]> git.proxmox.com Git - mirror_qemu.git/blob - target/riscv/translate.c
Merge tag 'vfio-updates-20230307.1' of https://gitlab.com/alex.williamson/qemu into...
[mirror_qemu.git] / target / riscv / translate.c
1 /*
2 * RISC-V emulation for qemu: main translation routines.
3 *
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #include "qemu/osdep.h"
20 #include "qemu/log.h"
21 #include "cpu.h"
22 #include "tcg/tcg-op.h"
23 #include "disas/disas.h"
24 #include "exec/cpu_ldst.h"
25 #include "exec/exec-all.h"
26 #include "exec/helper-proto.h"
27 #include "exec/helper-gen.h"
28
29 #include "exec/translator.h"
30 #include "exec/log.h"
31 #include "semihosting/semihost.h"
32
33 #include "instmap.h"
34 #include "internals.h"
35
36 /* global register indices */
37 static TCGv cpu_gpr[32], cpu_gprh[32], cpu_pc, cpu_vl, cpu_vstart;
38 static TCGv_i64 cpu_fpr[32]; /* assume F and D extensions */
39 static TCGv load_res;
40 static TCGv load_val;
41 /* globals for PM CSRs */
42 static TCGv pm_mask;
43 static TCGv pm_base;
44
45 #include "exec/gen-icount.h"
46
47 /*
48 * If an operation is being performed on less than TARGET_LONG_BITS,
49 * it may require the inputs to be sign- or zero-extended; which will
50 * depend on the exact operation being performed.
51 */
52 typedef enum {
53 EXT_NONE,
54 EXT_SIGN,
55 EXT_ZERO,
56 } DisasExtend;
57
58 typedef struct DisasContext {
59 DisasContextBase base;
60 /* pc_succ_insn points to the instruction following base.pc_next */
61 target_ulong pc_succ_insn;
62 target_ulong priv_ver;
63 RISCVMXL misa_mxl_max;
64 RISCVMXL xl;
65 uint32_t misa_ext;
66 uint32_t opcode;
67 uint32_t mstatus_fs;
68 uint32_t mstatus_vs;
69 uint32_t mstatus_hs_fs;
70 uint32_t mstatus_hs_vs;
71 uint32_t mem_idx;
72 /* Remember the rounding mode encoded in the previous fp instruction,
73 which we have already installed into env->fp_status. Or -1 for
74 no previous fp instruction. Note that we exit the TB when writing
75 to any system register, which includes CSR_FRM, so we do not have
76 to reset this known value. */
77 int frm;
78 RISCVMXL ol;
79 bool virt_inst_excp;
80 bool virt_enabled;
81 const RISCVCPUConfig *cfg_ptr;
82 bool hlsx;
83 /* vector extension */
84 bool vill;
85 /*
86 * Encode LMUL to lmul as follows:
87 * LMUL vlmul lmul
88 * 1 000 0
89 * 2 001 1
90 * 4 010 2
91 * 8 011 3
92 * - 100 -
93 * 1/8 101 -3
94 * 1/4 110 -2
95 * 1/2 111 -1
96 */
97 int8_t lmul;
98 uint8_t sew;
99 uint8_t vta;
100 uint8_t vma;
101 bool cfg_vta_all_1s;
102 target_ulong vstart;
103 bool vl_eq_vlmax;
104 CPUState *cs;
105 TCGv zero;
106 /* PointerMasking extension */
107 bool pm_mask_enabled;
108 bool pm_base_enabled;
109 /* Use icount trigger for native debug */
110 bool itrigger;
111 /* FRM is known to contain a valid value. */
112 bool frm_valid;
113 /* TCG of the current insn_start */
114 TCGOp *insn_start;
115 } DisasContext;
116
117 static inline bool has_ext(DisasContext *ctx, uint32_t ext)
118 {
119 return ctx->misa_ext & ext;
120 }
121
122 static bool always_true_p(DisasContext *ctx __attribute__((__unused__)))
123 {
124 return true;
125 }
126
127 static bool has_xthead_p(DisasContext *ctx __attribute__((__unused__)))
128 {
129 return ctx->cfg_ptr->ext_xtheadba || ctx->cfg_ptr->ext_xtheadbb ||
130 ctx->cfg_ptr->ext_xtheadbs || ctx->cfg_ptr->ext_xtheadcmo ||
131 ctx->cfg_ptr->ext_xtheadcondmov ||
132 ctx->cfg_ptr->ext_xtheadfmemidx || ctx->cfg_ptr->ext_xtheadfmv ||
133 ctx->cfg_ptr->ext_xtheadmac || ctx->cfg_ptr->ext_xtheadmemidx ||
134 ctx->cfg_ptr->ext_xtheadmempair || ctx->cfg_ptr->ext_xtheadsync;
135 }
136
137 #define MATERIALISE_EXT_PREDICATE(ext) \
138 static bool has_ ## ext ## _p(DisasContext *ctx) \
139 { \
140 return ctx->cfg_ptr->ext_ ## ext ; \
141 }
142
143 MATERIALISE_EXT_PREDICATE(XVentanaCondOps);
144
145 #ifdef TARGET_RISCV32
146 #define get_xl(ctx) MXL_RV32
147 #elif defined(CONFIG_USER_ONLY)
148 #define get_xl(ctx) MXL_RV64
149 #else
150 #define get_xl(ctx) ((ctx)->xl)
151 #endif
152
153 /* The word size for this machine mode. */
154 static inline int __attribute__((unused)) get_xlen(DisasContext *ctx)
155 {
156 return 16 << get_xl(ctx);
157 }
158
159 /* The operation length, as opposed to the xlen. */
160 #ifdef TARGET_RISCV32
161 #define get_ol(ctx) MXL_RV32
162 #else
163 #define get_ol(ctx) ((ctx)->ol)
164 #endif
165
166 static inline int get_olen(DisasContext *ctx)
167 {
168 return 16 << get_ol(ctx);
169 }
170
171 /* The maximum register length */
172 #ifdef TARGET_RISCV32
173 #define get_xl_max(ctx) MXL_RV32
174 #else
175 #define get_xl_max(ctx) ((ctx)->misa_mxl_max)
176 #endif
177
178 /*
179 * RISC-V requires NaN-boxing of narrower width floating point values.
180 * This applies when a 32-bit value is assigned to a 64-bit FP register.
