]> git.proxmox.com Git - mirror_qemu.git/blob - target/riscv/translate.c
target/riscv: Change gen_set_pc_imm to gen_update_pc
[mirror_qemu.git] / target / riscv / translate.c
1 /*
2 * RISC-V emulation for qemu: main translation routines.
3 *
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #include "qemu/osdep.h"
20 #include "qemu/log.h"
21 #include "cpu.h"
22 #include "tcg/tcg-op.h"
23 #include "disas/disas.h"
24 #include "exec/cpu_ldst.h"
25 #include "exec/exec-all.h"
26 #include "exec/helper-proto.h"
27 #include "exec/helper-gen.h"
28
29 #include "exec/translator.h"
30 #include "exec/log.h"
31 #include "semihosting/semihost.h"
32
33 #include "instmap.h"
34 #include "internals.h"
35
36 #define HELPER_H "helper.h"
37 #include "exec/helper-info.c.inc"
38 #undef HELPER_H
39
40 /* global register indices */
41 static TCGv cpu_gpr[32], cpu_gprh[32], cpu_pc, cpu_vl, cpu_vstart;
42 static TCGv_i64 cpu_fpr[32]; /* assume F and D extensions */
43 static TCGv load_res;
44 static TCGv load_val;
45 /* globals for PM CSRs */
46 static TCGv pm_mask;
47 static TCGv pm_base;
48
49 /*
50 * If an operation is being performed on less than TARGET_LONG_BITS,
51 * it may require the inputs to be sign- or zero-extended; which will
52 * depend on the exact operation being performed.
53 */
54 typedef enum {
55 EXT_NONE,
56 EXT_SIGN,
57 EXT_ZERO,
58 } DisasExtend;
59
60 typedef struct DisasContext {
61 DisasContextBase base;
62 /* pc_succ_insn points to the instruction following base.pc_next */
63 target_ulong pc_succ_insn;
64 target_ulong cur_insn_len;
65 target_ulong priv_ver;
66 RISCVMXL misa_mxl_max;
67 RISCVMXL xl;
68 uint32_t misa_ext;
69 uint32_t opcode;
70 RISCVExtStatus mstatus_fs;
71 RISCVExtStatus mstatus_vs;
72 uint32_t mem_idx;
73 uint32_t priv;
74 /*
75 * Remember the rounding mode encoded in the previous fp instruction,
76 * which we have already installed into env->fp_status. Or -1 for
77 * no previous fp instruction. Note that we exit the TB when writing
78 * to any system register, which includes CSR_FRM, so we do not have
79 * to reset this known value.
80 */
81 int frm;
82 RISCVMXL ol;
83 bool virt_inst_excp;
84 bool virt_enabled;
85 const RISCVCPUConfig *cfg_ptr;
86 /* vector extension */
87 bool vill;
88 /*
89 * Encode LMUL to lmul as follows:
90 * LMUL vlmul lmul
91 * 1 000 0
92 * 2 001 1
93 * 4 010 2
94 * 8 011 3
95 * - 100 -
96 * 1/8 101 -3
97 * 1/4 110 -2
98 * 1/2 111 -1
99 */
100 int8_t lmul;
101 uint8_t sew;
102 uint8_t vta;
103 uint8_t vma;
104 bool cfg_vta_all_1s;
105 bool vstart_eq_zero;
106 bool vl_eq_vlmax;
107 CPUState *cs;
108 TCGv zero;
109 /* PointerMasking extension */
110 bool pm_mask_enabled;
111 bool pm_base_enabled;
112 /* Use icount trigger for native debug */
113 bool itrigger;
114 /* FRM is known to contain a valid value. */
115 bool frm_valid;
116 /* TCG of the current insn_start */
117 TCGOp *insn_start;
118 } DisasContext;
119
120 static inline bool has_ext(DisasContext *ctx, uint32_t ext)
121 {
122 return ctx->misa_ext & ext;
123 }
124
125 static bool always_true_p(DisasContext *ctx __attribute__((__unused__)))
126 {
127 return true;
128 }
129
130 static bool has_xthead_p(DisasContext *ctx __attribute__((__unused__)))
131 {
132 return ctx->cfg_ptr->ext_xtheadba || ctx->cfg_ptr->ext_xtheadbb ||
133 ctx->cfg_ptr->ext_xtheadbs || ctx->cfg_ptr->ext_xtheadcmo ||
134 ctx->cfg_ptr->ext_xtheadcondmov ||
135 ctx->cfg_ptr->ext_xtheadfmemidx || ctx->cfg_ptr->ext_xtheadfmv ||
136 ctx->cfg_ptr->ext_xtheadmac || ctx->cfg_ptr->ext_xtheadmemidx ||
137 ctx->cfg_ptr->ext_xtheadmempair || ctx->cfg_ptr->ext_xtheadsync;
138 }
139
140 #define MATERIALISE_EXT_PREDICATE(ext) \
141 static bool has_ ## ext ## _p(DisasContext *ctx) \
142 { \
143 return ctx->cfg_ptr->ext_ ## ext ; \
144 }
145
146 MATERIALISE_EXT_PREDICATE(XVentanaCondOps);
147
148 #ifdef TARGET_RISCV32
149 #define get_xl(ctx) MXL_RV32
150 #elif defined(CONFIG_USER_ONLY)
151 #define get_xl(ctx) MXL_RV64
152 #else
153 #define get_xl(ctx) ((ctx)->xl)
154 #endif
155
156 /* The word size for this machine mode. */
157 static inline int __attribute__((unused)) get_xlen(DisasContext *ctx)
158 {
159 return 16 << get_xl(ctx);
160 }
161
162 /* The operation length, as opposed to the xlen. */
163 #ifdef TARGET_RISCV32
164 #define get_ol(ctx) MXL_RV32
165 #else
166 #define get_ol(ctx) ((ctx)->ol)
167 #endif
168
169 static inline int get_olen(DisasContext *ctx)
170 {
171 return 16 << get_ol(ctx);
172 }
173
174 /* The maximum register length */
175 #ifdef TARGET_RISCV32
176 #define get_xl_max(ctx) MXL_RV32
177 #else
178 #define get_xl_max(ctx) ((ctx)->misa_mxl_max)
179 #endif
180
181 /*
182 * RISC-V requires NaN-boxing of narrower width floating point values.
