2 * RISC-V Vector Extension Helpers for QEMU.
4 * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "exec/memop.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
24 #include "tcg/tcg-gvec-desc.h"
25 #include "internals.h"
28 target_ulong
HELPER(vsetvl
)(CPURISCVState
*env
, target_ulong s1
,
32 RISCVCPU
*cpu
= env_archcpu(env
);
33 uint16_t sew
= 8 << FIELD_EX64(s2
, VTYPE
, VSEW
);
34 uint8_t ediv
= FIELD_EX64(s2
, VTYPE
, VEDIV
);
35 bool vill
= FIELD_EX64(s2
, VTYPE
, VILL
);
36 target_ulong reserved
= FIELD_EX64(s2
, VTYPE
, RESERVED
);
38 if ((sew
> cpu
->cfg
.elen
) || vill
|| (ediv
!= 0) || (reserved
!= 0)) {
39 /* only set vill bit. */
40 env
->vtype
= FIELD_DP64(0, VTYPE
, VILL
, 1);
46 vlmax
= vext_get_vlmax(cpu
, s2
);
59 * Note that vector data is stored in host-endian 64-bit chunks,
60 * so addressing units smaller than that needs a host-endian fixup.
62 #ifdef HOST_WORDS_BIGENDIAN
63 #define H1(x) ((x) ^ 7)
64 #define H1_2(x) ((x) ^ 6)
65 #define H1_4(x) ((x) ^ 4)
66 #define H2(x) ((x) ^ 3)
67 #define H4(x) ((x) ^ 1)
78 static inline uint32_t vext_nf(uint32_t desc
)
80 return FIELD_EX32(simd_data(desc
), VDATA
, NF
);
83 static inline uint32_t vext_mlen(uint32_t desc
)
85 return FIELD_EX32(simd_data(desc
), VDATA
, MLEN
);
88 static inline uint32_t vext_vm(uint32_t desc
)
90 return FIELD_EX32(simd_data(desc
), VDATA
, VM
);
93 static inline uint32_t vext_lmul(uint32_t desc
)
95 return FIELD_EX32(simd_data(desc
), VDATA
, LMUL
);
98 static uint32_t vext_wd(uint32_t desc
)
100 return (simd_data(desc
) >> 11) & 0x1;
104 * Get vector group length in bytes. Its range is [64, 2048].
106 * As simd_desc support at most 256, the max vlen is 512 bits.
107 * So vlen in bytes is encoded as maxsz.
109 static inline uint32_t vext_maxsz(uint32_t desc
)
111 return simd_maxsz(desc
) << vext_lmul(desc
);
115 * This function checks watchpoint before real load operation.
117 * In softmmu mode, the TLB API probe_access is enough for watchpoint check.
118 * In user mode, there is no watchpoint support now.
120 * It will trigger an exception if there is no mapping in TLB
121 * and page table walk can't fill the TLB entry. Then the guest
122 * software can return here after process the exception or never return.
124 static void probe_pages(CPURISCVState
*env
, target_ulong addr
,
125 target_ulong len
, uintptr_t ra
,
126 MMUAccessType access_type
)
128 target_ulong pagelen
= -(addr
| TARGET_PAGE_MASK
);
129 target_ulong curlen
= MIN(pagelen
, len
);
131 probe_access(env
, addr
, curlen
, access_type
,
132 cpu_mmu_index(env
, false), ra
);
135 curlen
= len
- curlen
;
136 probe_access(env
, addr
, curlen
, access_type
,
137 cpu_mmu_index(env
, false), ra
);
141 #ifdef HOST_WORDS_BIGENDIAN
142 static void vext_clear(void *tail
, uint32_t cnt
, uint32_t tot
)
145 * Split the remaining range to two parts.
146 * The first part is in the last uint64_t unit.
147 * The second part start from the next uint64_t unit.
149 int part1
= 0, part2
= tot
- cnt
;
151 part1
= 8 - (cnt
% 8);
152 part2
= tot
- cnt
- part1
;
153 memset((void *)((uintptr_t)tail
& ~(7ULL)), 0, part1
);
154 memset((void *)(((uintptr_t)tail
+ 8) & ~(7ULL)), 0, part2
);
156 memset(tail
, 0, part2
);
160 static void vext_clear(void *tail
, uint32_t cnt
, uint32_t tot
)
162 memset(tail
, 0, tot
- cnt
);
166 static void clearb(void *vd
, uint32_t idx
, uint32_t cnt
, uint32_t tot
)
168 int8_t *cur
= ((int8_t *)vd
+ H1(idx
));
169 vext_clear(cur
, cnt
, tot
);
172 static void clearh(void *vd
, uint32_t idx
, uint32_t cnt
, uint32_t tot
)
174 int16_t *cur
= ((int16_t *)vd
+ H2(idx
));
175 vext_clear(cur
, cnt
, tot
);
178 static void clearl(void *vd
, uint32_t idx
, uint32_t cnt
, uint32_t tot
)
180 int32_t *cur
= ((int32_t *)vd
+ H4(idx
));
181 vext_clear(cur
, cnt
, tot
);
184 static void clearq(void *vd
, uint32_t idx
, uint32_t cnt
, uint32_t tot
)
186 int64_t *cur
= (int64_t *)vd
+ idx
;
187 vext_clear(cur
, cnt
, tot
);
190 static inline void vext_set_elem_mask(void *v0
, int mlen
, int index
,
193 int idx
= (index
* mlen
) / 64;
194 int pos
= (index
* mlen
) % 64;
195 uint64_t old
= ((uint64_t *)v0
)[idx
];
196 ((uint64_t *)v0
)[idx
] = deposit64(old
, pos
, mlen
, value
);
199 static inline int vext_elem_mask(void *v0
, int mlen
, int index
)
201 int idx
= (index
* mlen
) / 64;
202 int pos
= (index
* mlen
) % 64;
203 return (((uint64_t *)v0
)[idx
] >> pos
) & 1;
206 /* elements operations for load and store */
207 typedef void vext_ldst_elem_fn(CPURISCVState
*env
, target_ulong addr
,
208 uint32_t idx
, void *vd
, uintptr_t retaddr
);
209 typedef void clear_fn(void *vd
, uint32_t idx
, uint32_t cnt
, uint32_t tot
);
211 #define GEN_VEXT_LD_ELEM(NAME, MTYPE, ETYPE, H, LDSUF) \
212 static void NAME(CPURISCVState *env, abi_ptr addr, \
213 uint32_t idx, void *vd, uintptr_t retaddr)\
216 ETYPE *cur = ((ETYPE *)vd + H(idx)); \
217 data = cpu_##LDSUF##_data_ra(env, addr, retaddr); \
221 GEN_VEXT_LD_ELEM(ldb_b, int8_t, int8_t, H1, ldsb)
222 GEN_VEXT_LD_ELEM(ldb_h
, int8_t, int16_t, H2
, ldsb
)
223 GEN_VEXT_LD_ELEM(ldb_w
, int8_t, int32_t, H4
, ldsb
)
224 GEN_VEXT_LD_ELEM(ldb_d
, int8_t, int64_t, H8
, ldsb
)
225 GEN_VEXT_LD_ELEM(ldh_h
, int16_t, int16_t, H2
, ldsw
)
226 GEN_VEXT_LD_ELEM(ldh_w
, int16_t, int32_t, H4
, ldsw
)
227 GEN_VEXT_LD_ELEM(ldh_d
, int16_t, int64_t, H8
, ldsw
)
228 GEN_VEXT_LD_ELEM(ldw_w
, int32_t, int32_t, H4
, ldl
)
229 GEN_VEXT_LD_ELEM(ldw_d
, int32_t, int64_t, H8
, ldl
)
230 GEN_VEXT_LD_ELEM(lde_b
, int8_t, int8_t, H1
, ldsb
)
231 GEN_VEXT_LD_ELEM(lde_h
, int16_t, int16_t, H2
, ldsw
)
232 GEN_VEXT_LD_ELEM(lde_w
, int32_t, int32_t, H4
, ldl
)
233 GEN_VEXT_LD_ELEM(lde_d
, int64_t, int64_t, H8
, ldq
)
234 GEN_VEXT_LD_ELEM(ldbu_b
, uint8_t, uint8_t, H1
, ldub
)
235 GEN_VEXT_LD_ELEM(ldbu_h
, uint8_t, uint16_t, H2
, ldub
)
236 GEN_VEXT_LD_ELEM(ldbu_w
, uint8_t, uint32_t, H4
, ldub
)
237 GEN_VEXT_LD_ELEM(ldbu_d
, uint8_t, uint64_t, H8
, ldub
)
238 GEN_VEXT_LD_ELEM(ldhu_h
, uint16_t, uint16_t, H2
, lduw
)
239 GEN_VEXT_LD_ELEM(ldhu_w
, uint16_t, uint32_t, H4
, lduw
)
240 GEN_VEXT_LD_ELEM(ldhu_d
, uint16_t, uint64_t, H8
, lduw
)
241 GEN_VEXT_LD_ELEM(ldwu_w
, uint32_t, uint32_t, H4
, ldl
)
242 GEN_VEXT_LD_ELEM(ldwu_d
, uint32_t, uint64_t, H8
, ldl
)
244 #define GEN_VEXT_ST_ELEM(NAME, ETYPE, H, STSUF) \
245 static void NAME(CPURISCVState *env, abi_ptr addr, \
246 uint32_t idx, void *vd, uintptr_t retaddr)\
248 ETYPE data = *((ETYPE *)vd + H(idx)); \
249 cpu_##STSUF##_data_ra(env, addr, data, retaddr); \
252 GEN_VEXT_ST_ELEM(stb_b
, int8_t, H1
, stb
)
253 GEN_VEXT_ST_ELEM(stb_h
, int16_t, H2
, stb
)
254 GEN_VEXT_ST_ELEM(stb_w
, int32_t, H4
, stb
)
255 GEN_VEXT_ST_ELEM(stb_d
, int64_t, H8
, stb
)
256 GEN_VEXT_ST_ELEM(sth_h
, int16_t, H2
, stw
)
257 GEN_VEXT_ST_ELEM(sth_w
, int32_t, H4
, stw
)
258 GEN_VEXT_ST_ELEM(sth_d
, int64_t, H8
, stw
)
259 GEN_VEXT_ST_ELEM(stw_w
, int32_t, H4
, stl
)
260 GEN_VEXT_ST_ELEM(stw_d
, int64_t, H8
, stl
)
261 GEN_VEXT_ST_ELEM(ste_b
, int8_t, H1
, stb
)
262 GEN_VEXT_ST_ELEM(ste_h
, int16_t, H2
, stw
)
263 GEN_VEXT_ST_ELEM(ste_w
, int32_t, H4
, stl
)
264 GEN_VEXT_ST_ELEM(ste_d
, int64_t, H8
, stq
)
267 *** stride: access vector element from strided memory
270 vext_ldst_stride(void *vd
, void *v0
, target_ulong base
,
271 target_ulong stride
, CPURISCVState
*env
,
272 uint32_t desc
, uint32_t vm
,
273 vext_ldst_elem_fn
*ldst_elem
, clear_fn
*clear_elem
,
274 uint32_t esz
, uint32_t msz
, uintptr_t ra
,
275 MMUAccessType access_type
)
278 uint32_t nf
= vext_nf(desc
);
279 uint32_t mlen
= vext_mlen(desc
);
280 uint32_t vlmax
= vext_maxsz(desc
) / esz
;
282 /* probe every access*/
283 for (i
= 0; i
< env
->vl
; i
++) {
284 if (!vm
&& !vext_elem_mask(v0
, mlen
, i
)) {
287 probe_pages(env
, base
+ stride
* i
, nf
* msz
, ra
, access_type
);
290 for (i
= 0; i
< env
->vl
; i
++) {
292 if (!vm
&& !vext_elem_mask(v0
, mlen
, i
)) {
296 target_ulong addr
= base
+ stride
* i
+ k
* msz
;
297 ldst_elem(env
, addr
, i
+ k
* vlmax
, vd
, ra
);
301 /* clear tail elements */
303 for (k
= 0; k
< nf
; k
++) {
304 clear_elem(vd
, env
->vl
+ k
* vlmax
, env
->vl
* esz