181 * For consistency and simplicity, we nanbox results even when the RVD
182 * extension is not present.
183 */
184 static void gen_nanbox_s(TCGv_i64 out, TCGv_i64 in)
185 {
186 tcg_gen_ori_i64(out, in, MAKE_64BIT_MASK(32, 32));
187 }
188
189 static void gen_nanbox_h(TCGv_i64 out, TCGv_i64 in)
190 {
191 tcg_gen_ori_i64(out, in, MAKE_64BIT_MASK(16, 48));
192 }
193
194 /*
195 * A narrow n-bit operation, where n < FLEN, checks that input operands
196 * are correctly Nan-boxed, i.e., all upper FLEN - n bits are 1.
197 * If so, the least-significant bits of the input are used, otherwise the
198 * input value is treated as an n-bit canonical NaN (v2.2 section 9.2).
199 *
200 * Here, the result is always nan-boxed, even the canonical nan.
201 */
202 static void gen_check_nanbox_h(TCGv_i64 out, TCGv_i64 in)
203 {
204 TCGv_i64 t_max = tcg_constant_i64(0xffffffffffff0000ull);
205 TCGv_i64 t_nan = tcg_constant_i64(0xffffffffffff7e00ull);
206
207 tcg_gen_movcond_i64(TCG_COND_GEU, out, in, t_max, in, t_nan);
208 }
209
210 static void gen_check_nanbox_s(TCGv_i64 out, TCGv_i64 in)
211 {
212 TCGv_i64 t_max = tcg_constant_i64(0xffffffff00000000ull);
213 TCGv_i64 t_nan = tcg_constant_i64(0xffffffff7fc00000ull);
214
215 tcg_gen_movcond_i64(TCG_COND_GEU, out, in, t_max, in, t_nan);
216 }
217
218 static void decode_save_opc(DisasContext *ctx)
219 {
220 assert(ctx->insn_start != NULL);
221 tcg_set_insn_start_param(ctx->insn_start, 1, ctx->opcode);
222 ctx->insn_start = NULL;
223 }
224
225 static void gen_set_pc_imm(DisasContext *ctx, target_ulong dest)
226 {
227 if (get_xl(ctx) == MXL_RV32) {
228 dest = (int32_t)dest;
229 }
230 tcg_gen_movi_tl(cpu_pc, dest);
231 }
232
233 static void gen_set_pc(DisasContext *ctx, TCGv dest)
234 {
235 if (get_xl(ctx) == MXL_RV32) {
236 tcg_gen_ext32s_tl(cpu_pc, dest);
237 } else {
238 tcg_gen_mov_tl(cpu_pc, dest);
239 }
240 }
241
242 static void generate_exception(DisasContext *ctx, int excp)
243 {
244 gen_set_pc_imm(ctx, ctx->base.pc_next);
245 gen_helper_raise_exception(cpu_env, tcg_constant_i32(excp));
246 ctx->base.is_jmp = DISAS_NORETURN;
247 }
248
249 static void gen_exception_illegal(DisasContext *ctx)
250 {
251 tcg_gen_st_i32(tcg_constant_i32(ctx->opcode), cpu_env,
252 offsetof(CPURISCVState, bins));
253 if (ctx->virt_inst_excp) {
254 generate_exception(ctx, RISCV_EXCP_VIRT_INSTRUCTION_FAULT);
255 } else {
256 generate_exception(ctx, RISCV_EXCP_ILLEGAL_INST);
257 }
258 }
259
260 static void gen_exception_inst_addr_mis(DisasContext *ctx)
261 {
262 tcg_gen_st_tl(cpu_pc, cpu_env, offsetof(CPURISCVState, badaddr));
263 generate_exception(ctx, RISCV_EXCP_INST_ADDR_MIS);
264 }
265
266 static void lookup_and_goto_ptr(DisasContext *ctx)
267 {
268 #ifndef CONFIG_USER_ONLY
269 if (ctx->itrigger) {
270 gen_helper_itrigger_match(cpu_env);
271 }
272 #endif
273 tcg_gen_lookup_and_goto_ptr();
274 }
275
276 static void exit_tb(DisasContext *ctx)
277 {
278 #ifndef CONFIG_USER_ONLY
279 if (ctx->itrigger) {
280 gen_helper_itrigger_match(cpu_env);
281 }
282 #endif
283 tcg_gen_exit_tb(NULL, 0);
284 }
285
286 static void gen_goto_tb(DisasContext *ctx, int n, target_ulong dest)
287 {
288 /*
289 * Under itrigger, instruction executes one by one like singlestep,
290 * direct block chain benefits will be small.
291 */
292 if (translator_use_goto_tb(&ctx->base, dest) && !ctx->itrigger) {
293 tcg_gen_goto_tb(n);
294 gen_set_pc_imm(ctx, dest);
295 tcg_gen_exit_tb(ctx->base.tb, n);
296 } else {
297 gen_set_pc_imm(ctx, dest);
298 lookup_and_goto_ptr(ctx);
299 }
300 }
301
302 /*
303 * Wrappers for getting reg values.
304 *
305 * The $zero register does not have cpu_gpr[0] allocated -- we supply the
306 * constant zero as a source, and an uninitialized sink as destination.
307 *
308 * Further, we may provide an extension for word operations.