183 * This applies when a 32-bit value is assigned to a 64-bit FP register.
184 * For consistency and simplicity, we nanbox results even when the RVD
185 * extension is not present.
186 */
187 static void gen_nanbox_s(TCGv_i64 out, TCGv_i64 in)
188 {
189 tcg_gen_ori_i64(out, in, MAKE_64BIT_MASK(32, 32));
190 }
191
192 static void gen_nanbox_h(TCGv_i64 out, TCGv_i64 in)
193 {
194 tcg_gen_ori_i64(out, in, MAKE_64BIT_MASK(16, 48));
195 }
196
197 /*
198 * A narrow n-bit operation, where n < FLEN, checks that input operands
199 * are correctly Nan-boxed, i.e., all upper FLEN - n bits are 1.
200 * If so, the least-significant bits of the input are used, otherwise the
201 * input value is treated as an n-bit canonical NaN (v2.2 section 9.2).
202 *
203 * Here, the result is always nan-boxed, even the canonical nan.
204 */
205 static void gen_check_nanbox_h(TCGv_i64 out, TCGv_i64 in)
206 {
207 TCGv_i64 t_max = tcg_constant_i64(0xffffffffffff0000ull);
208 TCGv_i64 t_nan = tcg_constant_i64(0xffffffffffff7e00ull);
209
210 tcg_gen_movcond_i64(TCG_COND_GEU, out, in, t_max, in, t_nan);
211 }
212
213 static void gen_check_nanbox_s(TCGv_i64 out, TCGv_i64 in)
214 {
215 TCGv_i64 t_max = tcg_constant_i64(0xffffffff00000000ull);
216 TCGv_i64 t_nan = tcg_constant_i64(0xffffffff7fc00000ull);
217
218 tcg_gen_movcond_i64(TCG_COND_GEU, out, in, t_max, in, t_nan);
219 }
220
221 static void decode_save_opc(DisasContext *ctx)
222 {
223 assert(ctx->insn_start != NULL);
224 tcg_set_insn_start_param(ctx->insn_start, 1, ctx->opcode);
225 ctx->insn_start = NULL;
226 }
227
228 static void gen_pc_plus_diff(TCGv target, DisasContext *ctx,
229 target_ulong dest)
230 {
231 if (get_xl(ctx) == MXL_RV32) {
232 dest = (int32_t)dest;
233 }
234 tcg_gen_movi_tl(target, dest);
235 }
236
237 static void gen_update_pc(DisasContext *ctx, target_long diff)
238 {
239 gen_pc_plus_diff(cpu_pc, ctx, ctx->base.pc_next + diff);
240 }
241
242 static void generate_exception(DisasContext *ctx, int excp)
243 {
244 gen_update_pc(ctx, 0);
245 gen_helper_raise_exception(cpu_env, tcg_constant_i32(excp));
246 ctx->base.is_jmp = DISAS_NORETURN;
247 }
248
249 static void gen_exception_illegal(DisasContext *ctx)
250 {
251 tcg_gen_st_i32(tcg_constant_i32(ctx->opcode), cpu_env,
252 offsetof(CPURISCVState, bins));
253 if (ctx->virt_inst_excp) {
254 generate_exception(ctx, RISCV_EXCP_VIRT_INSTRUCTION_FAULT);
255 } else {
256 generate_exception(ctx, RISCV_EXCP_ILLEGAL_INST);
257 }
258 }
259
260 static void gen_exception_inst_addr_mis(DisasContext *ctx, TCGv target)
261 {
262 tcg_gen_st_tl(target, cpu_env, offsetof(CPURISCVState, badaddr));
263 generate_exception(ctx, RISCV_EXCP_INST_ADDR_MIS);
264 }
265
266 static void lookup_and_goto_ptr(DisasContext *ctx)
267 {
268 #ifndef CONFIG_USER_ONLY
269 if (ctx->itrigger) {
270 gen_helper_itrigger_match(cpu_env);
271 }
272 #endif
273 tcg_gen_lookup_and_goto_ptr();
274 }
275
276 static void exit_tb(DisasContext *ctx)
277 {
278 #ifndef CONFIG_USER_ONLY
279 if (ctx->itrigger) {
280 gen_helper_itrigger_match(cpu_env);
281 }
282 #endif
283 tcg_gen_exit_tb(NULL, 0);
284 }
285
286 static void gen_goto_tb(DisasContext *ctx, int n, target_long diff)
287 {
288 target_ulong dest = ctx->base.pc_next + diff;
289
290 /*
291 * Under itrigger, instruction executes one by one like singlestep,
292 * direct block chain benefits will be small.
293 */
294 if (translator_use_goto_tb(&ctx->base, dest) && !ctx->itrigger) {
295 tcg_gen_goto_tb(n);
296 gen_update_pc(ctx, diff);
297 tcg_gen_exit_tb(ctx->base.tb, n);
298 } else {
299 gen_update_pc(ctx, diff);
300 lookup_and_goto_ptr(ctx);
301 }
302 }
303
304 /*
305 * Wrappers for getting reg values.
306 *
307 * The $zero register does not have cpu_gpr[0] allocated -- we supply the
308 * constant zero as a source, and an uninitialized sink as destination.
309 *
310 * Further, we may provide an extension for word operations.