, vlmax
* esz
);
309 #define GEN_VEXT_LD_STRIDE(NAME, MTYPE, ETYPE, LOAD_FN, CLEAR_FN) \
310 void HELPER(NAME)(void *vd, void * v0, target_ulong base, \
311 target_ulong stride, CPURISCVState *env, \
314 uint32_t vm = vext_vm(desc); \
315 vext_ldst_stride(vd, v0, base, stride, env, desc, vm, LOAD_FN, \
316 CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE), \
317 GETPC(), MMU_DATA_LOAD); \
320 GEN_VEXT_LD_STRIDE(vlsb_v_b
, int8_t, int8_t, ldb_b
, clearb
)
321 GEN_VEXT_LD_STRIDE(vlsb_v_h
, int8_t, int16_t, ldb_h
, clearh
)
322 GEN_VEXT_LD_STRIDE(vlsb_v_w
, int8_t, int32_t, ldb_w
, clearl
)
323 GEN_VEXT_LD_STRIDE(vlsb_v_d
, int8_t, int64_t, ldb_d
, clearq
)
324 GEN_VEXT_LD_STRIDE(vlsh_v_h
, int16_t, int16_t, ldh_h
, clearh
)
325 GEN_VEXT_LD_STRIDE(vlsh_v_w
, int16_t, int32_t, ldh_w
, clearl
)
326 GEN_VEXT_LD_STRIDE(vlsh_v_d
, int16_t, int64_t, ldh_d
, clearq
)
327 GEN_VEXT_LD_STRIDE(vlsw_v_w
, int32_t, int32_t, ldw_w
, clearl
)
328 GEN_VEXT_LD_STRIDE(vlsw_v_d
, int32_t, int64_t, ldw_d
, clearq
)
329 GEN_VEXT_LD_STRIDE(vlse_v_b
, int8_t, int8_t, lde_b
, clearb
)
330 GEN_VEXT_LD_STRIDE(vlse_v_h
, int16_t, int16_t, lde_h
, clearh
)
331 GEN_VEXT_LD_STRIDE(vlse_v_w
, int32_t, int32_t, lde_w
, clearl
)
332 GEN_VEXT_LD_STRIDE(vlse_v_d
, int64_t, int64_t, lde_d
, clearq
)
333 GEN_VEXT_LD_STRIDE(vlsbu_v_b
, uint8_t, uint8_t, ldbu_b
, clearb
)
334 GEN_VEXT_LD_STRIDE(vlsbu_v_h
, uint8_t, uint16_t, ldbu_h
, clearh
)
335 GEN_VEXT_LD_STRIDE(vlsbu_v_w
, uint8_t, uint32_t, ldbu_w
, clearl
)
336 GEN_VEXT_LD_STRIDE(vlsbu_v_d
, uint8_t, uint64_t, ldbu_d
, clearq
)
337 GEN_VEXT_LD_STRIDE(vlshu_v_h
, uint16_t, uint16_t, ldhu_h
, clearh
)
338 GEN_VEXT_LD_STRIDE(vlshu_v_w
, uint16_t, uint32_t, ldhu_w
, clearl
)
339 GEN_VEXT_LD_STRIDE(vlshu_v_d
, uint16_t, uint64_t, ldhu_d
, clearq
)
340 GEN_VEXT_LD_STRIDE(vlswu_v_w
, uint32_t, uint32_t, ldwu_w
, clearl
)
341 GEN_VEXT_LD_STRIDE(vlswu_v_d
, uint32_t, uint64_t, ldwu_d
, clearq
)
343 #define GEN_VEXT_ST_STRIDE(NAME, MTYPE, ETYPE, STORE_FN) \
344 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
345 target_ulong stride, CPURISCVState *env, \
348 uint32_t vm = vext_vm(desc); \
349 vext_ldst_stride(vd, v0, base, stride, env, desc, vm, STORE_FN, \
350 NULL, sizeof(ETYPE), sizeof(MTYPE), \
351 GETPC(), MMU_DATA_STORE); \
354 GEN_VEXT_ST_STRIDE(vssb_v_b
, int8_t, int8_t, stb_b
)
355 GEN_VEXT_ST_STRIDE(vssb_v_h
, int8_t, int16_t, stb_h
)
356 GEN_VEXT_ST_STRIDE(vssb_v_w
, int8_t, int32_t, stb_w
)
357 GEN_VEXT_ST_STRIDE(vssb_v_d
, int8_t, int64_t, stb_d
)
358 GEN_VEXT_ST_STRIDE(vssh_v_h
, int16_t, int16_t, sth_h
)
359 GEN_VEXT_ST_STRIDE(vssh_v_w
, int16_t, int32_t, sth_w
)
360 GEN_VEXT_ST_STRIDE(vssh_v_d
, int16_t, int64_t, sth_d
)
361 GEN_VEXT_ST_STRIDE(vssw_v_w
, int32_t, int32_t, stw_w
)
362 GEN_VEXT_ST_STRIDE(vssw_v_d
, int32_t, int64_t, stw_d
)
363 GEN_VEXT_ST_STRIDE(vsse_v_b
, int8_t, int8_t, ste_b
)
364 GEN_VEXT_ST_STRIDE(vsse_v_h
, int16_t, int16_t, ste_h
)
365 GEN_VEXT_ST_STRIDE(vsse_v_w
, int32_t, int32_t, ste_w
)
366 GEN_VEXT_ST_STRIDE(vsse_v_d
, int64_t, int64_t, ste_d
)
369 *** unit-stride: access elements stored contiguously in memory
372 /* unmasked unit-stride load and store operation*/
374 vext_ldst_us(void *vd
, target_ulong base
, CPURISCVState
*env
, uint32_t desc
,
375 vext_ldst_elem_fn
*ldst_elem
, clear_fn
*clear_elem
,
376 uint32_t esz
, uint32_t msz
, uintptr_t ra
,
377 MMUAccessType access_type
)
380 uint32_t nf
= vext_nf(desc
);
381 uint32_t vlmax
= vext_maxsz(desc
) / esz
;
383 /* probe every access */
384 probe_pages(env
, base
, env
->vl
* nf
* msz
, ra
, access_type
);
385 /* load bytes from guest memory */
386 for (i
= 0; i
< env
->vl
; i
++) {
389 target_ulong addr
= base
+ (i
* nf
+ k
) * msz
;
390 ldst_elem(env
, addr
, i
+ k
* vlmax
, vd
, ra
);
394 /* clear tail elements */
396 for (k
= 0; k
< nf
; k
++) {
397 clear_elem(vd
, env
->vl
+ k
* vlmax
, env
->vl
* esz
, vlmax
* esz
);
403 * masked unit-stride load and store operation will be a special case of stride,
404 * stride = NF * sizeof (MTYPE)
407 #define GEN_VEXT_LD_US(NAME, MTYPE, ETYPE, LOAD_FN, CLEAR_FN) \
408 void HELPER(NAME##_mask)(void *vd, void *v0, target_ulong base, \
409 CPURISCVState *env, uint32_t desc) \
411 uint32_t stride = vext_nf(desc) * sizeof(MTYPE); \
412 vext_ldst_stride(vd, v0, base, stride, env, desc, false, LOAD_FN, \
413 CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE), \
414 GETPC(), MMU_DATA_LOAD); \
417 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
418 CPURISCVState *env, uint32_t desc) \
420 vext_ldst_us(vd, base, env, desc, LOAD_FN, CLEAR_FN, \
421 sizeof(ETYPE), sizeof(MTYPE), GETPC(), MMU_DATA_LOAD); \
424 GEN_VEXT_LD_US(vlb_v_b
, int8_t, int8_t, ldb_b
, clearb
)
425 GEN_VEXT_LD_US(vlb_v_h
, int8_t, int16_t, ldb_h
, clearh
)
426 GEN_VEXT_LD_US(vlb_v_w
, int8_t, int32_t, ldb_w
, clearl
)
427 GEN_VEXT_LD_US(vlb_v_d
, int8_t, int64_t, ldb_d
, clearq
)
428 GEN_VEXT_LD_US(vlh_v_h
, int16_t, int16_t, ldh_h
, clearh
)
429 GEN_VEXT_LD_US(vlh_v_w
, int16_t, int32_t, ldh_w
, clearl
)
430 GEN_VEXT_LD_US(vlh_v_d
, int16_t, int64_t, ldh_d
, clearq
)
431 GEN_VEXT_LD_US(vlw_v_w
, int32_t, int32_t, ldw_w
, clearl
)
432 GEN_VEXT_LD_US(vlw_v_d
, int32_t, int64_t, ldw_d
, clearq
)
433 GEN_VEXT_LD_US(vle_v_b
, int8_t, int8_t, lde_b
, clearb
)
434 GEN_VEXT_LD_US(vle_v_h
, int16_t, int16_t, lde_h
, clearh
)
435 GEN_VEXT_LD_US(vle_v_w
, int32_t, int32_t, lde_w
, clearl
)
436 GEN_VEXT_LD_US(vle_v_d
, int64_t, int64_t, lde_d
, clearq
)
437 GEN_VEXT_LD_US(vlbu_v_b
, uint8_t, uint8_t, ldbu_b
, clearb
)
438 GEN_VEXT_LD_US(vlbu_v_h
, uint8_t, uint16_t, ldbu_h
, clearh
)
439 GEN_VEXT_LD_US(vlbu_v_w
, uint8_t, uint32_t, ldbu_w
, clearl
)
440 GEN_VEXT_LD_US(vlbu_v_d
, uint8_t, uint64_t, ldbu_d
, clearq
)
441 GEN_VEXT_LD_US(vlhu_v_h
, uint16_t, uint16_t, ldhu_h
, clearh
)
442 GEN_VEXT_LD_US(vlhu_v_w
, uint16_t, uint32_t, ldhu_w
, clearl
)
443 GEN_VEXT_LD_US(vlhu_v_d
, uint16_t, uint64_t, ldhu_d
, clearq
)
444 GEN_VEXT_LD_US(vlwu_v_w
, uint32_t, uint32_t, ldwu_w
, clearl
)
445 GEN_VEXT_LD_US(vlwu_v_d
, uint32_t, uint64_t, ldwu_d
, clearq
)
447 #define GEN_VEXT_ST_US(NAME, MTYPE, ETYPE, STORE_FN) \
448 void HELPER(NAME##_mask)(void *vd, void *v0, target_ulong base, \
449 CPURISCVState *env, uint32_t desc) \
451 uint32_t stride = vext_nf(desc) * sizeof(MTYPE); \
452 vext_ldst_stride(vd, v0, base, stride, env, desc, false, STORE_FN, \
453 NULL, sizeof(ETYPE), sizeof(MTYPE), \
454 GETPC(), MMU_DATA_STORE); \
457 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
458 CPURISCVState *env, uint32_t desc) \
460 vext_ldst_us(vd, base, env, desc, STORE_FN, NULL, \
461 sizeof(ETYPE), sizeof(MTYPE), GETPC(), MMU_DATA_STORE);\
464 GEN_VEXT_ST_US(vsb_v_b
, int8_t, int8_t , stb_b
)
465 GEN_VEXT_ST_US(vsb_v_h
, int8_t, int16_t, stb_h
)
466 GEN_VEXT_ST_US(vsb_v_w
, int8_t, int32_t, stb_w
)
467 GEN_VEXT_ST_US(vsb_v_d
, int8_t, int64_t, stb_d
)
468 GEN_VEXT_ST_US(vsh_v_h
, int16_t, int16_t, sth_h
)
469 GEN_VEXT_ST_US(vsh_v_w
, int16_t, int32_t, sth_w
)
470 GEN_VEXT_ST_US(vsh_v_d
, int16_t, int64_t, sth_d
)
471 GEN_VEXT_ST_US(vsw_v_w
, int32_t, int32_t, stw_w
)
472 GEN_VEXT_ST_US(vsw_v_d
, int32_t, int64_t, stw_d
)
473 GEN_VEXT_ST_US(vse_v_b
, int8_t, int8_t , ste_b
)
474 GEN_VEXT_ST_US(vse_v_h
, int16_t, int16_t, ste_h
)
475 GEN_VEXT_ST_US(vse_v_w
, int32_t, int32_t, ste_w
)
476 GEN_VEXT_ST_US(vse_v_d
, int64_t, int64_t, ste_d
)
479 *** index: access vector element from indexed memory
481 typedef target_ulong
vext_get_index_addr(target_ulong base
,
482 uint32_t idx
, void *vs2
);
484 #define GEN_VEXT_GET_INDEX_ADDR(NAME, ETYPE, H) \
485 static target_ulong NAME(target_ulong base, \
486 uint32_t idx, void *vs2) \
488 return (base + *((ETYPE *)vs2 + H(idx))); \
491 GEN_VEXT_GET_INDEX_ADDR(idx_b
, int8_t, H1
)
492 GEN_VEXT_GET_INDEX_ADDR(idx_h
, int16_t, H2
)
493 GEN_VEXT_GET_INDEX_ADDR(idx_w
, int32_t, H4
)
494 GEN_VEXT_GET_INDEX_ADDR(idx_d
, int64_t, H8
)
497 vext_ldst_index(void *vd
, void *v0
, target_ulong base
,
498 void *vs2
, CPURISCVState
*env
, uint32_t desc
,
499 vext_get_index_addr get_index_addr
,
500 vext_ldst_elem_fn