309 */
310 static TCGv get_gpr(DisasContext *ctx, int reg_num, DisasExtend ext)
311 {
312 TCGv t;
313
314 if (reg_num == 0) {
315 return ctx->zero;
316 }
317
318 switch (get_ol(ctx)) {
319 case MXL_RV32:
320 switch (ext) {
321 case EXT_NONE:
322 break;
323 case EXT_SIGN:
324 t = tcg_temp_new();
325 tcg_gen_ext32s_tl(t, cpu_gpr[reg_num]);
326 return t;
327 case EXT_ZERO:
328 t = tcg_temp_new();
329 tcg_gen_ext32u_tl(t, cpu_gpr[reg_num]);
330 return t;
331 default:
332 g_assert_not_reached();
333 }
334 break;
335 case MXL_RV64:
336 case MXL_RV128:
337 break;
338 default:
339 g_assert_not_reached();
340 }
341 return cpu_gpr[reg_num];
342 }
343
344 static TCGv get_gprh(DisasContext *ctx, int reg_num)
345 {
346 assert(get_xl(ctx) == MXL_RV128);
347 if (reg_num == 0) {
348 return ctx->zero;
349 }
350 return cpu_gprh[reg_num];
351 }
352
353 static TCGv dest_gpr(DisasContext *ctx, int reg_num)
354 {
355 if (reg_num == 0 || get_olen(ctx) < TARGET_LONG_BITS) {
356 return tcg_temp_new();
357 }
358 return cpu_gpr[reg_num];
359 }
360
361 static TCGv dest_gprh(DisasContext *ctx, int reg_num)
362 {
363 if (reg_num == 0) {
364 return tcg_temp_new();
365 }
366 return cpu_gprh[reg_num];
367 }
368
369 static void gen_set_gpr(DisasContext *ctx, int reg_num, TCGv t)
370 {
371 if (reg_num != 0) {
372 switch (get_ol(ctx)) {
373 case MXL_RV32:
374 tcg_gen_ext32s_tl(cpu_gpr[reg_num], t);
375 break;
376 case MXL_RV64:
377 case MXL_RV128:
378 tcg_gen_mov_tl(cpu_gpr[reg_num], t);
379 break;
380 default:
381 g_assert_not_reached();
382 }
383
384 if (get_xl_max(ctx) == MXL_RV128) {
385 tcg_gen_sari_tl(cpu_gprh[reg_num], cpu_gpr[reg_num], 63);
386 }
387 }
388 }
389
390 static void gen_set_gpri(DisasContext *ctx, int reg_num, target_long imm)
391 {
392 if (reg_num != 0) {
393 switch (get_ol(ctx)) {
394 case MXL_RV32:
395 tcg_gen_movi_tl(cpu_gpr[reg_num], (int32_t)imm);
396 break;
397 case MXL_RV64:
398 case MXL_RV128:
399 tcg_gen_movi_tl(cpu_gpr[reg_num], imm);
400 break;
401 default:
402 g_assert_not_reached();
403 }
404
405 if (get_xl_max(ctx) == MXL_RV128) {
406 tcg_gen_movi_tl(cpu_gprh[reg_num], -(imm < 0));
407 }
408 }
409 }
410
411 static void gen_set_gpr128(DisasContext *ctx, int reg_num, TCGv rl, TCGv rh)
412 {
413 assert(get_ol(ctx) == MXL_RV128);
414 if (reg_num != 0) {
415 tcg_gen_mov_tl(cpu_gpr[reg_num], rl);
416 tcg_gen_mov_tl(cpu_gprh[reg_num], rh);
417 }
418 }
419
420 static TCGv_i64 get_fpr_hs(DisasContext *ctx, int reg_num)
421 {
422 if (!ctx->cfg_ptr->ext_zfinx) {
423 return cpu_fpr[reg_num];
424 }
425
426 if (reg_num == 0) {
427 return tcg_constant_i64(0);
428 }
429 switch (get_xl(ctx)) {
430 case MXL_RV32:
431 #ifdef TARGET_RISCV32
432 {
433 TCGv_i64 t = tcg_temp_new_i64();
434 tcg_gen_ext_i32_i64(t, cpu_gpr[reg_num]);
435 return t;
436 }
437 #else
438 /* fall through */
439 case MXL_RV64:
440 return cpu_gpr[reg_num];
441 #endif
442 default:
443 g_assert_not_reached();
444 }
445 }
446
447 static TCGv_i64 get_fpr_d(DisasContext *ctx, int reg_num)
448 {
449 if (!ctx->cfg_ptr->ext_zfinx) {
450 return cpu_fpr[reg_num];
451 }
452
453 if (reg_num == 0) {
454 return tcg_constant_i64(0);
455 }
456 switch (get_xl(ctx)) {
457 case MXL_RV32:
458 {
459 TCGv_i64 t = tcg_temp_new_i64();
460 tcg_gen_concat_tl_i64(t, cpu_gpr[reg_num], cpu_gpr[reg_num + 1]);
461 return t;
462 }
463 #ifdef TARGET_RISCV64
464 case MXL_RV64:
465 return cpu_gpr[reg_num];
466 #endif
467 default:
468 g_assert_not_reached();
469 }
470 }
471
472 static TCGv_i64 dest_fpr(DisasContext *ctx, int reg_num)
473 {
474 if (!ctx->cfg_ptr->ext_zfinx) {
475 return cpu_fpr[reg_num];
476 }
477
478 if (reg_num == 0) {
479 return tcg_temp_new_i64();
480 }
481
482 switch (get_xl(ctx)) {
483 case MXL_RV32:
484 return tcg_temp_new_i64();
485 #ifdef TARGET_RISCV64
486 case MXL_RV64:
487 return cpu_gpr[reg_num];
488 #endif
489 default:
490 g_assert_not_reached();
491 }
492 }
493
494 /* assume t is nanboxing (for normal) or sign-extended (for zfinx) */
495 static void gen_set_fpr_hs(DisasContext *ctx, int reg_num, TCGv_i64 t)
496 {
497 if (!ctx->cfg_ptr->ext_zfinx) {
498 tcg_gen_mov_i64(cpu_fpr[reg_num], t);
499 return;
500 }
501 if (reg_num != 0) {
502 switch (get_xl(ctx)) {
503 case MXL_RV32:
504 #ifdef TARGET_RISCV32
505 tcg_gen_extrl_i64_i32(cpu_gpr[reg_num], t);
506 break;
507 #else
508 /* fall through */
509 case MXL_RV64:
510 tcg_gen_mov_i64(cpu_gpr[reg_num], t);
511 break;
512 #endif
513 default:
514 g_assert_not_reached();
515 }
516 }
517 }
518
519 static void gen_set_fpr_d(DisasContext *ctx, int reg_num, TCGv_i64 t)
520 {
521 if (!ctx->cfg_ptr->ext_zfinx) {
522 tcg_gen_mov_i64(cpu_fpr[reg_num], t);
523 return;
524 }