311 */
312 static TCGv get_gpr(DisasContext *ctx, int reg_num, DisasExtend ext)
313 {
314 TCGv t;
315
316 if (reg_num == 0) {
317 return ctx->zero;
318 }
319
320 switch (get_ol(ctx)) {
321 case MXL_RV32:
322 switch (ext) {
323 case EXT_NONE:
324 break;
325 case EXT_SIGN:
326 t = tcg_temp_new();
327 tcg_gen_ext32s_tl(t, cpu_gpr[reg_num]);
328 return t;
329 case EXT_ZERO:
330 t = tcg_temp_new();
331 tcg_gen_ext32u_tl(t, cpu_gpr[reg_num]);
332 return t;
333 default:
334 g_assert_not_reached();
335 }
336 break;
337 case MXL_RV64:
338 case MXL_RV128:
339 break;
340 default:
341 g_assert_not_reached();
342 }
343 return cpu_gpr[reg_num];
344 }
345
346 static TCGv get_gprh(DisasContext *ctx, int reg_num)
347 {
348 assert(get_xl(ctx) == MXL_RV128);
349 if (reg_num == 0) {
350 return ctx->zero;
351 }
352 return cpu_gprh[reg_num];
353 }
354
355 static TCGv dest_gpr(DisasContext *ctx, int reg_num)
356 {
357 if (reg_num == 0 || get_olen(ctx) < TARGET_LONG_BITS) {
358 return tcg_temp_new();
359 }
360 return cpu_gpr[reg_num];
361 }
362
363 static TCGv dest_gprh(DisasContext *ctx, int reg_num)
364 {
365 if (reg_num == 0) {
366 return tcg_temp_new();
367 }
368 return cpu_gprh[reg_num];
369 }
370
371 static void gen_set_gpr(DisasContext *ctx, int reg_num, TCGv t)
372 {
373 if (reg_num != 0) {
374 switch (get_ol(ctx)) {
375 case MXL_RV32:
376 tcg_gen_ext32s_tl(cpu_gpr[reg_num], t);
377 break;
378 case MXL_RV64:
379 case MXL_RV128:
380 tcg_gen_mov_tl(cpu_gpr[reg_num], t);
381 break;
382 default:
383 g_assert_not_reached();
384 }
385
386 if (get_xl_max(ctx) == MXL_RV128) {
387 tcg_gen_sari_tl(cpu_gprh[reg_num], cpu_gpr[reg_num], 63);
388 }
389 }
390 }
391
392 static void gen_set_gpri(DisasContext *ctx, int reg_num, target_long imm)
393 {
394 if (reg_num != 0) {
395 switch (get_ol(ctx)) {
396 case MXL_RV32:
397 tcg_gen_movi_tl(cpu_gpr[reg_num], (int32_t)imm);
398 break;
399 case MXL_RV64:
400 case MXL_RV128:
401 tcg_gen_movi_tl(cpu_gpr[reg_num], imm);
402 break;
403 default:
404 g_assert_not_reached();
405 }
406
407 if (get_xl_max(ctx) == MXL_RV128) {
408 tcg_gen_movi_tl(cpu_gprh[reg_num], -(imm < 0));
409 }
410 }
411 }
412
413 static void gen_set_gpr128(DisasContext *ctx, int reg_num, TCGv rl, TCGv rh)
414 {
415 assert(get_ol(ctx) == MXL_RV128);
416 if (reg_num != 0) {
417 tcg_gen_mov_tl(cpu_gpr[reg_num], rl);
418 tcg_gen_mov_tl(cpu_gprh[reg_num], rh);
419 }
420 }
421
422 static TCGv_i64 get_fpr_hs(DisasContext *ctx, int reg_num)
423 {
424 if (!ctx->cfg_ptr->ext_zfinx) {
425 return cpu_fpr[reg_num];
426 }
427
428 if (reg_num == 0) {
429 return tcg_constant_i64(0);
430 }
431 switch (get_xl(ctx)) {
432 case MXL_RV32:
433 #ifdef TARGET_RISCV32
434 {
435 TCGv_i64 t = tcg_temp_new_i64();
436 tcg_gen_ext_i32_i64(t, cpu_gpr[reg_num]);
437 return t;
438 }
439 #else
440 /* fall through */
441 case MXL_RV64:
442 return cpu_gpr[reg_num];
443 #endif
444 default:
445 g_assert_not_reached();
446 }
447 }
448
449 static TCGv_i64 get_fpr_d(DisasContext *ctx, int reg_num)
450 {
451 if (!ctx->cfg_ptr->ext_zfinx) {
452 return cpu_fpr[reg_num];
453 }
454
455 if (reg_num == 0) {
456 return tcg_constant_i64(0);
457 }
458 switch (get_xl(ctx)) {
459 case MXL_RV32:
460 {
461 TCGv_i64 t = tcg_temp_new_i64();
462 tcg_gen_concat_tl_i64(t, cpu_gpr[reg_num], cpu_gpr[reg_num + 1]);
463 return t;
464 }
465 #ifdef TARGET_RISCV64
466 case MXL_RV64:
467 return cpu_gpr[reg_num];
468 #endif
469 default:
470 g_assert_not_reached();
471 }
472 }
473
474 static TCGv_i64 dest_fpr(DisasContext *ctx, int reg_num)
475 {
476 if (!ctx->cfg_ptr->ext_zfinx) {
477 return cpu_fpr[reg_num];
478 }
479
480 if (reg_num == 0) {
481 return tcg_temp_new_i64();
482 }
483
484 switch (get_xl(ctx)) {
485 case MXL_RV32:
486 return tcg_temp_new_i64();
487 #ifdef TARGET_RISCV64
488 case MXL_RV64:
489 return cpu_gpr[reg_num];
490 #endif
491 default:
492 g_assert_not_reached();
493 }
494 }
495
496 /* assume it is nanboxing (for normal) or sign-extended (for zfinx) */
497 static void gen_set_fpr_hs(DisasContext *ctx, int reg_num, TCGv_i64 t)
498 {
499 if (!ctx->cfg_ptr->ext_zfinx) {
500 tcg_gen_mov_i64(cpu_fpr[reg_num], t);
501 return;
502 }
503 if (reg_num != 0) {
504 switch (get_xl(ctx)) {
505 case MXL_RV32:
506 #ifdef TARGET_RISCV32
507 tcg_gen_extrl_i64_i32(cpu_gpr[reg_num], t);
508 break;
509 #else
510 /* fall through */
511 case MXL_RV64:
512 tcg_gen_mov_i64(cpu_gpr[reg_num], t);
513 break;
514 #endif
515 default:
516 g_assert_not_reached();
517 }
518 }
519 }
520
521 static void gen_set_fpr_d(DisasContext *ctx, int reg_num, TCGv_i64 t)
522 {
523 if (!ctx->cfg_ptr->ext_zfinx) {
524 tcg_gen_mov_i64(cpu_fpr[reg_num], t);
525 return;
526 }
527
528 if (reg_num != 0) {
529 switch (get_xl(ctx)) {
530 case MXL_RV32:
531 #ifdef TARGET_RISCV32
532 tcg_gen_extr_i64_i32(cpu_gpr[reg_num], cpu_gpr[reg_num + 1], t);
533 break;
534 #else
535 tcg_gen_ext32s_i64(cpu_gpr[reg_num], t);
536 tcg_gen_sari_i64(cpu_gpr[reg_num + 1], t, 32);
537 break;
538 case MXL_RV64:
539 tcg_gen_mov_i64(cpu_gpr[reg_num], t);
540 break;
541 #endif
542 default:
543 g_assert_not_reached();
544 }
545 }
546 }
547
548 static void gen_jal(DisasContext *ctx, int rd, target_ulong imm)
549 {
550 target_ulong next_pc;
551
552 /* check misaligned: */
553 next_pc = ctx->base.pc_next + imm;
554 if (!has_ext(ctx, RVC) && !ctx->cfg_ptr->ext_zca) {
555 if ((next_pc & 0x3) != 0) {
556 TCGv target_pc = tcg_temp_new();
557 gen_pc_plus_diff(target_pc, ctx, next_pc);
558 gen_exception_inst_addr_mis(ctx, target_pc);
559 return;