*ldst_elem
,
501 clear_fn
*clear_elem
,
502 uint32_t esz
, uint32_t msz
, uintptr_t ra
,
503 MMUAccessType access_type
)
506 uint32_t nf
= vext_nf(desc
);
507 uint32_t vm
= vext_vm(desc
);
508 uint32_t mlen
= vext_mlen(desc
);
509 uint32_t vlmax
= vext_maxsz(desc
) / esz
;
511 /* probe every access*/
512 for (i
= 0; i
< env
->vl
; i
++) {
513 if (!vm
&& !vext_elem_mask(v0
, mlen
, i
)) {
516 probe_pages(env
, get_index_addr(base
, i
, vs2
), nf
* msz
, ra
,
519 /* load bytes from guest memory */
520 for (i
= 0; i
< env
->vl
; i
++) {
522 if (!vm
&& !vext_elem_mask(v0
, mlen
, i
)) {
526 abi_ptr addr
= get_index_addr(base
, i
, vs2
) + k
* msz
;
527 ldst_elem(env
, addr
, i
+ k
* vlmax
, vd
, ra
);
531 /* clear tail elements */
533 for (k
= 0; k
< nf
; k
++) {
534 clear_elem(vd
, env
->vl
+ k
* vlmax
, env
->vl
* esz
, vlmax
* esz
);
539 #define GEN_VEXT_LD_INDEX(NAME, MTYPE, ETYPE, INDEX_FN, LOAD_FN, CLEAR_FN) \
540 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
541 void *vs2, CPURISCVState *env, uint32_t desc) \
543 vext_ldst_index(vd, v0, base, vs2, env, desc, INDEX_FN, \
544 LOAD_FN, CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE), \
545 GETPC(), MMU_DATA_LOAD); \
548 GEN_VEXT_LD_INDEX(vlxb_v_b
, int8_t, int8_t, idx_b
, ldb_b
, clearb
)
549 GEN_VEXT_LD_INDEX(vlxb_v_h
, int8_t, int16_t, idx_h
, ldb_h
, clearh
)
550 GEN_VEXT_LD_INDEX(vlxb_v_w
, int8_t, int32_t, idx_w
, ldb_w
, clearl
)
551 GEN_VEXT_LD_INDEX(vlxb_v_d
, int8_t, int64_t, idx_d
, ldb_d
, clearq
)
552 GEN_VEXT_LD_INDEX(vlxh_v_h
, int16_t, int16_t, idx_h
, ldh_h
, clearh
)
553 GEN_VEXT_LD_INDEX(vlxh_v_w
, int16_t, int32_t, idx_w
, ldh_w
, clearl
)
554 GEN_VEXT_LD_INDEX(vlxh_v_d
, int16_t, int64_t, idx_d
, ldh_d
, clearq
)
555 GEN_VEXT_LD_INDEX(vlxw_v_w
, int32_t, int32_t, idx_w
, ldw_w
, clearl
)
556 GEN_VEXT_LD_INDEX(vlxw_v_d
, int32_t, int64_t, idx_d
, ldw_d
, clearq
)
557 GEN_VEXT_LD_INDEX(vlxe_v_b
, int8_t, int8_t, idx_b
, lde_b
, clearb
)
558 GEN_VEXT_LD_INDEX(vlxe_v_h
, int16_t, int16_t, idx_h
, lde_h
, clearh
)
559 GEN_VEXT_LD_INDEX(vlxe_v_w
, int32_t, int32_t, idx_w
, lde_w
, clearl
)
560 GEN_VEXT_LD_INDEX(vlxe_v_d
, int64_t, int64_t, idx_d
, lde_d
, clearq
)
561 GEN_VEXT_LD_INDEX(vlxbu_v_b
, uint8_t, uint8_t, idx_b
, ldbu_b
, clearb
)
562 GEN_VEXT_LD_INDEX(vlxbu_v_h
, uint8_t, uint16_t, idx_h
, ldbu_h
, clearh
)
563 GEN_VEXT_LD_INDEX(vlxbu_v_w
, uint8_t, uint32_t, idx_w
, ldbu_w
, clearl
)
564 GEN_VEXT_LD_INDEX(vlxbu_v_d
, uint8_t, uint64_t, idx_d
, ldbu_d
, clearq
)
565 GEN_VEXT_LD_INDEX(vlxhu_v_h
, uint16_t, uint16_t, idx_h
, ldhu_h
, clearh
)
566 GEN_VEXT_LD_INDEX(vlxhu_v_w
, uint16_t, uint32_t, idx_w
, ldhu_w
, clearl
)
567 GEN_VEXT_LD_INDEX(vlxhu_v_d
, uint16_t, uint64_t, idx_d
, ldhu_d
, clearq
)
568 GEN_VEXT_LD_INDEX(vlxwu_v_w
, uint32_t, uint32_t, idx_w
, ldwu_w
, clearl
)
569 GEN_VEXT_LD_INDEX(vlxwu_v_d
, uint32_t, uint64_t, idx_d
, ldwu_d
, clearq
)
571 #define GEN_VEXT_ST_INDEX(NAME, MTYPE, ETYPE, INDEX_FN, STORE_FN)\
572 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
573 void *vs2, CPURISCVState *env, uint32_t desc) \
575 vext_ldst_index(vd, v0, base, vs2, env, desc, INDEX_FN, \
576 STORE_FN, NULL, sizeof(ETYPE), sizeof(MTYPE),\
577 GETPC(), MMU_DATA_STORE); \
580 GEN_VEXT_ST_INDEX(vsxb_v_b
, int8_t, int8_t, idx_b
, stb_b
)
581 GEN_VEXT_ST_INDEX(vsxb_v_h
, int8_t, int16_t, idx_h
, stb_h
)
582 GEN_VEXT_ST_INDEX(vsxb_v_w
, int8_t, int32_t, idx_w
, stb_w
)
583 GEN_VEXT_ST_INDEX(vsxb_v_d
, int8_t, int64_t, idx_d
, stb_d
)
584 GEN_VEXT_ST_INDEX(vsxh_v_h
, int16_t, int16_t, idx_h
, sth_h
)
585 GEN_VEXT_ST_INDEX(vsxh_v_w
, int16_t, int32_t, idx_w
, sth_w
)
586 GEN_VEXT_ST_INDEX(vsxh_v_d
, int16_t, int64_t, idx_d
, sth_d
)
587 GEN_VEXT_ST_INDEX(vsxw_v_w
, int32_t, int32_t, idx_w
, stw_w
)
588 GEN_VEXT_ST_INDEX(vsxw_v_d
, int32_t, int64_t, idx_d
, stw_d
)
589 GEN_VEXT_ST_INDEX(vsxe_v_b
, int8_t, int8_t, idx_b
, ste_b
)
590 GEN_VEXT_ST_INDEX(vsxe_v_h
, int16_t, int16_t, idx_h
, ste_h
)
591 GEN_VEXT_ST_INDEX(vsxe_v_w
, int32_t, int32_t, idx_w
, ste_w
)
592 GEN_VEXT_ST_INDEX(vsxe_v_d
, int64_t, int64_t, idx_d
, ste_d
)
595 *** unit-stride fault-only-fisrt load instructions
598 vext_ldff(void *vd
, void *v0
, target_ulong base
,
599 CPURISCVState
*env
, uint32_t desc
,
600 vext_ldst_elem_fn
*ldst_elem
,
601 clear_fn
*clear_elem
,
602 uint32_t esz
, uint32_t msz
, uintptr_t ra
)
605 uint32_t i
, k
, vl
= 0;
606 uint32_t mlen
= vext_mlen(desc
);
607 uint32_t nf
= vext_nf(desc
);
608 uint32_t vm
= vext_vm(desc
);
609 uint32_t vlmax
= vext_maxsz(desc
) / esz
;
610 target_ulong addr
, offset
, remain
;
612 /* probe every access*/
613 for (i
= 0; i
< env
->vl
; i
++) {
614 if (!vm
&& !vext_elem_mask(v0
, mlen
, i
)) {
617 addr
= base
+ nf
* i
* msz
;
619 probe_pages(env
, addr
, nf
* msz
, ra
, MMU_DATA_LOAD
);
621 /* if it triggers an exception, no need to check watchpoint */
624 offset
= -(addr
| TARGET_PAGE_MASK
);
625 host
= tlb_vaddr_to_host(env
, addr
, MMU_DATA_LOAD
,
626 cpu_mmu_index(env
, false));
628 #ifdef CONFIG_USER_ONLY
629 if (page_check_range(addr
, nf
* msz
, PAGE_READ
) < 0) {
634 probe_pages(env
, addr
, nf
* msz
, ra
, MMU_DATA_LOAD
);
640 if (remain
<= offset
) {
649 /* load bytes from guest memory */
653 for (i
= 0; i
< env
->vl
; i
++) {
655 if (!vm
&& !vext_elem_mask(v0
, mlen
, i
)) {
659 target_ulong addr
= base
+ (i
* nf
+ k
) * msz
;
660 ldst_elem(env
, addr
, i
+ k
* vlmax
, vd
, ra
);
664 /* clear tail elements */
668 for (k
= 0; k
< nf
; k
++) {
669 clear_elem(vd
, env
->vl
+ k
* vlmax
, env
->vl
* esz
, vlmax
* esz
);
673 #define GEN_VEXT_LDFF(NAME, MTYPE, ETYPE, LOAD_FN, CLEAR_FN) \
674 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
675 CPURISCVState *env, uint32_t desc) \
677 vext_ldff(vd, v0, base, env, desc, LOAD_FN, CLEAR_FN, \
678 sizeof(ETYPE), sizeof(MTYPE), GETPC()); \
681 GEN_VEXT_LDFF(vlbff_v_b
, int8_t, int8_t, ldb_b
, clearb
)
682 GEN_VEXT_LDFF(vlbff_v_h
, int8_t, int16_t, ldb_h
, clearh
)
683 GEN_VEXT_LDFF(vlbff_v_w
, int8_t, int32_t, ldb_w
, clearl
)
684 GEN_VEXT_LDFF(vlbff_v_d
, int8_t, int64_t, ldb_d
, clearq
)
685 GEN_VEXT_LDFF(vlhff_v_h
, int16_t, int16_t, ldh_h
, clearh
)
686 GEN_VEXT_LDFF(vlhff_v_w
, int16_t, int32_t, ldh_w
, clearl
)
687 GEN_VEXT_LDFF(vlhff_v_d
, int16_t, int64_t, ldh_d
, clearq
)
688 GEN_VEXT_LDFF(vlwff_v_w
, int32_t, int32_t, ldw_w
, clearl
)
689 GEN_VEXT_LDFF(vlwff_v_d
, int32_t, int64_t, ldw_d
, clearq
)
690 GEN_VEXT_LDFF(vleff_v_b
, int8_t, int8_t, lde_b
, clearb
)
691 GEN_VEXT_LDFF(vleff_v_h
, int16_t, int16_t, lde_h
, clearh
)
692 GEN_VEXT_LDFF(vleff_v_w
, int32_t, int32_t, lde_w
, clearl
)
693 GEN_VEXT_LDFF(vleff_v_d
, int64_t, int64_t, lde_d
, clearq
)
694 GEN_VEXT_LDFF(vlbuff_v_b
, uint8_t, uint8_t, ldbu_b
, clearb
)
695 GEN_VEXT_LDFF(vlbuff_v_h
, uint8_t, uint16_t, ldbu_h
, clearh
)
696 GEN_VEXT_LDFF(vlbuff_v_w
, uint8_t, uint32_t, ldbu_w
, clearl
)
697 GEN_VEXT_LDFF(vlbuff_v_d
, uint8_t, uint64_t, ldbu_d
, clearq
)
698 GEN_VEXT_LDFF(vlhuff_v_h
, uint16_t, uint16_t, ldhu_h
, clearh
)
699 GEN_VEXT_LDFF(vlhuff_v_w
, uint16_t, uint32_t, ldhu_w
, clearl
)
700 GEN_VEXT_LDFF(vlhuff_v_d
, uint16_t, uint64_t, ldhu_d
, clearq
)
701 GEN_VEXT_LDFF(vlwuff_v_w
, uint32_t, uint32_t, ldwu_w
, clearl
)
702 GEN_VEXT_LDFF(vlwuff_v_d
, uint32_t, uint64_t, ldwu_d
, clearq
)
705 *** Vector AMO Operations (Zvamo)
707 typedef void vext_amo_noatomic_fn(void *vs3
, target_ulong addr
,
708 uint32_t wd
, uint32_t idx
, CPURISCVState
*env
,
711 /* no atomic opreation for vector atomic insructions */
712 #define DO_SWAP(N, M) (M)
713 #define DO_AND(N, M) (N & M)
714 #define DO_XOR(N, M) (N ^ M)
715 #define DO_OR(N, M) (N | M)
716 #define DO_ADD(N, M) (N + M)
718 #define GEN_VEXT_AMO_NOATOMIC_OP(NAME, ESZ, MSZ, H, DO_OP, SUF) \
720 vext_##NAME##_noatomic_op(void *vs3, target_ulong addr, \
721 uint32_t wd, uint32_t idx, \
722 CPURISCVState *env, uintptr_t retaddr)\
724 typedef int##ESZ##_t ETYPE; \
725 typedef int##MSZ##_t MTYPE; \
726 typedef uint##MSZ##_t UMTYPE __attribute__((unused)); \
727 ETYPE *pe3 = (ETYPE *)vs3 + H(idx); \
728 MTYPE a = cpu_ld##SUF##_data(env, addr), b = *pe3; \
