr[pmp_index].sa)
224 && (addr <= env->pmp_state.addr[pmp_index].ea)) {
225 result = 1;
226 } else {
227 result = 0;
228 }
229
230 return result;
231 }
232
233 /*
234 * Check if the address has required RWX privs when no PMP entry is matched.
235 */
236 static bool pmp_hart_has_privs_default(CPURISCVState *env, target_ulong addr,
237 target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs,
238 target_ulong mode)
239 {
240 bool ret;
241
242 if (riscv_feature(env, RISCV_FEATURE_EPMP)) {
243 if (MSECCFG_MMWP_ISSET(env)) {
244 /*
245 * The Machine Mode Whitelist Policy (mseccfg.MMWP) is set
246 * so we default to deny all, even for M-mode.
247 */
248 *allowed_privs = 0;
249 return false;
250 } else if (MSECCFG_MML_ISSET(env)) {
251 /*
252 * The Machine Mode Lockdown (mseccfg.MML) bit is set
253 * so we can only execute code in M-mode with an applicable
254 * rule. Other modes are disabled.
255 */
256 if (mode == PRV_M && !(privs & PMP_EXEC)) {
257 ret = true;
258 *allowed_privs = PMP_READ | PMP_WRITE;
259 } else {
260 ret = false;
261 *allowed_privs = 0;
262 }
263
264 return ret;
265 }
266 }
267
268 if ((!riscv_feature(env, RISCV_FEATURE_PMP)) || (mode == PRV_M)) {
269 /*
270 * Privileged spec v1.10 states if HW doesn't implement any PMP entry
271 * or no PMP entry matches an M-Mode access, the access succeeds.
272 */
273 ret = true;
274 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
275 } else {
276 /*
277 * Other modes are not allowed to succeed if they don't * match a rule,
278 * but there are rules. We've checked for no rule earlier in this
279 * function.
280 */
281 ret = false;
282 *allowed_privs = 0;
283 }
284
285 return ret;
286 }
287
288
289 /*
290 * Public Interface
291 */
292
293 /*
294 * Check if the address has required RWX privs to complete desired operation
295 */
296 bool pmp_hart_has_privs(CPURISCVState *env, target_ulong addr,
297 target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs,
298 target_ulong mode)
299 {
300 int i = 0;
301 int ret = -1;
302 int pmp_size = 0;
303 target_ulong s = 0;
304 target_ulong e = 0;
305
306 /* Short cut if no rules */
307 if (0 == pmp_get_num_rules(env)) {
308 return pmp_hart_has_privs_default(env, addr, size, privs,
309 allowed_privs, mode);
310 }
311
312 if (size == 0) {
313 if (riscv_feature(env, RISCV_FEATURE_MMU)) {
314 /*
315 * If size is unknown (0), assume that all bytes
316 * from addr to the end of the page will be accessed.
317 */
318 pmp_size = -(addr | TARGET_PAGE_MASK);
319 } else {
320 pmp_size = sizeof(target_ulong);
321 }
322 } else {
323 pmp_size = size;
324 }
325
326 /* 1.10 draft priv spec states there is an implicit order
327 from low to high */
328 for (i = 0; i < MAX_RISCV_PMPS; i++) {
329 s = pmp_is_in_range(env, i, addr);
330 e = pmp_is_in_range(env, i, addr + pmp_size - 1);
331
332 /* partially inside */
333 if ((s + e) == 1) {
334 qemu_log_mask(LOG_GUEST_ERROR,
335 "pmp violation - access is partially inside\n");
336 ret = 0;
337 break;
338 }
339
340 /* fully inside */
341 const uint8_t a_field =
342 pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg);
343
344 /*
345 * Convert the PMP permissions to match the truth table in the
346 * ePMP spec.
347 */
348 const uint8_t epmp_operation =
349 ((env->pmp_state.pmp[i].cfg_reg & PMP_LOCK) >> 4) |
350 ((env->pmp_state.pmp[i].cfg_reg & PMP_READ) << 2) |
351 (env->pmp_state.pmp[i].cfg_reg & PMP_WRITE) |
352 ((env->pmp_state.pmp[i].cfg_reg & PMP_EXEC) >> 2);
353
354 if (((s + e) == 2) && (PMP_AMATCH_OFF != a_field)) {
355 /*
356 * If the PMP entry is not off and the address is in range,
357 * do the priv check
358 */
359 if (!MSECCFG_MML_ISSET(env)) {
360 /*
361 * If mseccfg.MML Bit is not set, do pmp priv check
362 * This will always apply to regular PMP.