560 }
561 }
562
563 gen_set_gpri(ctx, rd, ctx->pc_succ_insn);
564 gen_goto_tb(ctx, 0, imm); /* must use this for safety */
565 ctx->base.is_jmp = DISAS_NORETURN;
566 }
567
568 /* Compute a canonical address from a register plus offset. */
569 static TCGv get_address(DisasContext *ctx, int rs1, int imm)
570 {
571 TCGv addr = tcg_temp_new();
572 TCGv src1 = get_gpr(ctx, rs1, EXT_NONE);
573
574 tcg_gen_addi_tl(addr, src1, imm);
575 if (ctx->pm_mask_enabled) {
576 tcg_gen_andc_tl(addr, addr, pm_mask);
577 } else if (get_xl(ctx) == MXL_RV32) {
578 tcg_gen_ext32u_tl(addr, addr);
579 }
580 if (ctx->pm_base_enabled) {
581 tcg_gen_or_tl(addr, addr, pm_base);
582 }
583 return addr;
584 }
585
586 /* Compute a canonical address from a register plus reg offset. */
587 static TCGv get_address_indexed(DisasContext *ctx, int rs1, TCGv offs)
588 {
589 TCGv addr = tcg_temp_new();
590 TCGv src1 = get_gpr(ctx, rs1, EXT_NONE);
591
592 tcg_gen_add_tl(addr, src1, offs);
593 if (ctx->pm_mask_enabled) {
594 tcg_gen_andc_tl(addr, addr, pm_mask);
595 } else if (get_xl(ctx) == MXL_RV32) {
596 tcg_gen_ext32u_tl(addr, addr);
597 }
598 if (ctx->pm_base_enabled) {
599 tcg_gen_or_tl(addr, addr, pm_base);
600 }
601 return addr;
602 }
603
604 #ifndef CONFIG_USER_ONLY
605 /*
606 * We will have already diagnosed disabled state,
607 * and need to turn initial/clean into dirty.
608 */
609 static void mark_fs_dirty(DisasContext *ctx)
610 {
611 TCGv tmp;
612
613 if (!has_ext(ctx, RVF)) {
614 return;
615 }
616
617 if (ctx->mstatus_fs != EXT_STATUS_DIRTY) {
618 /* Remember the state change for the rest of the TB. */
619 ctx->mstatus_fs = EXT_STATUS_DIRTY;
620
621 tmp = tcg_temp_new();
622 tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus));
623 tcg_gen_ori_tl(tmp, tmp, MSTATUS_FS);
624 tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus));
625
626 if (ctx->virt_enabled) {
627 tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs));
628 tcg_gen_ori_tl(tmp, tmp, MSTATUS_FS);
629 tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs));
630 }
631 }
632 }
633 #else
634 static inline void mark_fs_dirty(DisasContext *ctx) { }
635 #endif
636
637 #ifndef CONFIG_USER_ONLY
638 /*
639 * We will have already diagnosed disabled state,
640 * and need to turn initial/clean into dirty.
641 */
642 static void mark_vs_dirty(DisasContext *ctx)
643 {
644 TCGv tmp;
645
646 if (ctx->mstatus_vs != EXT_STATUS_DIRTY) {
647 /* Remember the state change for the rest of the TB. */
648 ctx->mstatus_vs = EXT_STATUS_DIRTY;
649
650 tmp = tcg_temp_new();
651 tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus));
652 tcg_gen_ori_tl(tmp, tmp, MSTATUS_VS);
653 tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus));
654
655 if (ctx->virt_enabled) {
656 tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs));
657 tcg_gen_ori_tl(tmp, tmp, MSTATUS_VS);
658 tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs));
659 }
660 }
661 }
662 #else
663 static inline void mark_vs_dirty(DisasContext *ctx) { }
664 #endif
665
666 static void gen_set_rm(DisasContext *ctx, int rm)
667 {
668 if (ctx->frm == rm) {
669 return;
670 }
671 ctx->frm = rm;
672
673 if (rm == RISCV_FRM_DYN) {
674 /* The helper will return only if frm valid. */
675 ctx->frm_valid = true;
676 }
677
678 /* The helper may raise ILLEGAL_INSN -- record binv for unwind. */
679 decode_save_opc(ctx);
680 gen_helper_set_rounding_mode(cpu_env, tcg_constant_i32(rm));
681 }
682
683 static void gen_set_rm_chkfrm(DisasContext *ctx, int rm)
684 {
685 if (ctx->frm == rm && ctx->frm_valid) {
686 return;
687 }
688 ctx->frm = rm;
689 ctx->frm_valid = true;
690
691 /* The helper may raise ILLEGAL_INSN -- record binv for unwind. */
692 decode_save_opc(ctx);
693 gen_helper_set_rounding_mode_chkfrm(cpu_env, tcg_constant_i32(rm));
694 }
695
696 static int ex_plus_1(DisasContext *ctx, int nf)
697 {
698 return nf + 1;
699 }
700
701 #define EX_SH(amount) \
702 static int ex_shift_##amount(DisasContext *ctx, int imm) \
703 { \
704 return imm << amount; \
705 }
706 EX_SH(1)
707 EX_SH(2)
708 EX_SH(3)
709 EX_SH(4)
710 EX_SH(12)
711
712 #define REQUIRE_EXT(ctx, ext) do { \
713 if (!has_ext(ctx, ext)) { \
714 return false; \
715 } \
716 } while (0)
717
718 #define REQUIRE_32BIT(ctx) do { \
719 if (get_xl(ctx) != MXL_RV32) { \
720 return false; \
721 } \
722 } while (0)
723
724 #define REQUIRE_64BIT(ctx) do { \
725 if (get_xl(ctx) != MXL_RV64) { \
726 return false; \
727 } \
728 } while (0)
729
730 #define REQUIRE_128BIT(ctx) do { \
731 if (get_xl(ctx) != MXL_RV128) { \
732 return false; \
733 } \
734 } while (0)
735
736 #define REQUIRE_64_OR_128BIT(ctx) do { \
737 if (get_xl(ctx) == MXL_RV32) { \
738 return false; \
739 } \
740 } while (0)
741
742 #define REQUIRE_EITHER_EXT(ctx, A, B) do { \
743 if (!ctx->cfg_ptr->ext_##A && \
744 !ctx->cfg_ptr->ext_##B) { \
745 return false; \
746 } \
747 } while (0)
748
749 static int ex_rvc_register(DisasContext *ctx, int reg)
750 {
751 return 8 + reg;
752 }
753
754 static int ex_sreg_register(DisasContext *ctx, int reg)
755 {
756 return reg < 2 ? reg + 8 : reg + 16;
757 }
758
759 static int ex_rvc_shiftli(DisasContext *ctx, int imm)
760 {
761 /* For RV128 a shamt of 0 means a shift by 64. */
762 if (get_ol(ctx) == MXL_RV128) {
763 imm = imm ? imm : 64;
764 }
765 return imm;
766 }
767
768 static int ex_rvc_shiftri(DisasContext *ctx, int imm)
769 {
770 /*
771 * For RV128 a shamt of 0 means a shift by 64, furthermore, for right
772 * shifts, the shamt is sign-extended.