730 cpu_st##SUF##_data(env, addr, DO_OP(a, b)); \
737 #define DO_MAX(N, M) ((N) >= (M) ? (N) : (M))
738 #define DO_MIN(N, M) ((N) >= (M) ? (M) : (N))
740 /* Unsigned min/max */
741 #define DO_MAXU(N, M) DO_MAX((UMTYPE)N, (UMTYPE)M)
742 #define DO_MINU(N, M) DO_MIN((UMTYPE)N, (UMTYPE)M)
744 GEN_VEXT_AMO_NOATOMIC_OP(vamoswapw_v_w
, 32, 32, H4
, DO_SWAP
, l
)
745 GEN_VEXT_AMO_NOATOMIC_OP(vamoaddw_v_w
, 32, 32, H4
, DO_ADD
, l
)
746 GEN_VEXT_AMO_NOATOMIC_OP(vamoxorw_v_w
, 32, 32, H4
, DO_XOR
, l
)
747 GEN_VEXT_AMO_NOATOMIC_OP(vamoandw_v_w
, 32, 32, H4
, DO_AND
, l
)
748 GEN_VEXT_AMO_NOATOMIC_OP(vamoorw_v_w
, 32, 32, H4
, DO_OR
, l
)
749 GEN_VEXT_AMO_NOATOMIC_OP(vamominw_v_w
, 32, 32, H4
, DO_MIN
, l
)
750 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxw_v_w
, 32, 32, H4
, DO_MAX
, l
)
751 GEN_VEXT_AMO_NOATOMIC_OP(vamominuw_v_w
, 32, 32, H4
, DO_MINU
, l
)
752 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxuw_v_w
, 32, 32, H4
, DO_MAXU
, l
)
753 #ifdef TARGET_RISCV64
754 GEN_VEXT_AMO_NOATOMIC_OP(vamoswapw_v_d
, 64, 32, H8
, DO_SWAP
, l
)
755 GEN_VEXT_AMO_NOATOMIC_OP(vamoswapd_v_d
, 64, 64, H8
, DO_SWAP
, q
)
756 GEN_VEXT_AMO_NOATOMIC_OP(vamoaddw_v_d
, 64, 32, H8
, DO_ADD
, l
)
757 GEN_VEXT_AMO_NOATOMIC_OP(vamoaddd_v_d
, 64, 64, H8
, DO_ADD
, q
)
758 GEN_VEXT_AMO_NOATOMIC_OP(vamoxorw_v_d
, 64, 32, H8
, DO_XOR
, l
)
759 GEN_VEXT_AMO_NOATOMIC_OP(vamoxord_v_d
, 64, 64, H8
, DO_XOR
, q
)
760 GEN_VEXT_AMO_NOATOMIC_OP(vamoandw_v_d
, 64, 32, H8
, DO_AND
, l
)
761 GEN_VEXT_AMO_NOATOMIC_OP(vamoandd_v_d
, 64, 64, H8
, DO_AND
, q
)
762 GEN_VEXT_AMO_NOATOMIC_OP(vamoorw_v_d
, 64, 32, H8
, DO_OR
, l
)
763 GEN_VEXT_AMO_NOATOMIC_OP(vamoord_v_d
, 64, 64, H8
, DO_OR
, q
)
764 GEN_VEXT_AMO_NOATOMIC_OP(vamominw_v_d
, 64, 32, H8
, DO_MIN
, l
)
765 GEN_VEXT_AMO_NOATOMIC_OP(vamomind_v_d
, 64, 64, H8
, DO_MIN
, q
)
766 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxw_v_d
, 64, 32, H8
, DO_MAX
, l
)
767 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxd_v_d
, 64, 64, H8
, DO_MAX
, q
)
768 GEN_VEXT_AMO_NOATOMIC_OP(vamominuw_v_d
, 64, 32, H8
, DO_MINU
, l
)
769 GEN_VEXT_AMO_NOATOMIC_OP(vamominud_v_d
, 64, 64, H8
, DO_MINU
, q
)
770 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxuw_v_d
, 64, 32, H8
, DO_MAXU
, l
)
771 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxud_v_d
, 64, 64, H8
, DO_MAXU
, q
)
775 vext_amo_noatomic(void *vs3
, void *v0
, target_ulong base
,
776 void *vs2
, CPURISCVState
*env
, uint32_t desc
,
777 vext_get_index_addr get_index_addr
,
778 vext_amo_noatomic_fn
*noatomic_op
,
779 clear_fn
*clear_elem
,
780 uint32_t esz
, uint32_t msz
, uintptr_t ra
)
784 uint32_t wd
= vext_wd(desc
);
785 uint32_t vm
= vext_vm(desc
);
786 uint32_t mlen
= vext_mlen(desc
);
787 uint32_t vlmax
= vext_maxsz(desc
) / esz
;
789 for (i
= 0; i
< env
->vl
; i
++) {
790 if (!vm
&& !vext_elem_mask(v0
, mlen
, i
)) {
793 probe_pages(env
, get_index_addr(base
, i
, vs2
), msz
, ra
, MMU_DATA_LOAD
);
794 probe_pages(env
, get_index_addr(base
, i
, vs2
), msz
, ra
, MMU_DATA_STORE
);
796 for (i
= 0; i
< env
->vl
; i
++) {
797 if (!vm
&& !vext_elem_mask(v0
, mlen
, i
)) {
800 addr
= get_index_addr(base
, i
, vs2
);
801 noatomic_op(vs3
, addr
, wd
, i
, env
, ra
);
803 clear_elem(vs3
, env
->vl
, env
->vl
* esz
, vlmax
* esz
);
806 #define GEN_VEXT_AMO(NAME, MTYPE, ETYPE, INDEX_FN, CLEAR_FN) \
807 void HELPER(NAME)(void *vs3, void *v0, target_ulong base, \
808 void *vs2, CPURISCVState *env, uint32_t desc) \
810 vext_amo_noatomic(vs3, v0, base, vs2, env, desc, \
811 INDEX_FN, vext_##NAME##_noatomic_op, \
812 CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE), \
816 #ifdef TARGET_RISCV64
817 GEN_VEXT_AMO(vamoswapw_v_d
, int32_t, int64_t, idx_d
, clearq
)
818 GEN_VEXT_AMO(vamoswapd_v_d
, int64_t, int64_t, idx_d
, clearq
)
819 GEN_VEXT_AMO(vamoaddw_v_d
, int32_t, int64_t, idx_d
, clearq
)
820 GEN_VEXT_AMO(vamoaddd_v_d
, int64_t, int64_t, idx_d
, clearq
)
821 GEN_VEXT_AMO(vamoxorw_v_d
, int32_t, int64_t, idx_d
, clearq
)
822 GEN_VEXT_AMO(vamoxord_v_d
, int64_t, int64_t, idx_d
, clearq
)
823 GEN_VEXT_AMO(vamoandw_v_d
, int32_t, int64_t, idx_d
, clearq
)
824 GEN_VEXT_AMO(vamoandd_v_d
, int64_t, int64_t, idx_d
, clearq
)
825 GEN_VEXT_AMO(vamoorw_v_d
, int32_t, int64_t, idx_d
, clearq
)
826 GEN_VEXT_AMO(vamoord_v_d
, int64_t, int64_t, idx_d
, clearq
)
827 GEN_VEXT_AMO(vamominw_v_d
, int32_t, int64_t, idx_d
, clearq
)
828 GEN_VEXT_AMO(vamomind_v_d
, int64_t, int64_t, idx_d
, clearq
)
829 GEN_VEXT_AMO(vamomaxw_v_d
, int32_t, int64_t, idx_d
, clearq
)
830 GEN_VEXT_AMO(vamomaxd_v_d
, int64_t, int64_t, idx_d
, clearq
)
831 GEN_VEXT_AMO(vamominuw_v_d
, uint32_t, uint64_t, idx_d
, clearq
)
832 GEN_VEXT_AMO(vamominud_v_d
, uint64_t, uint64_t, idx_d
, clearq
)
833 GEN_VEXT_AMO(vamomaxuw_v_d
, uint32_t, uint64_t, idx_d
, clearq
)
834 GEN_VEXT_AMO(vamomaxud_v_d
, uint64_t, uint64_t, idx_d
, clearq
)
836 GEN_VEXT_AMO(vamoswapw_v_w
, int32_t, int32_t, idx_w
, clearl
)
837 GEN_VEXT_AMO(vamoaddw_v_w
, int32_t, int32_t, idx_w
, clearl
)
838 GEN_VEXT_AMO(vamoxorw_v_w
, int32_t, int32_t, idx_w
, clearl
)
839 GEN_VEXT_AMO(vamoandw_v_w
, int32_t, int32_t, idx_w
, clearl
)
840 GEN_VEXT_AMO(vamoorw_v_w
, int32_t, int32_t, idx_w
, clearl
)
841 GEN_VEXT_AMO(vamominw_v_w
, int32_t, int32_t, idx_w
, clearl
)
842 GEN_VEXT_AMO(vamomaxw_v_w
, int32_t, int32_t, idx_w
, clearl
)
843 GEN_VEXT_AMO(vamominuw_v_w
, uint32_t, uint32_t, idx_w
, clearl
)
844 GEN_VEXT_AMO(vamomaxuw_v_w
, uint32_t, uint32_t, idx_w
, clearl
)
847 *** Vector Integer Arithmetic Instructions
850 /* expand macro args before macro */
851 #define RVVCALL(macro, ...) macro(__VA_ARGS__)
853 /* (TD, T1, T2, TX1, TX2) */
854 #define OP_SSS_B int8_t, int8_t, int8_t, int8_t, int8_t
855 #define OP_SSS_H int16_t, int16_t, int16_t, int16_t, int16_t
856 #define OP_SSS_W int32_t, int32_t, int32_t, int32_t, int32_t
857 #define OP_SSS_D int64_t, int64_t, int64_t, int64_t, int64_t
859 /* operation of two vector elements */
860 typedef void opivv2_fn(void *vd
, void *vs1
, void *vs2
, int i
);
862 #define OPIVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
863 static void do_##NAME(void *vd, void *vs1, void *vs2, int i) \
865 TX1 s1 = *((T1 *)vs1 + HS1(i)); \
866 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
867 *((TD *)vd + HD(i)) = OP(s2, s1); \
869 #define DO_SUB(N, M) (N - M)
870 #define DO_RSUB(N, M) (M - N)
872 RVVCALL(OPIVV2
, vadd_vv_b
, OP_SSS_B
, H1
, H1
, H1
, DO_ADD
)
873 RVVCALL(OPIVV2
, vadd_vv_h
, OP_SSS_H
, H2
, H2
, H2
, DO_ADD
)
874 RVVCALL(OPIVV2
, vadd_vv_w
, OP_SSS_W
, H4
, H4
, H4
, DO_ADD
)
875 RVVCALL(OPIVV2
, vadd_vv_d
, OP_SSS_D
, H8
, H8
, H8
, DO_ADD
)
876 RVVCALL(OPIVV2
, vsub_vv_b
, OP_SSS_B
, H1
, H1
, H1
, DO_SUB
)
877 RVVCALL(OPIVV2
, vsub_vv_h
, OP_SSS_H
, H2
, H2
, H2
, DO_SUB
)
878 RVVCALL(OPIVV2
, vsub_vv_w
, OP_SSS_W
, H4
, H4
, H4
, DO_SUB
)
879 RVVCALL(OPIVV2
, vsub_vv_d
, OP_SSS_D
, H8
, H8
, H8
, DO_SUB
)
881 static void do_vext_vv(void *vd
, void *v0
, void *vs1
, void *vs2
,
882 CPURISCVState
*env
, uint32_t desc
,
883 uint32_t esz
, uint32_t dsz
,
884 opivv2_fn
*fn
, clear_fn
*clearfn
)
886 uint32_t vlmax
= vext_maxsz(desc
) / esz
;
887 uint32_t mlen
= vext_mlen(desc
);
888 uint32_t vm
= vext_vm(desc
);
889 uint32_t vl
= env
->vl
;
892 for (i
= 0; i
< vl
; i
++) {
893 if (!vm
&& !vext_elem_mask(v0
, mlen
, i
)) {
898 clearfn(vd
, vl
, vl
* dsz
, vlmax
* dsz
);
901 /* generate the helpers for OPIVV */
902 #define GEN_VEXT_VV(NAME, ESZ, DSZ, CLEAR_FN) \
903 void HELPER(NAME)(void *vd, void *v0, void *vs1, \
904 void *vs2, CPURISCVState *env, \
907 do_vext_vv(vd, v0, vs1, vs2, env, desc, ESZ, DSZ, \
908 do_##NAME, CLEAR_FN); \
911 GEN_VEXT_VV(vadd_vv_b
, 1, 1, clearb
)
912 GEN_VEXT_VV(vadd_vv_h
, 2, 2, clearh
)
913 GEN_VEXT_VV(vadd_vv_w
, 4, 4, clearl
)
914 GEN_VEXT_VV(vadd_vv_d
, 8, 8, clearq
)
915 GEN_VEXT_VV(vsub_vv_b
, 1, 1, clearb
)
916 GEN_VEXT_VV(vsub_vv_h
, 2, 2, clearh
)
917 GEN_VEXT_VV(vsub_vv_w
, 4, 4, clearl
)
918 GEN_VEXT_VV(vsub_vv_d
, 8, 8, clearq
)
920 typedef void opivx2_fn(void *vd
, target_long s1
, void *vs2
, int i
);
923 * (T1)s1 gives the real operator type.