363 */
364 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
365 if ((mode != PRV_M) || pmp_is_locked(env, i)) {
366 *allowed_privs &= env->pmp_state.pmp[i].cfg_reg;
367 }
368 } else {
369 /*
370 * If mseccfg.MML Bit set, do the enhanced pmp priv check
371 */
372 if (mode == PRV_M) {
373 switch (epmp_operation) {
374 case 0:
375 case 1:
376 case 4:
377 case 5:
378 case 6:
379 case 7:
380 case 8:
381 *allowed_privs = 0;
382 break;
383 case 2:
384 case 3:
385 case 14:
386 *allowed_privs = PMP_READ | PMP_WRITE;
387 break;
388 case 9:
389 case 10:
390 *allowed_privs = PMP_EXEC;
391 break;
392 case 11:
393 case 13:
394 *allowed_privs = PMP_READ | PMP_EXEC;
395 break;
396 case 12:
397 case 15:
398 *allowed_privs = PMP_READ;
399 break;
400 default:
401 g_assert_not_reached();
402 }
403 } else {
404 switch (epmp_operation) {
405 case 0:
406 case 8:
407 case 9:
408 case 12:
409 case 13:
410 case 14:
411 *allowed_privs = 0;
412 break;
413 case 1:
414 case 10:
415 case 11:
416 *allowed_privs = PMP_EXEC;
417 break;
418 case 2:
419 case 4:
420 case 15:
421 *allowed_privs = PMP_READ;
422 break;
423 case 3:
424 case 6:
425 *allowed_privs = PMP_READ | PMP_WRITE;
426 break;
427 case 5:
428 *allowed_privs = PMP_READ | PMP_EXEC;
429 break;
430 case 7:
431 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
432 break;
433 default:
434 g_assert_not_reached();
435 }
436 }
437 }
438
439 ret = ((privs & *allowed_privs) == privs);
440 break;
441 }
442 }
443
444 /* No rule matched */
445 if (ret == -1) {
446 return pmp_hart_has_privs_default(env, addr, size, privs,
447 allowed_privs, mode);
448 }
449
450 return ret == 1 ? true : false;
451 }
452
453 /*
454 * Handle a write to a pmpcfg CSR
455 */
456 void pmpcfg_csr_write(CPURISCVState *env, uint32_t reg_index,
457 target_ulong val)
458 {
459 int i;
460 uint8_t cfg_val;
461 int pmpcfg_nums = 2 << riscv_cpu_mxl(env);
462
463 trace_pmpcfg_csr_write(env->mhartid, reg_index, val);
464
465 for (i = 0; i < pmpcfg_nums; i++) {
466 cfg_val = (val >> 8 * i) & 0xff;
467 pmp_write_cfg(env, (reg_index * 4) + i, cfg_val);
468 }
469
470 /* If PMP permission of any addr has been changed, flush TLB pages. */
471 tlb_flush(env_cpu(env));
472 }
473
474
475 /*
476 * Handle a read from a pmpcfg CSR
477 */
478 target_ulong pmpcfg_csr_read(CPURISCVState *env, uint32_t reg_index)
479 {
480 int i;
481 target_ulong cfg_val = 0;
482 target_ulong val = 0;
483 int pmpcfg_nums = 2 << riscv_cpu_mxl(env);
484
485 for (i = 0; i < pmpcfg_nums; i++) {
486 val = pmp_read_cfg(env, (reg_index * 4) + i);
487 cfg_val |= (val << (i * 8));
488 }
489 trace_pmpcfg_csr_read(env->mhartid, reg_index, cfg_val);
490
491 return cfg_val;
492 }
493
494
495 /*
496 * Handle a write to a pmpaddr CSR
497 */
498 void pmpaddr_csr_write(CPURISCVState *env, uint32_t addr_index,
499 target_ulong val)
500 {
501 trace_pmpaddr_csr_write(env->mhartid, addr_index, val);
502
503 if (addr_index < MAX_RISCV_PMPS) {
504 /*
505 * In TOR mode, need to check the lock bit of the next pmp
506 * (if there is a next).