773 */
774 if (get_ol(ctx) == MXL_RV128) {
775 imm = imm | (imm & 32) << 1;
776 imm = imm ? imm : 64;
777 }
778 return imm;
779 }
780
781 /* Include the auto-generated decoder for 32 bit insn */
782 #include "decode-insn32.c.inc"
783
784 static bool gen_logic_imm_fn(DisasContext *ctx, arg_i *a,
785 void (*func)(TCGv, TCGv, target_long))
786 {
787 TCGv dest = dest_gpr(ctx, a->rd);
788 TCGv src1 = get_gpr(ctx, a->rs1, EXT_NONE);
789
790 func(dest, src1, a->imm);
791
792 if (get_xl(ctx) == MXL_RV128) {
793 TCGv src1h = get_gprh(ctx, a->rs1);
794 TCGv desth = dest_gprh(ctx, a->rd);
795
796 func(desth, src1h, -(a->imm < 0));
797 gen_set_gpr128(ctx, a->rd, dest, desth);
798 } else {
799 gen_set_gpr(ctx, a->rd, dest);
800 }
801
802 return true;
803 }
804
805 static bool gen_logic(DisasContext *ctx, arg_r *a,
806 void (*func)(TCGv, TCGv, TCGv))
807 {
808 TCGv dest = dest_gpr(ctx, a->rd);
809 TCGv src1 = get_gpr(ctx, a->rs1, EXT_NONE);
810 TCGv src2 = get_gpr(ctx, a->rs2, EXT_NONE);
811
812 func(dest, src1, src2);
813
814 if (get_xl(ctx) == MXL_RV128) {
815 TCGv src1h = get_gprh(ctx, a->rs1);
816 TCGv src2h = get_gprh(ctx, a->rs2);
817 TCGv desth = dest_gprh(ctx, a->rd);
818
819 func(desth, src1h, src2h);
820 gen_set_gpr128(ctx, a->rd, dest, desth);
821 } else {
822 gen_set_gpr(ctx, a->rd, dest);
823 }
824
825 return true;
826 }
827
828 static bool gen_arith_imm_fn(DisasContext *ctx, arg_i *a, DisasExtend ext,
829 void (*func)(TCGv, TCGv, target_long),
830 void (*f128)(TCGv, TCGv, TCGv, TCGv, target_long))
831 {
832 TCGv dest = dest_gpr(ctx, a->rd);
833 TCGv src1 = get_gpr(ctx, a->rs1, ext);
834
835 if (get_ol(ctx) < MXL_RV128) {
836 func(dest, src1, a->imm);
837 gen_set_gpr(ctx, a->rd, dest);
838 } else {
839 if (f128 == NULL) {
840 return false;
841 }
842
843 TCGv src1h = get_gprh(ctx, a->rs1);
844 TCGv desth = dest_gprh(ctx, a->rd);
845
846 f128(dest, desth, src1, src1h, a->imm);
847 gen_set_gpr128(ctx, a->rd, dest, desth);
848 }
849 return true;
850 }
851
852 static bool gen_arith_imm_tl(DisasContext *ctx, arg_i *a, DisasExtend ext,
853 void (*func)(TCGv, TCGv, TCGv),
854 void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv))
855 {
856 TCGv dest = dest_gpr(ctx, a->rd);
857 TCGv src1 = get_gpr(ctx, a->rs1, ext);
858 TCGv src2 = tcg_constant_tl(a->imm);
859
860 if (get_ol(ctx) < MXL_RV128) {
861 func(dest, src1, src2);
862 gen_set_gpr(ctx, a->rd, dest);
863 } else {
864 if (f128 == NULL) {
865 return false;
866 }
867
868 TCGv src1h = get_gprh(ctx, a->rs1);
869 TCGv src2h = tcg_constant_tl(-(a->imm < 0));
870 TCGv desth = dest_gprh(ctx, a->rd);
871
872 f128(dest, desth, src1, src1h, src2, src2h);
873 gen_set_gpr128(ctx, a->rd, dest, desth);
874 }
875 return true;
876 }
877
878 static bool gen_arith(DisasContext *ctx, arg_r *a, DisasExtend ext,
879 void (*func)(TCGv, TCGv, TCGv),
880 void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv))
881 {
882 TCGv dest = dest_gpr(ctx, a->rd);
883 TCGv src1 = get_gpr(ctx, a->rs1, ext);
884 TCGv src2 = get_gpr(ctx, a->rs2, ext);
885
886 if (get_ol(ctx) < MXL_RV128) {
887 func(dest, src1, src2);
888 gen_set_gpr(ctx, a->rd, dest);
889 } else {
890 if (f128 == NULL) {
891 return false;
892 }
893
894 TCGv src1h = get_gprh(ctx, a->rs1);
895 TCGv src2h = get_gprh(ctx, a->rs2);
896 TCGv desth = dest_gprh(ctx, a->rd);
897
898 f128(dest, desth, src1, src1h, src2, src2h);
899 gen_set_gpr128(ctx, a->rd, dest, desth);
900 }
901 return true;
902 }
903
904 static bool gen_arith_per_ol(DisasContext *ctx, arg_r *a, DisasExtend ext,
905 void (*f_tl)(TCGv, TCGv, TCGv),
906 void (*f_32)(TCGv, TCGv, TCGv),
907 void (*f_128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv))
908 {
909 int olen = get_olen(ctx);
910
911 if (olen != TARGET_LONG_BITS) {
912 if (olen == 32) {
913 f_tl = f_32;
914 } else if (olen != 128) {
915 g_assert_not_reached();
916 }
917 }
918 return gen_arith(ctx, a, ext, f_tl, f_128);
919 }
920
921 static bool gen_shift_imm_fn(DisasContext *ctx, arg_shift *a, DisasExtend ext,
922 void (*func)(TCGv, TCGv, target_long),
923 void (*f128)(TCGv, TCGv, TCGv, TCGv, target_long))
924 {
925 TCGv dest, src1;
926 int max_len = get_olen(ctx);
927