924 * (TX1)(T1)s1 expands the operator type of widen or narrow operations.
926 #define OPIVX2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
927 static void do_##NAME(void *vd, target_long s1, void *vs2, int i) \
929 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
930 *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1); \
933 RVVCALL(OPIVX2
, vadd_vx_b
, OP_SSS_B
, H1
, H1
, DO_ADD
)
934 RVVCALL(OPIVX2
, vadd_vx_h
, OP_SSS_H
, H2
, H2
, DO_ADD
)
935 RVVCALL(OPIVX2
, vadd_vx_w
, OP_SSS_W
, H4
, H4
, DO_ADD
)
936 RVVCALL(OPIVX2
, vadd_vx_d
, OP_SSS_D
, H8
, H8
, DO_ADD
)
937 RVVCALL(OPIVX2
, vsub_vx_b
, OP_SSS_B
, H1
, H1
, DO_SUB
)
938 RVVCALL(OPIVX2
, vsub_vx_h
, OP_SSS_H
, H2
, H2
, DO_SUB
)
939 RVVCALL(OPIVX2
, vsub_vx_w
, OP_SSS_W
, H4
, H4
, DO_SUB
)
940 RVVCALL(OPIVX2
, vsub_vx_d
, OP_SSS_D
, H8
, H8
, DO_SUB
)
941 RVVCALL(OPIVX2
, vrsub_vx_b
, OP_SSS_B
, H1
, H1
, DO_RSUB
)
942 RVVCALL(OPIVX2
, vrsub_vx_h
, OP_SSS_H
, H2
, H2
, DO_RSUB
)
943 RVVCALL(OPIVX2
, vrsub_vx_w
, OP_SSS_W
, H4
, H4
, DO_RSUB
)
944 RVVCALL(OPIVX2
, vrsub_vx_d
, OP_SSS_D
, H8
, H8
, DO_RSUB
)
946 static void do_vext_vx(void *vd
, void *v0
, target_long s1
, void *vs2
,
947 CPURISCVState
*env
, uint32_t desc
,
948 uint32_t esz
, uint32_t dsz
,
949 opivx2_fn fn
, clear_fn
*clearfn
)
951 uint32_t vlmax
= vext_maxsz(desc
) / esz
;
952 uint32_t mlen
= vext_mlen(desc
);
953 uint32_t vm
= vext_vm(desc
);
954 uint32_t vl
= env
->vl
;
957 for (i
= 0; i
< vl
; i
++) {
958 if (!vm
&& !vext_elem_mask(v0
, mlen
, i
)) {
963 clearfn(vd
, vl
, vl
* dsz
, vlmax
* dsz
);
966 /* generate the helpers for OPIVX */
967 #define GEN_VEXT_VX(NAME, ESZ, DSZ, CLEAR_FN) \
968 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
969 void *vs2, CPURISCVState *env, \
972 do_vext_vx(vd, v0, s1, vs2, env, desc, ESZ, DSZ, \
973 do_##NAME, CLEAR_FN); \
976 GEN_VEXT_VX(vadd_vx_b
, 1, 1, clearb
)
977 GEN_VEXT_VX(vadd_vx_h
, 2, 2, clearh
)
978 GEN_VEXT_VX(vadd_vx_w
, 4, 4, clearl
)
979 GEN_VEXT_VX(vadd_vx_d
, 8, 8, clearq
)
980 GEN_VEXT_VX(vsub_vx_b
, 1, 1, clearb
)
981 GEN_VEXT_VX(vsub_vx_h
, 2, 2, clearh
)
982 GEN_VEXT_VX(vsub_vx_w
, 4, 4, clearl
)
983 GEN_VEXT_VX(vsub_vx_d
, 8, 8, clearq
)
984 GEN_VEXT_VX(vrsub_vx_b
, 1, 1, clearb
)
985 GEN_VEXT_VX(vrsub_vx_h
, 2, 2, clearh
)
986 GEN_VEXT_VX(vrsub_vx_w
, 4, 4, clearl
)
987 GEN_VEXT_VX(vrsub_vx_d
, 8, 8, clearq
)
989 void HELPER(vec_rsubs8
)(void *d
, void *a
, uint64_t b
, uint32_t desc
)
991 intptr_t oprsz
= simd_oprsz(desc
);
994 for (i
= 0; i
< oprsz
; i
+= sizeof(uint8_t)) {
995 *(uint8_t *)(d
+ i
) = (uint8_t)b
- *(uint8_t *)(a
+ i
);
999 void HELPER(vec_rsubs16
)(void *d
, void *a
, uint64_t b
, uint32_t desc
)
1001 intptr_t oprsz
= simd_oprsz(desc
);
1004 for (i
= 0; i
< oprsz
; i
+= sizeof(uint16_t)) {
1005 *(uint16_t *)(d
+ i
) = (uint16_t)b
- *(uint16_t *)(a
+ i
);
1009 void HELPER(vec_rsubs32
)(void *d
, void *a
, uint64_t b
, uint32_t desc
)
1011 intptr_t oprsz
= simd_oprsz(desc
);
1014 for (i
= 0; i
< oprsz
; i
+= sizeof(uint32_t)) {
1015 *(uint32_t *)(d
+ i
) = (uint32_t)b
- *(uint32_t *)(a
+ i
);
1019 void HELPER(vec_rsubs64
)(void *d
, void *a
, uint64_t b
, uint32_t desc
)
1021 intptr_t oprsz
= simd_oprsz(desc
);
1024 for (i
= 0; i
< oprsz
; i
+= sizeof(uint64_t)) {
1025 *(uint64_t *)(d
+ i
) = b
- *(uint64_t *)(a
+ i
);
1029 /* Vector Widening Integer Add/Subtract */
1030 #define WOP_UUU_B uint16_t, uint8_t, uint8_t, uint16_t, uint16_t
1031 #define WOP_UUU_H uint32_t, uint16_t, uint16_t, uint32_t, uint32_t
1032 #define WOP_UUU_W uint64_t, uint32_t, uint32_t, uint64_t, uint64_t
1033 #define WOP_SSS_B int16_t, int8_t, int8_t, int16_t, int16_t
1034 #define WOP_SSS_H int32_t, int16_t, int16_t, int32_t, int32_t
1035 #define WOP_SSS_W int64_t, int32_t, int32_t, int64_t, int64_t
1036 #define WOP_WUUU_B uint16_t, uint8_t, uint16_t, uint16_t, uint16_t
1037 #define WOP_WUUU_H uint32_t, uint16_t, uint32_t, uint32_t, uint32_t
1038 #define WOP_WUUU_W uint64_t, uint32_t, uint64_t, uint64_t, uint64_t
1039 #define WOP_WSSS_B int16_t, int8_t, int16_t, int16_t, int16_t
1040 #define WOP_WSSS_H int32_t, int16_t, int32_t, int32_t, int32_t
1041 #define WOP_WSSS_W int64_t, int32_t, int64_t, int64_t, int64_t
1042 RVVCALL(OPIVV2
, vwaddu_vv_b
, WOP_UUU_B
, H2
, H1
, H1
, DO_ADD
)
1043 RVVCALL(OPIVV2
, vwaddu_vv_h
, WOP_UUU_H
, H4
, H2
, H2
, DO_ADD
)
1044 RVVCALL(OPIVV2
, vwaddu_vv_w
, WOP_UUU_W
, H8
, H4
, H4
, DO_ADD
)
1045 RVVCALL(OPIVV2
, vwsubu_vv_b
, WOP_UUU_B
, H2
, H1
, H1
, DO_SUB
)
1046 RVVCALL(OPIVV2
, vwsubu_vv_h
, WOP_UUU_H
, H4
, H2
, H2
, DO_SUB
)
1047 RVVCALL(OPIVV2
, vwsubu_vv_w
, WOP_UUU_W
, H8
, H4
, H4
, DO_SUB
)
1048 RVVCALL(OPIVV2
, vwadd_vv_b
, WOP_SSS_B
, H2
, H1
, H1
, DO_ADD
)
1049 RVVCALL(OPIVV2
, vwadd_vv_h
, WOP_SSS_H
, H4
, H2
, H2
, DO_ADD
)
1050 RVVCALL(OPIVV2
, vwadd_vv_w
, WOP_SSS_W
, H8
, H4
, H4
, DO_ADD
)
1051 RVVCALL(OPIVV2
, vwsub_vv_b
, WOP_SSS_B
, H2
, H1
, H1
, DO_SUB
)
1052 RVVCALL(OPIVV2
, vwsub_vv_h
, WOP_SSS_H
, H4
, H2
, H2
, DO_SUB
)
1053 RVVCALL(OPIVV2
, vwsub_vv_w
, WOP_SSS_W
, H8
, H4
, H4
, DO_SUB
)
1054 RVVCALL(OPIVV2
, vwaddu_wv_b
, WOP_WUUU_B
, H2
, H1
, H1
, DO_ADD
)
1055 RVVCALL(OPIVV2
, vwaddu_wv_h
, WOP_WUUU_H
, H4
, H2
, H2
, DO_ADD
)
1056 RVVCALL(OPIVV2
, vwaddu_wv_w
, WOP_WUUU_W
, H8
, H4
, H4
, DO_ADD
)
1057 RVVCALL(OPIVV2
, vwsubu_wv_b
, WOP_WUUU_B
, H2
, H1
, H1
, DO_SUB
)
1058 RVVCALL(OPIVV2
, vwsubu_wv_h
, WOP_WUUU_H
, H4
, H2
, H2
, DO_SUB
)
1059 RVVCALL(OPIVV2
, vwsubu_wv_w
, WOP_WUUU_W
, H8
, H4
, H4
, DO_SUB
)
1060 RVVCALL(OPIVV2
, vwadd_wv_b
, WOP_WSSS_B
, H2
, H1
, H1
, DO_ADD
)
1061 RVVCALL(OPIVV2
, vwadd_wv_h
, WOP_WSSS_H
, H4
, H2
, H2
, DO_ADD
)
1062 RVVCALL(OPIVV2
, vwadd_wv_w
, WOP_WSSS_W
, H8
, H4
, H4
, DO_ADD
)
1063 RVVCALL(OPIVV2
, vwsub_wv_b
, WOP_WSSS_B
, H2
, H1
, H1
, DO_SUB
)
1064 RVVCALL(OPIVV2
, vwsub_wv_h
, WOP_WSSS_H
, H4
, H2
, H2
, DO_SUB
)
1065 RVVCALL(OPIVV2
, vwsub_wv_w
, WOP_WSSS_W
, H8
, H4
, H4
, DO_SUB
)
1066 GEN_VEXT_VV(vwaddu_vv_b
, 1, 2, clearh
)
1067 GEN_VEXT_VV(vwaddu_vv_h
, 2, 4, clearl
)
1068 GEN_VEXT_VV(vwaddu_vv_w
, 4, 8, clearq
)
1069 GEN_VEXT_VV(vwsubu_vv_b
, 1, 2, clearh
)
1070 GEN_VEXT_VV(vwsubu_vv_h
, 2, 4, clearl
)
1071 GEN_VEXT_VV(vwsubu_vv_w
, 4, 8, clearq
)
1072 GEN_VEXT_VV(vwadd_vv_b
, 1, 2, clearh
)
1073 GEN_VEXT_VV(vwadd_vv_h
, 2, 4, clearl
)
1074 GEN_VEXT_VV(vwadd_vv_w
, 4, 8, clearq
)
1075 GEN_VEXT_VV(vwsub_vv_b
, 1, 2, clearh
)
1076 GEN_VEXT_VV(vwsub_vv_h
, 2, 4, clearl
)
1077 GEN_VEXT_VV(vwsub_vv_w
, 4, 8, clearq
)
1078 GEN_VEXT_VV(vwaddu_wv_b
, 1, 2, clearh
)
1079 GEN_VEXT_VV(vwaddu_wv_h
, 2, 4, clearl
)
1080 GEN_VEXT_VV(vwaddu_wv_w
, 4, 8, clearq
)
1081 GEN_VEXT_VV(vwsubu_wv_b
, 1, 2, clearh
)
1082 GEN_VEXT_VV(vwsubu_wv_h
, 2, 4, clearl
)