507 */
508 if (addr_index + 1 < MAX_RISCV_PMPS) {
509 uint8_t pmp_cfg = env->pmp_state.pmp[addr_index + 1].cfg_reg;
510
511 if (pmp_cfg & PMP_LOCK &&
512 PMP_AMATCH_TOR == pmp_get_a_field(pmp_cfg)) {
513 qemu_log_mask(LOG_GUEST_ERROR,
514 "ignoring pmpaddr write - pmpcfg + 1 locked\n");
515 return;
516 }
517 }
518
519 if (!pmp_is_locked(env, addr_index)) {
520 env->pmp_state.pmp[addr_index].addr_reg = val;
521 pmp_update_rule(env, addr_index);
522 } else {
523 qemu_log_mask(LOG_GUEST_ERROR,
524 "ignoring pmpaddr write - locked\n");
525 }
526 } else {
527 qemu_log_mask(LOG_GUEST_ERROR,
528 "ignoring pmpaddr write - out of bounds\n");
529 }
530 }
531
532
533 /*
534 * Handle a read from a pmpaddr CSR
535 */
536 target_ulong pmpaddr_csr_read(CPURISCVState *env, uint32_t addr_index)
537 {
538 target_ulong val = 0;
539
540 if (addr_index < MAX_RISCV_PMPS) {
541 val = env->pmp_state.pmp[addr_index].addr_reg;
542 trace_pmpaddr_csr_read(env->mhartid, addr_index, val);
543 } else {
544 qemu_log_mask(LOG_GUEST_ERROR,
545 "ignoring pmpaddr read - out of bounds\n");
546 }
547
548 return val;
549 }
550
551 /*
552 * Handle a write to a mseccfg CSR
553 */
554 void mseccfg_csr_write(CPURISCVState *env, target_ulong val)
555 {
556 int i;
557
558 trace_mseccfg_csr_write(env->mhartid, val);
559
560 /* RLB cannot be enabled if it's already 0 and if any regions are locked */
561 if (!MSECCFG_RLB_ISSET(env)) {
562 for (i = 0; i < MAX_RISCV_PMPS; i++) {
563 if (pmp_is_locked(env, i)) {
564 val &= ~MSECCFG_RLB;
565 break;
566 }
567 }
568 }
569
570 /* Sticky bits */
571 val |= (env->mseccfg & (MSECCFG_MMWP | MSECCFG_MML));
572
573 env->mseccfg = val;
574 }
575
576 /*
577 * Handle a read from a mseccfg CSR
578 */
579 target_ulong mseccfg_csr_read(CPURISCVState *env)
580 {
581 trace_mseccfg_csr_read(env->mhartid, env->mseccfg);
582 return env->mseccfg;
583 }
584
585 /*
586 * Calculate the TLB size if the start address or the end address of
587 * PMP entry is presented in the TLB page.
588 */
589 static target_ulong pmp_get_tlb_size(CPURISCVState *env, int pmp_index,
590 target_ulong tlb_sa, target_ulong tlb_ea)
591 {
592 target_ulong pmp_sa = env->pmp_state.addr[pmp_index].sa;
593 target_ulong pmp_ea = env->pmp_state.addr[pmp_index].ea;
594
595 if (pmp_sa >= tlb_sa && pmp_ea <= tlb_ea) {
596 return pmp_ea - pmp_sa + 1;
597 }
598
599 if (pmp_sa >= tlb_sa && pmp_sa <= tlb_ea && pmp_ea >= tlb_ea) {
600 return tlb_ea - pmp_sa + 1;
601 }
602
603 if (pmp_ea <= tlb_ea && pmp_ea >= tlb_sa && pmp_sa <= tlb_sa) {
604 return pmp_ea - tlb_sa + 1;
605 }
606
607 return 0;
608 }
609
610 /*
611 * Check is there a PMP entry which range covers this page. If so,
612 * try to find the minimum granularity for the TLB size.
613 */
614 bool pmp_is_range_in_tlb(CPURISCVState *env, hwaddr tlb_sa,
615 target_ulong *tlb_size)
616 {
617 int i;
618 target_ulong val;
619 target_ulong tlb_ea = (tlb_sa + TARGET_PAGE_SIZE - 1);
620
621 for (i = 0; i < MAX_RISCV_PMPS; i++) {
622 val = pmp_get_tlb_size(env, i, tlb_sa, tlb_ea);
623 if (val) {
624 if (*tlb_size == 0 || *tlb_size > val) {
625 *tlb_size = val;
626 }
627 }
628 }
629
630 if (*tlb_size != 0) {
631 /*
632 * At this point we have a tlb_size that is the smallest possible size
633 * That fits within a TARGET_PAGE_SIZE and the PMP region.
634 *
635 * If the size is less then TARGET_PAGE_SIZE we drop the size to 1.
636 * This means the result isn't cached in the TLB and is only used for
637 * a single translation.
638 */
639 if (*tlb_size < TARGET_PAGE_SIZE) {
640 *tlb_size = 1;
641 }
642
643 return true;
644 }
645
646 return false;
647 }
648
649 /*
650 * Convert PMP privilege to TLB page privilege.
651 */
652 int pmp_priv_to_page_prot(pmp_priv_t pmp_priv)
653 {
654 int prot = 0;
655
656 if (pmp_priv & PMP_READ) {
657 prot |= PAGE_READ;
658 }
659 if (pmp_priv & PMP_WRITE) {
660 prot |= PAGE_WRITE;
661 }
662 if (pmp_priv & PMP_EXEC) {
663 prot |= PAGE_EXEC;
664 }
665
666 return prot;
667 }