928 if (a->shamt >= max_len) {
929 return false;
930 }
931
932 dest = dest_gpr(ctx, a->rd);
933 src1 = get_gpr(ctx, a->rs1, ext);
934
935 if (max_len < 128) {
936 func(dest, src1, a->shamt);
937 gen_set_gpr(ctx, a->rd, dest);
938 } else {
939 TCGv src1h = get_gprh(ctx, a->rs1);
940 TCGv desth = dest_gprh(ctx, a->rd);
941
942 if (f128 == NULL) {
943 return false;
944 }
945 f128(dest, desth, src1, src1h, a->shamt);
946 gen_set_gpr128(ctx, a->rd, dest, desth);
947 }
948 return true;
949 }
950
951 static bool gen_shift_imm_fn_per_ol(DisasContext *ctx, arg_shift *a,
952 DisasExtend ext,
953 void (*f_tl)(TCGv, TCGv, target_long),
954 void (*f_32)(TCGv, TCGv, target_long),
955 void (*f_128)(TCGv, TCGv, TCGv, TCGv,
956 target_long))
957 {
958 int olen = get_olen(ctx);
959 if (olen != TARGET_LONG_BITS) {
960 if (olen == 32) {
961 f_tl = f_32;
962 } else if (olen != 128) {
963 g_assert_not_reached();
964 }
965 }
966 return gen_shift_imm_fn(ctx, a, ext, f_tl, f_128);
967 }
968
969 static bool gen_shift_imm_tl(DisasContext *ctx, arg_shift *a, DisasExtend ext,
970 void (*func)(TCGv, TCGv, TCGv))
971 {
972 TCGv dest, src1, src2;
973 int max_len = get_olen(ctx);
974
975 if (a->shamt >= max_len) {
976 return false;
977 }
978
979 dest = dest_gpr(ctx, a->rd);
980 src1 = get_gpr(ctx, a->rs1, ext);
981 src2 = tcg_constant_tl(a->shamt);
982
983 func(dest, src1, src2);
984
985 gen_set_gpr(ctx, a->rd, dest);
986 return true;
987 }
988
989 static bool gen_shift(DisasContext *ctx, arg_r *a, DisasExtend ext,
990 void (*func)(TCGv, TCGv, TCGv),
991 void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv))
992 {
993 TCGv src2 = get_gpr(ctx, a->rs2, EXT_NONE);
994 TCGv ext2 = tcg_temp_new();
995 int max_len = get_olen(ctx);
996
997 tcg_gen_andi_tl(ext2, src2, max_len - 1);
998
999 TCGv dest = dest_gpr(ctx, a->rd);
1000 TCGv src1 = get_gpr(ctx, a->rs1, ext);
1001
1002 if (max_len < 128) {
1003 func(dest, src1, ext2);
1004 gen_set_gpr(ctx, a->rd, dest);
1005 } else {
1006 TCGv src1h = get_gprh(ctx, a->rs1);
1007 TCGv desth = dest_gprh(ctx, a->rd);
1008
1009 if (f128 == NULL) {
1010 return false;
1011 }
1012 f128(dest, desth, src1, src1h, ext2);
1013 gen_set_gpr128(ctx, a->rd, dest, desth);
1014 }
1015 return true;
1016 }
1017
1018 static bool gen_shift_per_ol(DisasContext *ctx, arg_r *a, DisasExtend ext,
1019 void (*f_tl)(TCGv, TCGv, TCGv),
1020 void (*f_32)(TCGv, TCGv, TCGv),
1021 void (*f_128)(TCGv, TCGv, TCGv, TCGv, TCGv))
1022 {
1023 int olen = get_olen(ctx);
1024 if (olen != TARGET_LONG_BITS) {
1025 if (olen == 32) {
1026 f_tl = f_32;
1027 } else if (olen != 128) {
1028 g_assert_not_reached();
1029 }
1030 }
1031 return gen_shift(ctx, a, ext, f_tl, f_128);
1032 }
1033
1034 static bool gen_unary(DisasContext *ctx, arg_r2 *a, DisasExtend ext,
1035 void (*func)(TCGv, TCGv))
1036 {
1037 TCGv dest = dest_gpr(ctx, a->rd);
1038 TCGv src1 = get_gpr(ctx, a->rs1, ext);
1039
1040 func(dest, src1);
1041
1042 gen_set_gpr(ctx, a->rd, dest);
1043 return true;
1044 }
1045
1046 static bool gen_unary_per_ol(DisasContext *ctx, arg_r2 *a, DisasExtend ext,
1047 void (*f_tl)(TCGv, TCGv),
1048 void (*f_32)(TCGv, TCGv))
1049 {
1050 int olen = get_olen(ctx);
1051
1052 if (olen != TARGET_LONG_BITS) {
1053 if (olen == 32) {
1054 f_tl = f_32;
1055 } else {
1056 g_assert_not_reached();
1057 }
1058 }
1059 return gen_unary(ctx, a, ext, f_tl);
1060 }
1061
1062 static uint32_t opcode_at(DisasContextBase *dcbase, target_ulong pc)
1063 {
1064 DisasContext *ctx = container_of(dcbase, DisasContext, base);
1065 CPUState *cpu = ctx->cs;
1066 CPURISCVState *env = cpu->env_ptr;
1067
1068 return cpu_ldl_code(env, pc);
1069 }
1070
1071 /* Include insn module translation function */
1072 #include "insn_trans/trans_rvi.c.inc"
1073 #include "insn_trans/trans_rvm.c.inc"
1074 #include "insn_trans/trans_rva.c.inc"
1075 #include "insn_trans/trans_rvf.c.inc"
1076 #include "insn_trans/trans_rvd.c.inc"
1077 #include "insn_trans/trans_rvh.c.inc"
1078 #include "insn_trans/trans_rvv.c.inc"
1079 #include "insn_trans/trans_rvb.c.inc"
1080 #include "insn_trans/trans_rvzicond.c.inc"
1081 #include "insn_trans/trans_rvzawrs.c.inc"
1082 #include "insn_trans/trans_rvzicbo.c.inc"