525
526 if (reg_num != 0) {
527 switch (get_xl(ctx)) {
528 case MXL_RV32:
529 #ifdef TARGET_RISCV32
530 tcg_gen_extr_i64_i32(cpu_gpr[reg_num], cpu_gpr[reg_num + 1], t);
531 break;
532 #else
533 tcg_gen_ext32s_i64(cpu_gpr[reg_num], t);
534 tcg_gen_sari_i64(cpu_gpr[reg_num + 1], t, 32);
535 break;
536 case MXL_RV64:
537 tcg_gen_mov_i64(cpu_gpr[reg_num], t);
538 break;
539 #endif
540 default:
541 g_assert_not_reached();
542 }
543 }
544 }
545
546 static void gen_jal(DisasContext *ctx, int rd, target_ulong imm)
547 {
548 target_ulong next_pc;
549
550 /* check misaligned: */
551 next_pc = ctx->base.pc_next + imm;
552 if (!has_ext(ctx, RVC)) {
553 if ((next_pc & 0x3) != 0) {
554 gen_exception_inst_addr_mis(ctx);
555 return;
556 }
557 }
558
559 gen_set_gpri(ctx, rd, ctx->pc_succ_insn);
560 gen_goto_tb(ctx, 0, ctx->base.pc_next + imm); /* must use this for safety */
561 ctx->base.is_jmp = DISAS_NORETURN;
562 }
563
564 /* Compute a canonical address from a register plus offset. */
565 static TCGv get_address(DisasContext *ctx, int rs1, int imm)
566 {
567 TCGv addr = tcg_temp_new();
568 TCGv src1 = get_gpr(ctx, rs1, EXT_NONE);
569
570 tcg_gen_addi_tl(addr, src1, imm);
571 if (ctx->pm_mask_enabled) {
572 tcg_gen_andc_tl(addr, addr, pm_mask);
573 } else if (get_xl(ctx) == MXL_RV32) {
574 tcg_gen_ext32u_tl(addr, addr);
575 }
576 if (ctx->pm_base_enabled) {
577 tcg_gen_or_tl(addr, addr, pm_base);
578 }
579 return addr;
580 }
581
582 /* Compute a canonical address from a register plus reg offset. */
583 static TCGv get_address_indexed(DisasContext *ctx, int rs1, TCGv offs)
584 {
585 TCGv addr = tcg_temp_new();
586 TCGv src1 = get_gpr(ctx, rs1, EXT_NONE);
587
588 tcg_gen_add_tl(addr, src1, offs);
589 if (ctx->pm_mask_enabled) {
590 tcg_gen_andc_tl(addr, addr, pm_mask);
591 } else if (get_xl(ctx) == MXL_RV32) {
592 tcg_gen_ext32u_tl(addr, addr);
593 }
594 if (ctx->pm_base_enabled) {
595 tcg_gen_or_tl(addr, addr, pm_base);
596 }
597 return addr;
598 }
599
600 #ifndef CONFIG_USER_ONLY
601 /* The states of mstatus_fs are:
602 * 0 = disabled, 1 = initial, 2 = clean, 3 = dirty
603 * We will have already diagnosed disabled state,
604 * and need to turn initial/clean into dirty.
605 */
606 static void mark_fs_dirty(DisasContext *ctx)
607 {
608 TCGv tmp;
609
610 if (!has_ext(ctx, RVF)) {
611 return;
612 }
613
614 if (ctx->mstatus_fs != MSTATUS_FS) {
615 /* Remember the state change for the rest of the TB. */
616 ctx->mstatus_fs = MSTATUS_FS;
617
618 tmp = tcg_temp_new();
619 tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus));
620 tcg_gen_ori_tl(tmp, tmp, MSTATUS_FS);
621 tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus));
622 }
623
624 if (ctx->virt_enabled && ctx->mstatus_hs_fs != MSTATUS_FS) {
625 /* Remember the stage change for the rest of the TB. */
626 ctx->mstatus_hs_fs = MSTATUS_FS;
627
628 tmp = tcg_temp_new();
629 tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs));
630 tcg_gen_ori_tl(tmp, tmp, MSTATUS_FS);
631 tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs));
632 }
633 }
634 #else
635 static inline void mark_fs_dirty(DisasContext *ctx) { }
636 #endif
637
638 #ifndef CONFIG_USER_ONLY
639 /* The states of mstatus_vs are:
640 * 0 = disabled, 1 = initial, 2 = clean, 3 = dirty
641 * We will have already diagnosed disabled state,
642 * and need to turn initial/clean into dirty.
643 */
644 static void mark_vs_dirty(DisasContext *ctx)
645 {
646 TCGv tmp;
647
648 if (ctx->mstatus_vs != MSTATUS_VS) {
649 /* Remember the state change for the rest of the TB. */
650 ctx->mstatus_vs = MSTATUS_VS;
651
652 tmp = tcg_temp_new();
653 tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus));
654 tcg_gen_ori_tl(tmp, tmp, MSTATUS_VS);
655 tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus));
656 }
657
658 if (ctx->virt_enabled && ctx->mstatus_hs_vs != MSTATUS_VS) {
659 /* Remember the stage change for the rest of the TB. */
660 ctx->mstatus_hs_vs = MSTATUS_VS;
661
662 tmp = tcg_temp_new();
663 tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs));
664 tcg_gen_ori_tl(tmp, tmp, MSTATUS_VS);
665 tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs));
666 }
667 }
668 #else
669 static inline void mark_vs_dirty(DisasContext *ctx) { }
670 #endif
671
672 static void gen_set_rm(DisasContext *ctx, int rm)
673 {
674 if (ctx->frm == rm) {
675 return;
676 }
677 ctx->frm = rm;
678
679 if (rm == RISCV_FRM_DYN) {
680 /* The helper will return only if frm valid. */
681 ctx->frm_valid = true;
682 }
683
684 /* The helper may raise ILLEGAL_INSN -- record binv for unwind. */
685 decode_save_opc(ctx);
686 gen_helper_set_rounding_mode(cpu_env, tcg_constant_i32(rm));