1083 GEN_VEXT_VV(vwsubu_wv_w
, 4, 8, clearq
)
1084 GEN_VEXT_VV(vwadd_wv_b
, 1, 2, clearh
)
1085 GEN_VEXT_VV(vwadd_wv_h
, 2, 4, clearl
)
1086 GEN_VEXT_VV(vwadd_wv_w
, 4, 8, clearq
)
1087 GEN_VEXT_VV(vwsub_wv_b
, 1, 2, clearh
)
1088 GEN_VEXT_VV(vwsub_wv_h
, 2, 4, clearl
)
1089 GEN_VEXT_VV(vwsub_wv_w
, 4, 8, clearq
)
1091 RVVCALL(OPIVX2
, vwaddu_vx_b
, WOP_UUU_B
, H2
, H1
, DO_ADD
)
1092 RVVCALL(OPIVX2
, vwaddu_vx_h
, WOP_UUU_H
, H4
, H2
, DO_ADD
)
1093 RVVCALL(OPIVX2
, vwaddu_vx_w
, WOP_UUU_W
, H8
, H4
, DO_ADD
)
1094 RVVCALL(OPIVX2
, vwsubu_vx_b
, WOP_UUU_B
, H2
, H1
, DO_SUB
)
1095 RVVCALL(OPIVX2
, vwsubu_vx_h
, WOP_UUU_H
, H4
, H2
, DO_SUB
)
1096 RVVCALL(OPIVX2
, vwsubu_vx_w
, WOP_UUU_W
, H8
, H4
, DO_SUB
)
1097 RVVCALL(OPIVX2
, vwadd_vx_b
, WOP_SSS_B
, H2
, H1
, DO_ADD
)
1098 RVVCALL(OPIVX2
, vwadd_vx_h
, WOP_SSS_H
, H4
, H2
, DO_ADD
)
1099 RVVCALL(OPIVX2
, vwadd_vx_w
, WOP_SSS_W
, H8
, H4
, DO_ADD
)
1100 RVVCALL(OPIVX2
, vwsub_vx_b
, WOP_SSS_B
, H2
, H1
, DO_SUB
)
1101 RVVCALL(OPIVX2
, vwsub_vx_h
, WOP_SSS_H
, H4
, H2
, DO_SUB
)
1102 RVVCALL(OPIVX2
, vwsub_vx_w
, WOP_SSS_W
, H8
, H4
, DO_SUB
)
1103 RVVCALL(OPIVX2
, vwaddu_wx_b
, WOP_WUUU_B
, H2
, H1
, DO_ADD
)
1104 RVVCALL(OPIVX2
, vwaddu_wx_h
, WOP_WUUU_H
, H4
, H2
, DO_ADD
)
1105 RVVCALL(OPIVX2
, vwaddu_wx_w
, WOP_WUUU_W
, H8
, H4
, DO_ADD
)
1106 RVVCALL(OPIVX2
, vwsubu_wx_b
, WOP_WUUU_B
, H2
, H1
, DO_SUB
)
1107 RVVCALL(OPIVX2
, vwsubu_wx_h
, WOP_WUUU_H
, H4
, H2
, DO_SUB
)
1108 RVVCALL(OPIVX2
, vwsubu_wx_w
, WOP_WUUU_W
, H8
, H4
, DO_SUB
)
1109 RVVCALL(OPIVX2
, vwadd_wx_b
, WOP_WSSS_B
, H2
, H1
, DO_ADD
)
1110 RVVCALL(OPIVX2
, vwadd_wx_h
, WOP_WSSS_H
, H4
, H2
, DO_ADD
)
1111 RVVCALL(OPIVX2
, vwadd_wx_w
, WOP_WSSS_W
, H8
, H4
, DO_ADD
)
1112 RVVCALL(OPIVX2
, vwsub_wx_b
, WOP_WSSS_B
, H2
, H1
, DO_SUB
)
1113 RVVCALL(OPIVX2
, vwsub_wx_h
, WOP_WSSS_H
, H4
, H2
, DO_SUB
)
1114 RVVCALL(OPIVX2
, vwsub_wx_w
, WOP_WSSS_W
, H8
, H4
, DO_SUB
)
1115 GEN_VEXT_VX(vwaddu_vx_b
, 1, 2, clearh
)
1116 GEN_VEXT_VX(vwaddu_vx_h
, 2, 4, clearl
)
1117 GEN_VEXT_VX(vwaddu_vx_w
, 4, 8, clearq
)
1118 GEN_VEXT_VX(vwsubu_vx_b
, 1, 2, clearh
)
1119 GEN_VEXT_VX(vwsubu_vx_h
, 2, 4, clearl
)
1120 GEN_VEXT_VX(vwsubu_vx_w
, 4, 8, clearq
)
1121 GEN_VEXT_VX(vwadd_vx_b
, 1, 2, clearh
)
1122 GEN_VEXT_VX(vwadd_vx_h
, 2, 4, clearl
)
1123 GEN_VEXT_VX(vwadd_vx_w
, 4, 8, clearq
)
1124 GEN_VEXT_VX(vwsub_vx_b
, 1, 2, clearh
)
1125 GEN_VEXT_VX(vwsub_vx_h
, 2, 4, clearl
)
1126 GEN_VEXT_VX(vwsub_vx_w
, 4, 8, clearq
)
1127 GEN_VEXT_VX(vwaddu_wx_b
, 1, 2, clearh
)
1128 GEN_VEXT_VX(vwaddu_wx_h
, 2, 4, clearl
)
1129 GEN_VEXT_VX(vwaddu_wx_w
, 4, 8, clearq
)
1130 GEN_VEXT_VX(vwsubu_wx_b
, 1, 2, clearh
)
1131 GEN_VEXT_VX(vwsubu_wx_h
, 2, 4, clearl
)
1132 GEN_VEXT_VX(vwsubu_wx_w
, 4, 8, clearq
)
1133 GEN_VEXT_VX(vwadd_wx_b
, 1, 2, clearh
)
1134 GEN_VEXT_VX(vwadd_wx_h
, 2, 4, clearl
)
1135 GEN_VEXT_VX(vwadd_wx_w
, 4, 8, clearq
)
1136 GEN_VEXT_VX(vwsub_wx_b
, 1, 2, clearh
)
1137 GEN_VEXT_VX(vwsub_wx_h
, 2, 4, clearl
)
1138 GEN_VEXT_VX(vwsub_wx_w
, 4, 8, clearq
)
1140 /* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */
1141 #define DO_VADC(N, M, C) (N + M + C)
1142 #define DO_VSBC(N, M, C) (N - M - C)
1144 #define GEN_VEXT_VADC_VVM(NAME, ETYPE, H, DO_OP, CLEAR_FN) \
1145 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
1146 CPURISCVState *env, uint32_t desc) \
1148 uint32_t mlen = vext_mlen(desc); \
1149 uint32_t vl = env->vl; \
1150 uint32_t esz = sizeof(ETYPE); \
1151 uint32_t vlmax = vext_maxsz(desc) / esz; \
1154 for (i = 0; i < vl; i++) { \
1155 ETYPE s1 = *((ETYPE *)vs1 + H(i)); \
1156 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1157 uint8_t carry = vext_elem_mask(v0, mlen, i); \
1159 *((ETYPE *)vd + H(i)) = DO_OP(s2, s1, carry); \
1161 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
1164 GEN_VEXT_VADC_VVM(vadc_vvm_b
, uint8_t, H1
, DO_VADC
, clearb
)
1165 GEN_VEXT_VADC_VVM(vadc_vvm_h
, uint16_t, H2
, DO_VADC
, clearh
)
1166 GEN_VEXT_VADC_VVM(vadc_vvm_w
, uint32_t, H4
, DO_VADC
, clearl
)
1167 GEN_VEXT_VADC_VVM(vadc_vvm_d
, uint64_t, H8
, DO_VADC
, clearq
)
1169 GEN_VEXT_VADC_VVM(vsbc_vvm_b
, uint8_t, H1
, DO_VSBC
, clearb
)
1170 GEN_VEXT_VADC_VVM(vsbc_vvm_h
, uint16_t, H2
, DO_VSBC
, clearh
)
1171 GEN_VEXT_VADC_VVM(vsbc_vvm_w
, uint32_t, H4
, DO_VSBC
, clearl
)
1172 GEN_VEXT_VADC_VVM(vsbc_vvm_d
, uint64_t, H8
, DO_VSBC
, clearq
)
1174 #define GEN_VEXT_VADC_VXM(NAME, ETYPE, H, DO_OP, CLEAR_FN) \
1175 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
1176 CPURISCVState *env, uint32_t desc) \
1178 uint32_t mlen = vext_mlen(desc); \
1179 uint32_t vl = env->vl; \
1180 uint32_t esz = sizeof(ETYPE); \
1181 uint32_t vlmax = vext_maxsz(desc) / esz; \
1184 for (i = 0; i < vl; i++) { \
1185 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1186 uint8_t carry = vext_elem_mask(v0, mlen, i); \
1188 *((ETYPE *)vd + H(i)) = DO_OP(s2, (ETYPE)(target_long)s1, carry);\
1190 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
1193 GEN_VEXT_VADC_VXM(vadc_vxm_b
, uint8_t, H1
, DO_VADC
, clearb
)
1194 GEN_VEXT_VADC_VXM(vadc_vxm_h
, uint16_t, H2
, DO_VADC
, clearh
)
1195 GEN_VEXT_VADC_VXM(vadc_vxm_w
, uint32_t, H4
, DO_VADC
, clearl
)
1196 GEN_VEXT_VADC_VXM(vadc_vxm_d
, uint64_t, H8
, DO_VADC
, clearq
)
1198 GEN_VEXT_VADC_VXM(vsbc_vxm_b
, uint8_t, H1
, DO_VSBC
, clearb
)
1199 GEN_VEXT_VADC_VXM(vsbc_vxm_h
, uint16_t, H2
, DO_VSBC
, clearh
)
1200 GEN_VEXT_VADC_VXM(vsbc_vxm_w
, uint32_t, H4
, DO_VSBC
, clearl
)
1201 GEN_VEXT_VADC_VXM(vsbc_vxm_d
, uint64_t, H8
, DO_VSBC
, clearq
)
1203 #define DO_MADC(N, M, C) (C ? (__typeof(N))(N + M + 1) <= N : \
1204 (__typeof(N))(N + M) < N)
1205 #define DO_MSBC(N, M, C) (C ? N <= M : N < M)
1207 #define GEN_VEXT_VMADC_VVM(NAME, ETYPE, H, DO_OP) \
1208 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
1209 CPURISCVState *env, uint32_t desc) \
1211 uint32_t mlen = vext_mlen(desc); \
1212 uint32_t vl = env->vl; \
1213 uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \
1216 for (i = 0; i < vl; i++) { \
1217 ETYPE s1 = *((ETYPE *)vs1 + H(i)); \
1218 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1219 uint8_t carry = vext_elem_mask(v0, mlen, i); \
1221 vext_set_elem_mask(vd, mlen, i, DO_OP(s2, s1, carry));\
1223 for (; i < vlmax; i++) { \
1224 vext_set_elem_mask(vd, mlen, i, 0); \
1228 GEN_VEXT_VMADC_VVM(vmadc_vvm_b
, uint8_t, H1
, DO_MADC
)
1229 GEN_VEXT_VMADC_VVM(vmadc_vvm_h
, uint16_t, H2
, DO_MADC
)
1230 GEN_VEXT_VMADC_VVM(vmadc_vvm_w
, uint32_t, H4
, DO_MADC
)
1231 GEN_VEXT_VMADC_VVM(vmadc_vvm_d
, uint64_t, H8
, DO_MADC
)
1233 GEN_VEXT_VMADC_VVM(vmsbc_vvm_b
, uint8_t, H1
, DO_MSBC
)
1234 GEN_VEXT_VMADC_VVM(vmsbc_vvm_h
, uint16_t, H2
, DO_MSBC
)
1235 GEN_VEXT_VMADC_VVM(vmsbc_vvm_w
, uint32_t, H4
, DO_MSBC
)
1236 GEN_VEXT_VMADC_VVM(vmsbc_vvm_d