1083 #include "insn_trans/trans_rvzfh.c.inc"
1084 #include "insn_trans/trans_rvk.c.inc"
1085 #include "insn_trans/trans_privileged.c.inc"
1086 #include "insn_trans/trans_svinval.c.inc"
1087 #include "decode-xthead.c.inc"
1088 #include "insn_trans/trans_xthead.c.inc"
1089 #include "insn_trans/trans_xventanacondops.c.inc"
1090
1091 /* Include the auto-generated decoder for 16 bit insn */
1092 #include "decode-insn16.c.inc"
1093 #include "insn_trans/trans_rvzce.c.inc"
1094
1095 /* Include decoders for factored-out extensions */
1096 #include "decode-XVentanaCondOps.c.inc"
1097
1098 /* The specification allows for longer insns, but not supported by qemu. */
1099 #define MAX_INSN_LEN 4
1100
1101 static inline int insn_len(uint16_t first_word)
1102 {
1103 return (first_word & 3) == 3 ? 4 : 2;
1104 }
1105
1106 static void decode_opc(CPURISCVState *env, DisasContext *ctx, uint16_t opcode)
1107 {
1108 /*
1109 * A table with predicate (i.e., guard) functions and decoder functions
1110 * that are tested in-order until a decoder matches onto the opcode.
1111 */
1112 static const struct {
1113 bool (*guard_func)(DisasContext *);
1114 bool (*decode_func)(DisasContext *, uint32_t);
1115 } decoders[] = {
1116 { always_true_p, decode_insn32 },
1117 { has_xthead_p, decode_xthead },
1118 { has_XVentanaCondOps_p, decode_XVentanaCodeOps },
1119 };
1120
1121 ctx->virt_inst_excp = false;
1122 ctx->cur_insn_len = insn_len(opcode);
1123 /* Check for compressed insn */
1124 if (ctx->cur_insn_len == 2) {
1125 ctx->opcode = opcode;
1126 ctx->pc_succ_insn = ctx->base.pc_next + 2;
1127 /*
1128 * The Zca extension is added as way to refer to instructions in the C
1129 * extension that do not include the floating-point loads and stores
1130 */
1131 if ((has_ext(ctx, RVC) || ctx->cfg_ptr->ext_zca) &&
1132 decode_insn16(ctx, opcode)) {
1133 return;
1134 }
1135 } else {
1136 uint32_t opcode32 = opcode;
1137 opcode32 = deposit32(opcode32, 16, 16,
1138 translator_lduw(env, &ctx->base,
1139 ctx->base.pc_next + 2));
1140 ctx->opcode = opcode32;
1141 ctx->pc_succ_insn = ctx->base.pc_next + 4;
1142
1143 for (size_t i = 0; i < ARRAY_SIZE(decoders); ++i) {
1144 if (decoders[i].guard_func(ctx) &&
1145 decoders[i].decode_func(ctx, opcode32)) {
1146 return;
1147 }
1148 }
1149 }
1150
1151 gen_exception_illegal(ctx);
1152 }
1153
1154 static void riscv_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs)
1155 {
1156 DisasContext *ctx = container_of(dcbase, DisasContext, base);
1157 CPURISCVState *env = cs->env_ptr;
1158 RISCVCPU *cpu = RISCV_CPU(cs);
1159 uint32_t tb_flags = ctx->base.tb->flags;
1160
1161 ctx->pc_succ_insn = ctx->base.pc_first;
1162 ctx->priv = FIELD_EX32(tb_flags, TB_FLAGS, PRIV);
1163 ctx->mem_idx = FIELD_EX32(tb_flags, TB_FLAGS, MEM_IDX);
1164 ctx->mstatus_fs = FIELD_EX32(tb_flags, TB_FLAGS, FS);
1165 ctx->mstatus_vs = FIELD_EX32(tb_flags, TB_FLAGS, VS);
1166 ctx->priv_ver = env->priv_ver;
1167 ctx->virt_enabled = FIELD_EX32(tb_flags, TB_FLAGS, VIRT_ENABLED);
1168 ctx->misa_ext = env->misa_ext;
1169 ctx->frm = -1; /* unknown rounding mode */
1170 ctx->cfg_ptr = &(cpu->cfg);
1171 ctx->vill = FIELD_EX32(tb_flags, TB_FLAGS, VILL);
1172 ctx->sew = FIELD_EX32(tb_flags, TB_FLAGS, SEW);
1173 ctx->lmul = sextract32(FIELD_EX32(tb_flags, TB_FLAGS, LMUL), 0, 3);
1174 ctx->vta = FIELD_EX32(tb_flags, TB_FLAGS, VTA) && cpu->cfg.rvv_ta_all_1s;
1175 ctx->vma = FIELD_EX32(tb_flags, TB_FLAGS, VMA) && cpu->cfg.rvv_ma_all_1s;
1176 ctx->cfg_vta_all_1s = cpu->cfg.rvv_ta_all_1s;
1177 ctx->vstart_eq_zero = FIELD_EX32(tb_flags, TB_FLAGS, VSTART_EQ_ZERO);
1178 ctx->vl_eq_vlmax = FIELD_EX32(tb_flags, TB_FLAGS, VL_EQ_VLMAX);
1179 ctx->misa_mxl_max = env->misa_mxl_max;
1180 ctx->xl = FIELD_EX32(tb_flags, TB_FLAGS, XL);
1181 ctx->cs = cs;
1182 ctx->pm_mask_enabled = FIELD_EX32(tb_flags, TB_FLAGS, PM_MASK_ENABLED);
1183 ctx->pm_base_enabled = FIELD_EX32(tb_flags, TB_FLAGS, PM_BASE_ENABLED);
1184 ctx->itrigger = FIELD_EX32(tb_flags, TB_FLAGS, ITRIGGER);
1185 ctx->zero = tcg_constant_tl(0);
1186 ctx->virt_inst_excp = false;
1187 }
1188
1189 static void riscv_tr_tb_start(DisasContextBase *db, CPUState *cpu)
1190 {
1191 }
1192