687 }
688
689 static void gen_set_rm_chkfrm(DisasContext *ctx, int rm)
690 {
691 if (ctx->frm == rm && ctx->frm_valid) {
692 return;
693 }
694 ctx->frm = rm;
695 ctx->frm_valid = true;
696
697 /* The helper may raise ILLEGAL_INSN -- record binv for unwind. */
698 decode_save_opc(ctx);
699 gen_helper_set_rounding_mode_chkfrm(cpu_env, tcg_constant_i32(rm));
700 }
701
702 static int ex_plus_1(DisasContext *ctx, int nf)
703 {
704 return nf + 1;
705 }
706
707 #define EX_SH(amount) \
708 static int ex_shift_##amount(DisasContext *ctx, int imm) \
709 { \
710 return imm << amount; \
711 }
712 EX_SH(1)
713 EX_SH(2)
714 EX_SH(3)
715 EX_SH(4)
716 EX_SH(12)
717
718 #define REQUIRE_EXT(ctx, ext) do { \
719 if (!has_ext(ctx, ext)) { \
720 return false; \
721 } \
722 } while (0)
723
724 #define REQUIRE_32BIT(ctx) do { \
725 if (get_xl(ctx) != MXL_RV32) { \
726 return false; \
727 } \
728 } while (0)
729
730 #define REQUIRE_64BIT(ctx) do { \
731 if (get_xl(ctx) != MXL_RV64) { \
732 return false; \
733 } \
734 } while (0)
735
736 #define REQUIRE_128BIT(ctx) do { \
737 if (get_xl(ctx) != MXL_RV128) { \
738 return false; \
739 } \
740 } while (0)
741
742 #define REQUIRE_64_OR_128BIT(ctx) do { \
743 if (get_xl(ctx) == MXL_RV32) { \
744 return false; \
745 } \
746 } while (0)
747
748 #define REQUIRE_EITHER_EXT(ctx, A, B) do { \
749 if (!ctx->cfg_ptr->ext_##A && \
750 !ctx->cfg_ptr->ext_##B) { \
751 return false; \
752 } \
753 } while (0)
754
755 static int ex_rvc_register(DisasContext *ctx, int reg)
756 {
757 return 8 + reg;
758 }
759
760 static int ex_rvc_shiftli(DisasContext *ctx, int imm)
761 {
762 /* For RV128 a shamt of 0 means a shift by 64. */
763 if (get_ol(ctx) == MXL_RV128) {
764 imm = imm ? imm : 64;
765 }
766 return imm;
767 }
768
769 static int ex_rvc_shiftri(DisasContext *ctx, int imm)
770 {
771 /*
772 * For RV128 a shamt of 0 means a shift by 64, furthermore, for right
773 * shifts, the shamt is sign-extended.
774 */
775 if (get_ol(ctx) == MXL_RV128) {
776 imm = imm | (imm & 32) << 1;
777 imm = imm ? imm : 64;
778 }
779 return imm;
780 }
781
782 /* Include the auto-generated decoder for 32 bit insn */
783 #include "decode-insn32.c.inc"
784
785 static bool gen_logic_imm_fn(DisasContext *ctx, arg_i *a,
786 void (*func)(TCGv, TCGv, target_long))
787 {
788 TCGv dest = dest_gpr(ctx, a->rd);
789 TCGv src1 = get_gpr(ctx, a->rs1, EXT_NONE);
790
791 func(dest, src1, a->imm);
792
793 if (get_xl(ctx) == MXL_RV128) {
794 TCGv src1h = get_gprh(ctx, a->rs1);
795 TCGv desth = dest_gprh(ctx, a->rd);
796
797 func(desth, src1h, -(a->imm < 0));
798 gen_set_gpr128(ctx, a->rd, dest, desth);
799 } else {
800 gen_set_gpr(ctx, a->rd, dest);
801 }
802
803 return true;
804 }
805
806 static bool gen_logic(DisasContext *ctx, arg_r *a,
807 void (*func)(TCGv, TCGv, TCGv))
808 {
809 TCGv dest = dest_gpr(ctx, a->rd);
810 TCGv src1 = get_gpr(ctx, a->rs1, EXT_NONE);
811 TCGv src2 = get_gpr(ctx, a->rs2, EXT_NONE);
812
813 func(dest, src1, src2);
814
815 if (get_xl(ctx) == MXL_RV128) {
816 TCGv src1h = get_gprh(ctx, a->rs1);
817 TCGv src2h = get_gprh(ctx, a->rs2);
818 TCGv desth = dest_gprh(ctx, a->rd);
819
820 func(desth, src1h, src2h);
821 gen_set_gpr128(ctx, a->rd, dest, desth);
822 } else {
823 gen_set_gpr(ctx, a->rd, dest);
824 }
825
826 return true;
827 }
828
829 static bool gen_arith_imm_fn(DisasContext *ctx, arg_i *a, DisasExtend ext,
830 void (*func)(TCGv, TCGv, target_long),
831 void (*f128)(TCGv, TCGv, TCGv, TCGv, target_long))
832 {
833 TCGv dest = dest_gpr(ctx, a->rd);
834 TCGv src1 = get_gpr(ctx, a->rs1, ext);
835
836 if (get_ol(ctx) < MXL_RV128) {
837 func(dest, src1, a->imm);
838 gen_set_gpr(ctx, a->rd, dest);
839 } else {
840 if (f128 == NULL) {
841 return false;
842 }
843
844 TCGv src1h = get_gprh(ctx, a->rs1);
845 TCGv desth = dest_gprh(ctx, a->rd);
846
847 f128(dest, desth, src1, src1h, a->imm);
848 gen_set_gpr128(ctx, a->rd, dest, desth);
849 }
850 return true;
851 }
852
853 static bool gen_arith_imm_tl(DisasContext *ctx, arg_i *a, DisasExtend ext,
854 void (*func)(TCGv, TCGv, TCGv),
855 void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv))
856 {
857 TCGv dest = dest_gpr(ctx, a->rd);
858 TCGv src1 = get_gpr(ctx, a->rs1, ext);
859 TCGv src2 = tcg_constant_tl(a->imm);
860
861 if (get_ol(ctx) < MXL_RV128) {
862 func(dest, src1, src2);
863 gen_set_gpr(ctx, a->rd, dest);
864 } else {
865 if (f128 == NULL) {
866 return false;
867 }
868
869 TCGv src1h = get_gprh(ctx, a->rs1);
870 TCGv src2h = tcg_constant_tl(-(a->imm < 0));
871 TCGv desth = dest_gprh(ctx, a->rd);
872
873 f128(dest, desth, src1, src1h, src2, src2h);
874 gen_set_gpr128(ctx, a->rd, dest, desth);
875 }