, uint64_t, H8
, DO_MSBC
)
1238 #define GEN_VEXT_VMADC_VXM(NAME, ETYPE, H, DO_OP) \
1239 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
1240 void *vs2, CPURISCVState *env, uint32_t desc) \
1242 uint32_t mlen = vext_mlen(desc); \
1243 uint32_t vl = env->vl; \
1244 uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \
1247 for (i = 0; i < vl; i++) { \
1248 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1249 uint8_t carry = vext_elem_mask(v0, mlen, i); \
1251 vext_set_elem_mask(vd, mlen, i, \
1252 DO_OP(s2, (ETYPE)(target_long)s1, carry)); \
1254 for (; i < vlmax; i++) { \
1255 vext_set_elem_mask(vd, mlen, i, 0); \
1259 GEN_VEXT_VMADC_VXM(vmadc_vxm_b
, uint8_t, H1
, DO_MADC
)
1260 GEN_VEXT_VMADC_VXM(vmadc_vxm_h
, uint16_t, H2
, DO_MADC
)
1261 GEN_VEXT_VMADC_VXM(vmadc_vxm_w
, uint32_t, H4
, DO_MADC
)
1262 GEN_VEXT_VMADC_VXM(vmadc_vxm_d
, uint64_t, H8
, DO_MADC
)
1264 GEN_VEXT_VMADC_VXM(vmsbc_vxm_b
, uint8_t, H1
, DO_MSBC
)
1265 GEN_VEXT_VMADC_VXM(vmsbc_vxm_h
, uint16_t, H2
, DO_MSBC
)
1266 GEN_VEXT_VMADC_VXM(vmsbc_vxm_w
, uint32_t, H4
, DO_MSBC
)
1267 GEN_VEXT_VMADC_VXM(vmsbc_vxm_d
, uint64_t, H8
, DO_MSBC
)
1269 /* Vector Bitwise Logical Instructions */
1270 RVVCALL(OPIVV2
, vand_vv_b
, OP_SSS_B
, H1
, H1
, H1
, DO_AND
)
1271 RVVCALL(OPIVV2
, vand_vv_h
, OP_SSS_H
, H2
, H2
, H2
, DO_AND
)
1272 RVVCALL(OPIVV2
, vand_vv_w
, OP_SSS_W
, H4
, H4
, H4
, DO_AND
)
1273 RVVCALL(OPIVV2
, vand_vv_d
, OP_SSS_D
, H8
, H8
, H8
, DO_AND
)
1274 RVVCALL(OPIVV2
, vor_vv_b
, OP_SSS_B
, H1
, H1
, H1
, DO_OR
)
1275 RVVCALL(OPIVV2
, vor_vv_h
, OP_SSS_H
, H2
, H2
, H2
, DO_OR
)
1276 RVVCALL(OPIVV2
, vor_vv_w
, OP_SSS_W
, H4
, H4
, H4
, DO_OR
)
1277 RVVCALL(OPIVV2
, vor_vv_d
, OP_SSS_D
, H8
, H8
, H8
, DO_OR
)
1278 RVVCALL(OPIVV2
, vxor_vv_b
, OP_SSS_B
, H1
, H1
, H1
, DO_XOR
)
1279 RVVCALL(OPIVV2
, vxor_vv_h
, OP_SSS_H
, H2
, H2
, H2
, DO_XOR
)
1280 RVVCALL(OPIVV2
, vxor_vv_w
, OP_SSS_W
, H4
, H4
, H4
, DO_XOR
)
1281 RVVCALL(OPIVV2
, vxor_vv_d
, OP_SSS_D
, H8
, H8
, H8
, DO_XOR
)
1282 GEN_VEXT_VV(vand_vv_b
, 1, 1, clearb
)
1283 GEN_VEXT_VV(vand_vv_h
, 2, 2, clearh
)
1284 GEN_VEXT_VV(vand_vv_w
, 4, 4, clearl
)
1285 GEN_VEXT_VV(vand_vv_d
, 8, 8, clearq
)
1286 GEN_VEXT_VV(vor_vv_b
, 1, 1, clearb
)
1287 GEN_VEXT_VV(vor_vv_h
, 2, 2, clearh
)
1288 GEN_VEXT_VV(vor_vv_w
, 4, 4, clearl
)
1289 GEN_VEXT_VV(vor_vv_d
, 8, 8, clearq
)
1290 GEN_VEXT_VV(vxor_vv_b
, 1, 1, clearb
)
1291 GEN_VEXT_VV(vxor_vv_h
, 2, 2, clearh
)
1292 GEN_VEXT_VV(vxor_vv_w
, 4, 4, clearl
)
1293 GEN_VEXT_VV(vxor_vv_d
, 8, 8, clearq
)
1295 RVVCALL(OPIVX2
, vand_vx_b
, OP_SSS_B
, H1
, H1
, DO_AND
)
1296 RVVCALL(OPIVX2
, vand_vx_h
, OP_SSS_H
, H2
, H2
, DO_AND
)
1297 RVVCALL(OPIVX2
, vand_vx_w
, OP_SSS_W
, H4
, H4
, DO_AND
)
1298 RVVCALL(OPIVX2
, vand_vx_d
, OP_SSS_D
, H8
, H8
, DO_AND
)
1299 RVVCALL(OPIVX2
, vor_vx_b
, OP_SSS_B
, H1
, H1
, DO_OR
)
1300 RVVCALL(OPIVX2
, vor_vx_h
, OP_SSS_H
, H2
, H2
, DO_OR
)
1301 RVVCALL(OPIVX2
, vor_vx_w
, OP_SSS_W
, H4
, H4
, DO_OR
)
1302 RVVCALL(OPIVX2
, vor_vx_d
, OP_SSS_D
, H8
, H8
, DO_OR
)
1303 RVVCALL(OPIVX2
, vxor_vx_b
, OP_SSS_B
, H1
, H1
, DO_XOR
)
1304 RVVCALL(OPIVX2
, vxor_vx_h
, OP_SSS_H
, H2
, H2
, DO_XOR
)
1305 RVVCALL(OPIVX2
, vxor_vx_w
, OP_SSS_W
, H4
, H4
, DO_XOR
)
1306 RVVCALL(OPIVX2
, vxor_vx_d
, OP_SSS_D
, H8
, H8
, DO_XOR
)
1307 GEN_VEXT_VX(vand_vx_b
, 1, 1, clearb
)
1308 GEN_VEXT_VX(vand_vx_h
, 2, 2, clearh
)
1309 GEN_VEXT_VX(vand_vx_w
, 4, 4, clearl
)
1310 GEN_VEXT_VX(vand_vx_d
, 8, 8, clearq
)
1311 GEN_VEXT_VX(vor_vx_b
, 1, 1, clearb
)
1312 GEN_VEXT_VX(vor_vx_h
, 2, 2, clearh
)
1313 GEN_VEXT_VX(vor_vx_w
, 4, 4, clearl
)
1314 GEN_VEXT_VX(vor_vx_d
, 8, 8, clearq
)
1315 GEN_VEXT_VX(vxor_vx_b
, 1, 1, clearb
)
1316 GEN_VEXT_VX(vxor_vx_h
, 2, 2, clearh
)
1317 GEN_VEXT_VX(vxor_vx_w
, 4, 4, clearl
)
1318 GEN_VEXT_VX(vxor_vx_d
, 8, 8, clearq
)
1320 /* Vector Single-Width Bit Shift Instructions */
1321 #define DO_SLL(N, M) (N << (M))
1322 #define DO_SRL(N, M) (N >> (M))
1324 /* generate the helpers for shift instructions with two vector operators */
1325 #define GEN_VEXT_SHIFT_VV(NAME, TS1, TS2, HS1, HS2, OP, MASK, CLEAR_FN) \
1326 void HELPER(NAME)(void *vd, void *v0, void *vs1, \
1327 void *vs2, CPURISCVState *env, uint32_t desc) \
1329 uint32_t mlen = vext_mlen(desc); \
1330 uint32_t vm = vext_vm(desc); \
1331 uint32_t vl = env->vl; \
1332 uint32_t esz = sizeof(TS1); \
1333 uint32_t vlmax = vext_maxsz(desc) / esz; \
1336 for (i = 0; i < vl; i++) { \
1337 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
1340 TS1 s1 = *((TS1 *)vs1 + HS1(i)); \
1341 TS2 s2 = *((TS2 *)vs2 + HS2(i)); \
1342 *((TS1 *)vd + HS1(i)) = OP(s2, s1 & MASK); \
1344 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
1347 GEN_VEXT_SHIFT_VV(vsll_vv_b
, uint8_t, uint8_t, H1
, H1
, DO_SLL
, 0x7, clearb
)
1348 GEN_VEXT_SHIFT_VV(vsll_vv_h
, uint16_t, uint16_t, H2
, H2
, DO_SLL
, 0xf, clearh
)
1349 GEN_VEXT_SHIFT_VV(vsll_vv_w
, uint32_t, uint32_t, H4
, H4
, DO_SLL
, 0x1f, clearl
)
1350 GEN_VEXT_SHIFT_VV(vsll_vv_d
, uint64_t, uint64_t, H8
, H8
, DO_SLL
, 0x3f, clearq
)
1352 GEN_VEXT_SHIFT_VV(vsrl_vv_b
, uint8_t, uint8_t, H1
, H1
, DO_SRL
, 0x7, clearb
)
1353 GEN_VEXT_SHIFT_VV(vsrl_vv_h
, uint16_t, uint16_t, H2
, H2
, DO_SRL
, 0xf, clearh
)
1354 GEN_VEXT_SHIFT_VV(vsrl_vv_w
, uint32_t, uint32_t, H4
, H4
, DO_SRL
, 0x1f, clearl
)
1355 GEN_VEXT_SHIFT_VV(vsrl_vv_d
, uint64_t, uint64_t, H8
, H8
, DO_SRL
, 0x3f, clearq
)
1357 GEN_VEXT_SHIFT_VV(vsra_vv_b
, uint8_t, int8_t, H1
, H1
, DO_SRL
, 0x7, clearb
)
1358 GEN_VEXT_SHIFT_VV(vsra_vv_h
, uint16_t, int16_t, H2
, H2
, DO_SRL
, 0xf, clearh
)
1359 GEN_VEXT_SHIFT_VV(vsra_vv_w
, uint32_t, int32_t, H4
, H4
, DO_SRL
, 0x1f, clearl
)
1360 GEN_VEXT_SHIFT_VV(vsra_vv_d
, uint64_t, int64_t, H8
, H8
, DO_SRL
, 0x3f, clearq
)
1362 /* generate the helpers for shift instructions with one vector and one scalar */
1363 #define GEN_VEXT_SHIFT_VX(NAME, TD, TS2, HD, HS2, OP, MASK, CLEAR_FN) \
1364 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
1365 void *vs2, CPURISCVState *env, uint32_t desc) \
1367 uint32_t mlen = vext_mlen(desc); \
1368 uint32_t vm = vext_vm(desc); \
1369 uint32_t vl = env->vl; \
1370 uint32_t esz = sizeof(TD); \
1371 uint32_t vlmax = vext_maxsz(desc) / esz; \
1374 for (i = 0; i < vl; i++) { \
1375 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
1378 TS2 s2 = *((TS2 *)vs2 + HS2(i)); \
1379 *((TD *)vd + HD(i)) = OP(s2, s1 & MASK); \
1381 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
1384 GEN_VEXT_SHIFT_VX(vsll_vx_b
, uint8_t, int8_t, H1
, H1
, DO_SLL
, 0x7, clearb
)
1385 GEN_VEXT_SHIFT_VX(vsll_vx_h
, uint16_t, int16_t, H2
, H2
, DO_SLL
, 0xf, clearh
)
1386 GEN_VEXT_SHIFT_VX(vsll_vx_w
, uint32_t, int32_t, H4
, H4
, DO_SLL
, 0x1f, clearl