1193 static void riscv_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
1194 {
1195 DisasContext *ctx = container_of(dcbase, DisasContext, base);
1196
1197 tcg_gen_insn_start(ctx->base.pc_next, 0);
1198 ctx->insn_start = tcg_last_op();
1199 }
1200
1201 static void riscv_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
1202 {
1203 DisasContext *ctx = container_of(dcbase, DisasContext, base);
1204 CPURISCVState *env = cpu->env_ptr;
1205 uint16_t opcode16 = translator_lduw(env, &ctx->base, ctx->base.pc_next);
1206
1207 ctx->ol = ctx->xl;
1208 decode_opc(env, ctx, opcode16);
1209 ctx->base.pc_next = ctx->pc_succ_insn;
1210
1211 /* Only the first insn within a TB is allowed to cross a page boundary. */
1212 if (ctx->base.is_jmp == DISAS_NEXT) {
1213 if (ctx->itrigger || !is_same_page(&ctx->base, ctx->base.pc_next)) {
1214 ctx->base.is_jmp = DISAS_TOO_MANY;
1215 } else {
1216 unsigned page_ofs = ctx->base.pc_next & ~TARGET_PAGE_MASK;
1217
1218 if (page_ofs > TARGET_PAGE_SIZE - MAX_INSN_LEN) {
1219 uint16_t next_insn = cpu_lduw_code(env, ctx->base.pc_next);
1220 int len = insn_len(next_insn);
1221
1222 if (!is_same_page(&ctx->base, ctx->base.pc_next + len - 1)) {
1223 ctx->base.is_jmp = DISAS_TOO_MANY;
1224 }
1225 }
1226 }
1227 }
1228 }
1229
1230 static void riscv_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
1231 {
1232 DisasContext *ctx = container_of(dcbase, DisasContext, base);
1233
1234 switch (ctx->base.is_jmp) {
1235 case DISAS_TOO_MANY:
1236 gen_goto_tb(ctx, 0, 0);
1237 break;
1238 case DISAS_NORETURN:
1239 break;
1240 default:
1241 g_assert_not_reached();
1242 }
1243 }
1244
1245 static void riscv_tr_disas_log(const DisasContextBase *dcbase,
1246 CPUState *cpu, FILE *logfile)
1247 {
1248 #ifndef CONFIG_USER_ONLY
1249 RISCVCPU *rvcpu = RISCV_CPU(cpu);
1250 CPURISCVState *env = &rvcpu->env;
1251 #endif
1252
1253 fprintf(logfile, "IN: %s\n", lookup_symbol(dcbase->pc_first));
1254 #ifndef CONFIG_USER_ONLY
1255 fprintf(logfile, "Priv: "TARGET_FMT_ld"; Virt: %d\n",
1256 env->priv, env->virt_enabled);
1257 #endif
1258 target_disas(logfile, cpu, dcbase->pc_first, dcbase->tb->size);
1259 }
1260
1261 static const TranslatorOps riscv_tr_ops = {
1262 .init_disas_context = riscv_tr_init_disas_context,
1263 .tb_start = riscv_tr_tb_start,
1264 .insn_start = riscv_tr_insn_start,
1265 .translate_insn = riscv_tr_translate_insn,
1266 .tb_stop = riscv_tr_tb_stop,
1267 .disas_log = riscv_tr_disas_log,
1268 };
1269
1270 void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int *max_insns,
1271 target_ulong pc, void *host_pc)
1272 {
1273 DisasContext ctx;
1274
1275 translator_loop(cs, tb, max_insns, pc, host_pc, &riscv_tr_ops, &ctx.base);
1276 }
1277
1278 void riscv_translate_init(void)
1279 {
1280 int i;
1281
1282 /*
1283 * cpu_gpr[0] is a placeholder for the zero register. Do not use it.
1284 * Use the gen_set_gpr and get_gpr helper functions when accessing regs,
1285 * unless you specifically block reads/writes to reg 0.
1286 */
1287 cpu_gpr[0] = NULL;
1288 cpu_gprh[0] = NULL;
1289
1290 for (i = 1; i < 32; i++) {
1291 cpu_gpr[i] = tcg_global_mem_new(cpu_env,
1292 offsetof(CPURISCVState, gpr[i]), riscv_int_regnames[i]);
1293 cpu_gprh[i] = tcg_global_mem_new(cpu_env,
1294 offsetof(CPURISCVState, gprh[i]), riscv_int_regnamesh[i]);
1295 }
1296
1297 for (i = 0; i < 32; i++) {
1298 cpu_fpr[i] = tcg_global_mem_new_i64(cpu_env,
1299 offsetof(CPURISCVState, fpr[i]), riscv_fpr_regnames[i]);
1300 }
1301
1302 cpu_pc = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, pc), "pc");
1303 cpu_vl = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, vl), "vl");
1304 cpu_vstart = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, vstart),
1305 "vstart");
1306 load_res = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, load_res),
1307 "load_res");
1308 load_val = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, load_val),
1309 "load_val");
1310 /* Assign PM CSRs to tcg globals */
1311 pm_mask = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, cur_pmmask),
1312 "pmmask");
1313 pm_base = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, cur_pmbase),
1314 "pmbase");
1315 }