876 return true;
877 }
878
879 static bool gen_arith(DisasContext *ctx, arg_r *a, DisasExtend ext,
880 void (*func)(TCGv, TCGv, TCGv),
881 void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv))
882 {
883 TCGv dest = dest_gpr(ctx, a->rd);
884 TCGv src1 = get_gpr(ctx, a->rs1, ext);
885 TCGv src2 = get_gpr(ctx, a->rs2, ext);
886
887 if (get_ol(ctx) < MXL_RV128) {
888 func(dest, src1, src2);
889 gen_set_gpr(ctx, a->rd, dest);
890 } else {
891 if (f128 == NULL) {
892 return false;
893 }
894
895 TCGv src1h = get_gprh(ctx, a->rs1);
896 TCGv src2h = get_gprh(ctx, a->rs2);
897 TCGv desth = dest_gprh(ctx, a->rd);
898
899 f128(dest, desth, src1, src1h, src2, src2h);
900 gen_set_gpr128(ctx, a->rd, dest, desth);
901 }
902 return true;
903 }
904
905 static bool gen_arith_per_ol(DisasContext *ctx, arg_r *a, DisasExtend ext,
906 void (*f_tl)(TCGv, TCGv, TCGv),
907 void (*f_32)(TCGv, TCGv, TCGv),
908 void (*f_128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv))
909 {
910 int olen = get_olen(ctx);
911
912 if (olen != TARGET_LONG_BITS) {
913 if (olen == 32) {
914 f_tl = f_32;
915 } else if (olen != 128) {
916 g_assert_not_reached();
917 }
918 }
919 return gen_arith(ctx, a, ext, f_tl, f_128);
920 }
921
922 static bool gen_shift_imm_fn(DisasContext *ctx, arg_shift *a, DisasExtend ext,
923 void (*func)(TCGv, TCGv, target_long),
924 void (*f128)(TCGv, TCGv, TCGv, TCGv, target_long))
925 {
926 TCGv dest, src1;
927 int max_len = get_olen(ctx);
928
929 if (a->shamt >= max_len) {
930 return false;
931 }
932
933 dest = dest_gpr(ctx, a->rd);
934 src1 = get_gpr(ctx, a->rs1, ext);
935
936 if (max_len < 128) {
937 func(dest, src1, a->shamt);
938 gen_set_gpr(ctx, a->rd, dest);
939 } else {
940 TCGv src1h = get_gprh(ctx, a->rs1);
941 TCGv desth = dest_gprh(ctx, a->rd);
942
943 if (f128 == NULL) {
944 return false;
945 }
946 f128(dest, desth, src1, src1h, a->shamt);
947 gen_set_gpr128(ctx, a->rd, dest, desth);
948 }
949 return true;
950 }
951
952 static bool gen_shift_imm_fn_per_ol(DisasContext *ctx, arg_shift *a,
953 DisasExtend ext,
954 void (*f_tl)(TCGv, TCGv, target_long),
955 void (*f_32)(TCGv, TCGv, target_long),
956 void (*f_128)(TCGv, TCGv, TCGv, TCGv,
957 target_long))
958 {
959 int olen = get_olen(ctx);
960 if (olen != TARGET_LONG_BITS) {
961 if (olen == 32) {
962 f_tl = f_32;
963 } else if (olen != 128) {
964 g_assert_not_reached();
965 }
966 }
967 return gen_shift_imm_fn(ctx, a, ext, f_tl, f_128);
968 }
969
970 static bool gen_shift_imm_tl(DisasContext *ctx, arg_shift *a, DisasExtend ext,
971 void (*func)(TCGv, TCGv, TCGv))
972 {
973 TCGv dest, src1, src2;
974 int max_len = get_olen(ctx);
975
976 if (a->shamt >= max_len) {
977 return false;
978 }
979
980 dest = dest_gpr(ctx, a->rd);
981 src1 = get_gpr(ctx, a->rs1, ext);
982 src2 = tcg_constant_tl(a->shamt);
983
984 func(dest, src1, src2);
985
986 gen_set_gpr(ctx, a->rd, dest);
987 return true;
988 }
989
990 static bool gen_shift(DisasContext *ctx, arg_r *a, DisasExtend ext,
991 void (*func)(TCGv, TCGv, TCGv),
992 void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv))
993 {
994 TCGv src2 = get_gpr(ctx, a->rs2, EXT_NONE);
995 TCGv ext2 = tcg_temp_new();
996 int max_len = get_olen(ctx);
997
998 tcg_gen_andi_tl(ext2, src2, max_len - 1);
999
1000 TCGv dest = dest_gpr(ctx, a->rd);
1001 TCGv src1 = get_gpr(ctx, a->rs1, ext);
1002
1003 if (max_len < 128) {
1004 func(dest, src1, ext2);
1005 gen_set_gpr(ctx, a->rd, dest);
1006 } else {
1007 TCGv src1h = get_gprh(ctx, a->rs1);
1008 TCGv desth = dest_gprh(ctx, a->rd);
1009
1010 if (f128 == NULL) {
1011 return false;
1012 }
1013 f128(dest, desth, src1, src1h, ext2);
1014 gen_set_gpr128(ctx, a->rd, dest, desth);
1015 }
1016 return true;
1017 }
1018
1019 static bool gen_shift_per_ol(DisasContext *ctx, arg_r *a, DisasExtend ext,
1020 void (*f_tl)(TCGv, TCGv, TCGv),
1021 void (*f_32)(TCGv, TCGv, TCGv),
1022 void (*f_128)(TCGv, TCGv, TCGv, TCGv, TCGv))
1023 {
1024 int olen = get_olen(ctx);
1025 if (olen != TARGET_LONG_BITS) {
1026 if (olen == 32) {
1027 f_tl = f_32;
1028 } else if (olen != 128) {
1029 g_assert_not_reached();
1030 }
1031 }
1032 return gen_shift(ctx, a, ext, f_tl, f_128);
1033 }
1034
1035 static bool gen_unary(DisasContext *ctx, arg_r2 *a, DisasExtend ext,
1036 void (*func)(TCGv, TCGv))
1037 {
1038 TCGv dest = dest_gpr(ctx, a->rd);
1039 TCGv src1 = get_gpr(ctx, a->rs1, ext);
1040
1041 func(dest, src1);
1042
1043 gen_set_gpr(ctx, a->rd, dest);
1044 return true;
1045 }
1046
1047 static bool gen_unary_per_ol(DisasContext *ctx, arg_r2 *a, DisasExtend ext,
1048 void (*f_tl)(TCGv, TCGv),
1049 void (*f_32)(TCGv, TCGv))
1050 {
1051 int olen = get_olen(ctx);
1052