)
1387 GEN_VEXT_SHIFT_VX(vsll_vx_d
, uint64_t, int64_t, H8
, H8
, DO_SLL
, 0x3f, clearq
)
1389 GEN_VEXT_SHIFT_VX(vsrl_vx_b
, uint8_t, uint8_t, H1
, H1
, DO_SRL
, 0x7, clearb
)
1390 GEN_VEXT_SHIFT_VX(vsrl_vx_h
, uint16_t, uint16_t, H2
, H2
, DO_SRL
, 0xf, clearh
)
1391 GEN_VEXT_SHIFT_VX(vsrl_vx_w
, uint32_t, uint32_t, H4
, H4
, DO_SRL
, 0x1f, clearl
)
1392 GEN_VEXT_SHIFT_VX(vsrl_vx_d
, uint64_t, uint64_t, H8
, H8
, DO_SRL
, 0x3f, clearq
)
1394 GEN_VEXT_SHIFT_VX(vsra_vx_b
, int8_t, int8_t, H1
, H1
, DO_SRL
, 0x7, clearb
)
1395 GEN_VEXT_SHIFT_VX(vsra_vx_h
, int16_t, int16_t, H2
, H2
, DO_SRL
, 0xf, clearh
)
1396 GEN_VEXT_SHIFT_VX(vsra_vx_w
, int32_t, int32_t, H4
, H4
, DO_SRL
, 0x1f, clearl
)
1397 GEN_VEXT_SHIFT_VX(vsra_vx_d
, int64_t, int64_t, H8
, H8
, DO_SRL
, 0x3f, clearq
)
1399 /* Vector Narrowing Integer Right Shift Instructions */
1400 GEN_VEXT_SHIFT_VV(vnsrl_vv_b
, uint8_t, uint16_t, H1
, H2
, DO_SRL
, 0xf, clearb
)
1401 GEN_VEXT_SHIFT_VV(vnsrl_vv_h
, uint16_t, uint32_t, H2
, H4
, DO_SRL
, 0x1f, clearh
)
1402 GEN_VEXT_SHIFT_VV(vnsrl_vv_w
, uint32_t, uint64_t, H4
, H8
, DO_SRL
, 0x3f, clearl
)
1403 GEN_VEXT_SHIFT_VV(vnsra_vv_b
, uint8_t, int16_t, H1
, H2
, DO_SRL
, 0xf, clearb
)
1404 GEN_VEXT_SHIFT_VV(vnsra_vv_h
, uint16_t, int32_t, H2
, H4
, DO_SRL
, 0x1f, clearh
)
1405 GEN_VEXT_SHIFT_VV(vnsra_vv_w
, uint32_t, int64_t, H4
, H8
, DO_SRL
, 0x3f, clearl
)
1406 GEN_VEXT_SHIFT_VX(vnsrl_vx_b
, uint8_t, uint16_t, H1
, H2
, DO_SRL
, 0xf, clearb
)
1407 GEN_VEXT_SHIFT_VX(vnsrl_vx_h
, uint16_t, uint32_t, H2
, H4
, DO_SRL
, 0x1f, clearh
)
1408 GEN_VEXT_SHIFT_VX(vnsrl_vx_w
, uint32_t, uint64_t, H4
, H8
, DO_SRL
, 0x3f, clearl
)
1409 GEN_VEXT_SHIFT_VX(vnsra_vx_b
, int8_t, int16_t, H1
, H2
, DO_SRL
, 0xf, clearb
)
1410 GEN_VEXT_SHIFT_VX(vnsra_vx_h
, int16_t, int32_t, H2
, H4
, DO_SRL
, 0x1f, clearh
)
1411 GEN_VEXT_SHIFT_VX(vnsra_vx_w
, int32_t, int64_t, H4
, H8
, DO_SRL
, 0x3f, clearl
)
1413 /* Vector Integer Comparison Instructions */
1414 #define DO_MSEQ(N, M) (N == M)
1415 #define DO_MSNE(N, M) (N != M)
1416 #define DO_MSLT(N, M) (N < M)
1417 #define DO_MSLE(N, M) (N <= M)
1418 #define DO_MSGT(N, M) (N > M)
1420 #define GEN_VEXT_CMP_VV(NAME, ETYPE, H, DO_OP) \
1421 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
1422 CPURISCVState *env, uint32_t desc) \
1424 uint32_t mlen = vext_mlen(desc); \
1425 uint32_t vm = vext_vm(desc); \
1426 uint32_t vl = env->vl; \
1427 uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \
1430 for (i = 0; i < vl; i++) { \
1431 ETYPE s1 = *((ETYPE *)vs1 + H(i)); \
1432 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1433 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
1436 vext_set_elem_mask(vd, mlen, i, DO_OP(s2, s1)); \
1438 for (; i < vlmax; i++) { \
1439 vext_set_elem_mask(vd, mlen, i, 0); \
1443 GEN_VEXT_CMP_VV(vmseq_vv_b
, uint8_t, H1
, DO_MSEQ
)
1444 GEN_VEXT_CMP_VV(vmseq_vv_h
, uint16_t, H2
, DO_MSEQ
)
1445 GEN_VEXT_CMP_VV(vmseq_vv_w
, uint32_t, H4
, DO_MSEQ
)
1446 GEN_VEXT_CMP_VV(vmseq_vv_d
, uint64_t, H8
, DO_MSEQ
)
1448 GEN_VEXT_CMP_VV(vmsne_vv_b
, uint8_t, H1
, DO_MSNE
)
1449 GEN_VEXT_CMP_VV(vmsne_vv_h
, uint16_t, H2
, DO_MSNE
)
1450 GEN_VEXT_CMP_VV(vmsne_vv_w
, uint32_t, H4
, DO_MSNE
)
1451 GEN_VEXT_CMP_VV(vmsne_vv_d
, uint64_t, H8
, DO_MSNE
)
1453 GEN_VEXT_CMP_VV(vmsltu_vv_b
, uint8_t, H1
, DO_MSLT
)
1454 GEN_VEXT_CMP_VV(vmsltu_vv_h
, uint16_t, H2
, DO_MSLT
)
1455 GEN_VEXT_CMP_VV(vmsltu_vv_w
, uint32_t, H4
, DO_MSLT
)
1456 GEN_VEXT_CMP_VV(vmsltu_vv_d
, uint64_t, H8
, DO_MSLT
)
1458 GEN_VEXT_CMP_VV(vmslt_vv_b
, int8_t, H1
, DO_MSLT
)
1459 GEN_VEXT_CMP_VV(vmslt_vv_h
, int16_t, H2
, DO_MSLT
)
1460 GEN_VEXT_CMP_VV(vmslt_vv_w
, int32_t, H4
, DO_MSLT
)
1461 GEN_VEXT_CMP_VV(vmslt_vv_d
, int64_t, H8
, DO_MSLT
)
1463 GEN_VEXT_CMP_VV(vmsleu_vv_b
, uint8_t, H1
, DO_MSLE
)
1464 GEN_VEXT_CMP_VV(vmsleu_vv_h
, uint16_t, H2
, DO_MSLE
)
1465 GEN_VEXT_CMP_VV(vmsleu_vv_w
, uint32_t, H4
, DO_MSLE
)
1466 GEN_VEXT_CMP_VV(vmsleu_vv_d
, uint64_t, H8
, DO_MSLE
)
1468 GEN_VEXT_CMP_VV(vmsle_vv_b
, int8_t, H1
, DO_MSLE
)
1469 GEN_VEXT_CMP_VV(vmsle_vv_h
, int16_t, H2
, DO_MSLE
)
1470 GEN_VEXT_CMP_VV(vmsle_vv_w
, int32_t, H4
, DO_MSLE
)
1471 GEN_VEXT_CMP_VV(vmsle_vv_d
, int64_t, H8
, DO_MSLE
)
1473 #define GEN_VEXT_CMP_VX(NAME, ETYPE, H, DO_OP) \
1474 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
1475 CPURISCVState *env, uint32_t desc) \
1477 uint32_t mlen = vext_mlen(desc); \
1478 uint32_t vm = vext_vm(desc); \
1479 uint32_t vl = env->vl; \
1480 uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \
1483 for (i = 0; i < vl; i++) { \
1484 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1485 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
1488 vext_set_elem_mask(vd, mlen, i, \
1489 DO_OP(s2, (ETYPE)(target_long)s1)); \
1491 for (; i < vlmax; i++) { \
1492 vext_set_elem_mask(vd, mlen, i, 0); \
1496 GEN_VEXT_CMP_VX(vmseq_vx_b
, uint8_t, H1
, DO_MSEQ
)
1497 GEN_VEXT_CMP_VX(vmseq_vx_h
, uint16_t, H2
, DO_MSEQ
)
1498 GEN_VEXT_CMP_VX(vmseq_vx_w
, uint32_t, H4
, DO_MSEQ
)
1499 GEN_VEXT_CMP_VX(vmseq_vx_d
, uint64_t, H8
, DO_MSEQ
)
1501 GEN_VEXT_CMP_VX(vmsne_vx_b
, uint8_t, H1
, DO_MSNE
)
1502 GEN_VEXT_CMP_VX(vmsne_vx_h
, uint16_t, H2
, DO_MSNE
)
1503 GEN_VEXT_CMP_VX(vmsne_vx_w
, uint32_t, H4
, DO_MSNE
)
1504 GEN_VEXT_CMP_VX(vmsne_vx_d
, uint64_t, H8
, DO_MSNE
)
1506 GEN_VEXT_CMP_VX(vmsltu_vx_b
, uint8_t, H1
, DO_MSLT
)
1507 GEN_VEXT_CMP_VX(vmsltu_vx_h
, uint16_t, H2
, DO_MSLT
)
1508 GEN_VEXT_CMP_VX(vmsltu_vx_w
, uint32_t, H4
, DO_MSLT
)
1509 GEN_VEXT_CMP_VX(vmsltu_vx_d
, uint64_t, H8
, DO_MSLT
)
1511 GEN_VEXT_CMP_VX(vmslt_vx_b
, int8_t, H1
, DO_MSLT
)
1512 GEN_VEXT_CMP_VX(vmslt_vx_h
, int16_t, H2
, DO_MSLT
)
1513 GEN_VEXT_CMP_VX(vmslt_vx_w
, int32_t, H4
, DO_MSLT
)
1514 GEN_VEXT_CMP_VX(vmslt_vx_d
, int64_t, H8
, DO_MSLT
)
1516 GEN_VEXT_CMP_VX(vmsleu_vx_b
, uint8_t, H1
, DO_MSLE
)
1517 GEN_VEXT_CMP_VX(vmsleu_vx_h
, uint16_t, H2
, DO_MSLE
)
1518 GEN_VEXT_CMP_VX(vmsleu_vx_w
, uint32_t, H4
, DO_MSLE
)
1519 GEN_VEXT_CMP_VX(vmsleu_vx_d
, uint64_t, H8
, DO_MSLE
)
1521 GEN_VEXT_CMP_VX(vmsle_vx_b
, int8_t, H1
, DO_MSLE
)
1522 GEN_VEXT_CMP_VX(vmsle_vx_h
, int16_t, H2
, DO_MSLE
)
1523 GEN_VEXT_CMP_VX(vmsle_vx_w
, int32_t, H4
, DO_MSLE
)
1524 GEN_VEXT_CMP_VX(vmsle_vx_d
, int64_t, H8
, DO_MSLE
)
1526 GEN_VEXT_CMP_VX(vmsgtu_vx_b
, uint8_t, H1
, DO_MSGT
)
1527 GEN_VEXT_CMP_VX(vmsgtu_vx_h
, uint16_t, H2
, DO_MSGT
)
1528 GEN_VEXT_CMP_VX(vmsgtu_vx_w
, uint32_t, H4
, DO_MSGT
)
1529 GEN_VEXT_CMP_VX(vmsgtu_vx_d
, uint64_t, H8
, DO_MSGT
)
1531 GEN_VEXT_CMP_VX(vmsgt_vx_b
, int8_t, H1
, DO_MSGT
)
1532 GEN_VEXT_CMP_VX(vmsgt_vx_h
, int16_t, H2
, DO_MSGT
)
1533 GEN_VEXT_CMP_VX(vmsgt_vx_w
, int32_t, H4
, DO_MSGT
)
1534 GEN_VEXT_CMP_VX(vmsgt_vx_d
, int64_t, H8
, DO_MSGT
)