1053 if (olen != TARGET_LONG_BITS) {
1054 if (olen == 32) {
1055 f_tl = f_32;
1056 } else {
1057 g_assert_not_reached();
1058 }
1059 }
1060 return gen_unary(ctx, a, ext, f_tl);
1061 }
1062
1063 static uint32_t opcode_at(DisasContextBase *dcbase, target_ulong pc)
1064 {
1065 DisasContext *ctx = container_of(dcbase, DisasContext, base);
1066 CPUState *cpu = ctx->cs;
1067 CPURISCVState *env = cpu->env_ptr;
1068
1069 return cpu_ldl_code(env, pc);
1070 }
1071
1072 /* Include insn module translation function */
1073 #include "insn_trans/trans_rvi.c.inc"
1074 #include "insn_trans/trans_rvm.c.inc"
1075 #include "insn_trans/trans_rva.c.inc"
1076 #include "insn_trans/trans_rvf.c.inc"
1077 #include "insn_trans/trans_rvd.c.inc"
1078 #include "insn_trans/trans_rvh.c.inc"
1079 #include "insn_trans/trans_rvv.c.inc"
1080 #include "insn_trans/trans_rvb.c.inc"
1081 #include "insn_trans/trans_rvzicond.c.inc"
1082 #include "insn_trans/trans_rvzawrs.c.inc"
1083 #include "insn_trans/trans_rvzicbo.c.inc"
1084 #include "insn_trans/trans_rvzfh.c.inc"
1085 #include "insn_trans/trans_rvk.c.inc"
1086 #include "insn_trans/trans_privileged.c.inc"
1087 #include "insn_trans/trans_svinval.c.inc"
1088 #include "decode-xthead.c.inc"
1089 #include "insn_trans/trans_xthead.c.inc"
1090 #include "insn_trans/trans_xventanacondops.c.inc"
1091
1092 /* Include the auto-generated decoder for 16 bit insn */
1093 #include "decode-insn16.c.inc"
1094 /* Include decoders for factored-out extensions */
1095 #include "decode-XVentanaCondOps.c.inc"
1096
1097 /* The specification allows for longer insns, but not supported by qemu. */
1098 #define MAX_INSN_LEN 4
1099
1100 static inline int insn_len(uint16_t first_word)
1101 {
1102 return (first_word & 3) == 3 ? 4 : 2;
1103 }
1104
1105 static void decode_opc(CPURISCVState *env, DisasContext *ctx, uint16_t opcode)
1106 {
1107 /*
1108 * A table with predicate (i.e., guard) functions and decoder functions
1109 * that are tested in-order until a decoder matches onto the opcode.
1110 */
1111 static const struct {
1112 bool (*guard_func)(DisasContext *);
1113 bool (*decode_func)(DisasContext *, uint32_t);
1114 } decoders[] = {
1115 { always_true_p, decode_insn32 },
1116 { has_xthead_p, decode_xthead },
1117 { has_XVentanaCondOps_p, decode_XVentanaCodeOps },
1118 };
1119
1120 ctx->virt_inst_excp = false;
1121 /* Check for compressed insn */
1122 if (insn_len(opcode) == 2) {
1123 ctx->opcode = opcode;
1124 ctx->pc_succ_insn = ctx->base.pc_next + 2;
1125 if (has_ext(ctx, RVC) && decode_insn16(ctx, opcode)) {
1126 return;
1127 }
1128 } else {
1129 uint32_t opcode32 = opcode;
1130 opcode32 = deposit32(opcode32, 16, 16,
1131 translator_lduw(env, &ctx->base,
1132 ctx->base.pc_next + 2));
1133 ctx->opcode = opcode32;
1134 ctx->pc_succ_insn = ctx->base.pc_next + 4;
1135
1136 for (size_t i = 0; i < ARRAY_SIZE(decoders); ++i) {
1137 if (decoders[i].guard_func(ctx) &&
1138 decoders[i].decode_func(ctx, opcode32)) {
1139 return;
1140 }
1141 }
1142 }
1143
1144 gen_exception_illegal(ctx);
1145 }
1146
1147 static void riscv_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs)
1148 {
1149 DisasContext *ctx = container_of(dcbase, DisasContext, base);
1150 CPURISCVState *env = cs->env_ptr;
1151 RISCVCPU *cpu = RISCV_CPU(cs);
1152 uint32_t tb_flags = ctx->base.tb->flags;
1153
1154 ctx->pc_succ_insn = ctx->base.pc_first;
1155 ctx->mem_idx = FIELD_EX32(tb_flags, TB_FLAGS, MEM_IDX);
1156 ctx->mstatus_fs = tb_flags & TB_FLAGS_MSTATUS_FS;
1157 ctx->mstatus_vs = tb_flags & TB_FLAGS_MSTATUS_VS;
1158 ctx->priv_ver = env->priv_ver;
1159 #if !defined(CONFIG_USER_ONLY)
1160 if (riscv_has_ext(env, RVH)) {
1161 ctx->virt_enabled = riscv_cpu_virt_enabled(env);
1162 } else {
1163 ctx->virt_enabled = false;
1164 }
1165 #else
1166 ctx->virt_enabled = false;
1167 #endif
1168 ctx->misa_ext = env->misa_ext;
1169 ctx->frm = -1; /* unknown rounding mode */
1170 ctx->cfg_ptr = &(cpu->cfg);
1171 ctx->mstatus_hs_fs = FIELD_EX32(tb_flags, TB_FLAGS, MSTATUS_HS_FS);
1172 ctx->mstatus_hs_vs = FIELD_EX32(tb_flags, TB_FLAGS, MSTATUS_HS_VS);
1173 ctx->hlsx = FIELD_EX32(tb_flags, TB_FLAGS, HLSX);
1174 ctx->vill = FIELD_EX32(tb_flags, TB_FLAGS, VILL);
1175 ctx->sew = FIELD_EX32(tb_flags, TB_FLAGS, SEW);
1176 ctx->lmul = sextract32(FIELD_EX32(tb_flags, TB_FLAGS, LMUL), 0, 3);
1177 ctx->vta = FIELD_EX32(tb_flags, TB_FLAGS, VTA) && cpu->cfg.rvv_ta_all_1s;
1178 ctx->vma = FIELD_EX32(tb_flags, TB_FLAGS, VMA) && cpu->cfg.rvv_ma_all_1s;
1179 ctx->cfg_vta_all_1s = cpu->cfg.rvv_ta_all_1s;
1180 ctx->vstart = env->vstart;
1181 ctx->vl_eq_vlmax = FIELD_EX32(tb_flags, TB_FLAGS, VL_EQ_VLMAX);
1182 ctx->misa_mxl_max = env->misa_mxl_max;
1183 ctx->xl = FIELD_EX32(tb_flags, TB_FLAGS, XL);
1184 ctx->cs = cs;
1185 ctx->pm_mask_enabled = FIELD_EX32(tb_flags, TB_FLAGS, PM_MASK_ENABLED);
1186 ctx->pm_base_enabled = FIELD_EX32(tb_flags, TB_FLAGS, PM_BASE_ENABLED);
1187 ctx->itrigger = FIELD_EX32(tb_flags, TB_FLAGS, ITRIGGER);
1188 ctx->zero = tcg_constant_tl(0);
1189 ctx->virt_inst_excp = false;
1190 }
1191
1192 static void riscv_tr_tb_start(DisasContextBase *db, CPUState *cpu)
1193 {
1194 }
1195
1196 static void riscv_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
1197 {
1198 DisasContext *ctx = container_of(dcbase, DisasContext, base);
1199
1200 tcg_gen_insn_start(ctx->base.pc_next, 0);
1201 ctx->insn_start = tcg_last_op();
1202 }
1203
1204 static void riscv_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
1205 {
1206 DisasContext *ctx = container_of(dcbase, DisasContext, base);
1207 CPURISCVState *env = cpu->env_ptr;
1208 uint16_t opcode16 = translator_lduw(env, &ctx->base, ctx->base.pc_next);
1209
1210 ctx->ol = ctx->xl;
1211 decode_opc(env, ctx, opcode16);
1212 ctx->base.pc_next = ctx->pc_succ_insn;
1213
1214 /* Only the first insn within a TB is allowed to cross a page boundary. */
1215 if (ctx->base.is_jmp == DISAS_NEXT) {
1216 if (ctx->itrigger || !is_same_page(&ctx->base, ctx->base.pc_next)) {
1217 ctx->base.is_jmp = DISAS_TOO_MANY;
1218 } else {
1219 unsigned page_ofs = ctx->base.pc_next & ~TARGET_PAGE_MASK;
1220
1221 if (page_ofs > TARGET_PAGE_SIZE - MAX_INSN_LEN) {
1222 uint16_t next_insn = cpu_lduw_code(env, ctx->base.pc_next);
1223 int len = insn_len(next_insn);
1224
1225 if (!is_same_page(&ctx->base, ctx->base.pc_next + len - 1)) {
1226 ctx->base.is_jmp = DISAS_TOO_MANY;
1227 }
1228 }
1229 }
1230 }
1231 }
1232
1233 static void riscv_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
1234 {
1235 DisasContext *ctx = container_of(dcbase, DisasContext, base);
1236
1237 switch (ctx->base.is_jmp) {
1238 case DISAS_TOO_MANY:
1239 gen_goto_tb(ctx, 0, ctx->base.pc_next);
1240 break;
1241 case DISAS_NORETURN:
1242 break;
1243 default:
1244 g_assert_not_reached();
1245 }
1246 }
1247
1248 static void riscv_tr_disas_log(const DisasContextBase *dcbase,
1249 CPUState *cpu, FILE *logfile)
1250 {
1251 #ifndef CONFIG_USER_ONLY
1252 RISCVCPU *rvcpu = RISCV_CPU(cpu);
1253 CPURISCVState *env = &rvcpu->env;
1254 #endif
1255
1256 fprintf(logfile, "IN: %s\n", lookup_symbol(dcbase->pc_first));
1257 #ifndef CONFIG_USER_ONLY
1258 fprintf(logfile, "Priv: "TARGET_FMT_ld"; Virt: "TARGET_FMT_ld"\n",
1259 env->priv, env->virt);
1260 #endif
1261 target_disas(logfile, cpu, dcbase->pc_first, dcbase->tb->size);
1262 }
1263
1264 static const TranslatorOps riscv_tr_ops = {
1265 .init_disas_context = riscv_tr_init_disas_context,
1266 .tb_start = riscv_tr_tb_start,
1267 .insn_start = riscv_tr_insn_start,
1268 .translate_insn = riscv_tr_translate_insn,
1269 .tb_stop = riscv_tr_tb_stop,
1270 .disas_log = riscv_tr_disas_log,
1271 };
1272
1273 void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int *max_insns,
1274 target_ulong pc, void *host_pc)
1275 {
1276 DisasContext ctx;
1277
1278 translator_loop(cs, tb, max_insns, pc, host_pc, &riscv_tr_ops, &ctx.base);
1279 }
1280
1281 void riscv_translate_init(void)
1282 {
1283 int i;
1284
1285 /*
1286 * cpu_gpr[0] is a placeholder for the zero register. Do not use it.
1287 * Use the gen_set_gpr and get_gpr helper functions when accessing regs,
1288 * unless you specifically block reads/writes to reg 0.
1289 */
1290 cpu_gpr[0] = NULL;
1291 cpu_gprh[0] = NULL;
1292
1293 for (i = 1; i < 32; i++) {
1294 cpu_gpr[i] = tcg_global_mem_new(cpu_env,
1295 offsetof(CPURISCVState, gpr[i]), riscv_int_regnames[i]);
1296 cpu_gprh[i] = tcg_global_mem_new(cpu_env,
1297 offsetof(CPURISCVState, gprh[i]), riscv_int_regnamesh[i]);
1298 }
1299
1300 for (i = 0; i < 32; i++) {
1301 cpu_fpr[i] = tcg_global_mem_new_i64(cpu_env,
1302 offsetof(CPURISCVState, fpr[i]), riscv_fpr_regnames[i]);
1303 }
1304
1305 cpu_pc = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, pc), "pc");
1306 cpu_vl = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, vl), "vl");
1307 cpu_vstart = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, vstart),
1308 "vstart");
1309 load_res = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, load_res),
1310 "load_res");
1311 load_val = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, load_val),
1312 "load_val");
1313 /* Assign PM CSRs to tcg globals */
1314 pm_mask = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, cur_pmmask),
1315 "pmmask");
1316 pm_base = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, cur_pmbase),
1317 "pmbase");
1318 }