]> git.proxmox.com Git - mirror_qemu.git/blob - target/s390x/kvm/kvm.c
system/cpus: rename qemu_mutex_lock_iothread() to bql_lock()
[mirror_qemu.git] / target / s390x / kvm / kvm.c
1 /*
2 * QEMU S390x KVM implementation
3 *
4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5 * Copyright IBM Corp. 2012
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include "qemu/osdep.h"
22 #include <sys/ioctl.h>
23
24 #include <linux/kvm.h>
25 #include <asm/ptrace.h>
26
27 #include "cpu.h"
28 #include "s390x-internal.h"
29 #include "kvm_s390x.h"
30 #include "sysemu/kvm_int.h"
31 #include "qemu/cutils.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "qemu/units.h"
36 #include "qemu/main-loop.h"
37 #include "qemu/mmap-alloc.h"
38 #include "qemu/log.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/hw_accel.h"
41 #include "sysemu/runstate.h"
42 #include "sysemu/device_tree.h"
43 #include "exec/gdbstub.h"
44 #include "exec/ram_addr.h"
45 #include "trace.h"
46 #include "hw/s390x/s390-pci-inst.h"
47 #include "hw/s390x/s390-pci-bus.h"
48 #include "hw/s390x/ipl.h"
49 #include "hw/s390x/ebcdic.h"
50 #include "exec/memattrs.h"
51 #include "hw/s390x/s390-virtio-ccw.h"
52 #include "hw/s390x/s390-virtio-hcall.h"
53 #include "target/s390x/kvm/pv.h"
54
55 #define kvm_vm_check_mem_attr(s, attr) \
56 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
57
58 #define IPA0_DIAG 0x8300
59 #define IPA0_SIGP 0xae00
60 #define IPA0_B2 0xb200
61 #define IPA0_B9 0xb900
62 #define IPA0_EB 0xeb00
63 #define IPA0_E3 0xe300
64
65 #define PRIV_B2_SCLP_CALL 0x20
66 #define PRIV_B2_CSCH 0x30
67 #define PRIV_B2_HSCH 0x31
68 #define PRIV_B2_MSCH 0x32
69 #define PRIV_B2_SSCH 0x33
70 #define PRIV_B2_STSCH 0x34
71 #define PRIV_B2_TSCH 0x35
72 #define PRIV_B2_TPI 0x36
73 #define PRIV_B2_SAL 0x37
74 #define PRIV_B2_RSCH 0x38
75 #define PRIV_B2_STCRW 0x39
76 #define PRIV_B2_STCPS 0x3a
77 #define PRIV_B2_RCHP 0x3b
78 #define PRIV_B2_SCHM 0x3c
79 #define PRIV_B2_CHSC 0x5f
80 #define PRIV_B2_SIGA 0x74
81 #define PRIV_B2_XSCH 0x76
82
83 #define PRIV_EB_SQBS 0x8a
84 #define PRIV_EB_PCISTB 0xd0
85 #define PRIV_EB_SIC 0xd1
86
87 #define PRIV_B9_EQBS 0x9c
88 #define PRIV_B9_CLP 0xa0
89 #define PRIV_B9_PTF 0xa2
90 #define PRIV_B9_PCISTG 0xd0
91 #define PRIV_B9_PCILG 0xd2
92 #define PRIV_B9_RPCIT 0xd3
93
94 #define PRIV_E3_MPCIFC 0xd0
95 #define PRIV_E3_STPCIFC 0xd4
96
97 #define DIAG_TIMEREVENT 0x288
98 #define DIAG_IPL 0x308
99 #define DIAG_SET_CONTROL_PROGRAM_CODES 0x318
100 #define DIAG_KVM_HYPERCALL 0x500
101 #define DIAG_KVM_BREAKPOINT 0x501
102
103 #define ICPT_INSTRUCTION 0x04
104 #define ICPT_PROGRAM 0x08
105 #define ICPT_EXT_INT 0x14
106 #define ICPT_WAITPSW 0x1c
107 #define ICPT_SOFT_INTERCEPT 0x24
108 #define ICPT_CPU_STOP 0x28
109 #define ICPT_OPEREXC 0x2c
110 #define ICPT_IO 0x40
111 #define ICPT_PV_INSTR 0x68
112 #define ICPT_PV_INSTR_NOTIFICATION 0x6c
113
114 #define NR_LOCAL_IRQS 32
115 /*
116 * Needs to be big enough to contain max_cpus emergency signals
117 * and in addition NR_LOCAL_IRQS interrupts
118 */
119 #define VCPU_IRQ_BUF_SIZE(max_cpus) (sizeof(struct kvm_s390_irq) * \
120 (max_cpus + NR_LOCAL_IRQS))
121 /*
122 * KVM does only support memory slots up to KVM_MEM_MAX_NR_PAGES pages
123 * as the dirty bitmap must be managed by bitops that take an int as
124 * position indicator. This would end at an unaligned address
125 * (0x7fffff00000). As future variants might provide larger pages
126 * and to make all addresses properly aligned, let us split at 4TB.
127 */
128 #define KVM_SLOT_MAX_BYTES (4UL * TiB)
129
130 static CPUWatchpoint hw_watchpoint;
131 /*
132 * We don't use a list because this structure is also used to transmit the
133 * hardware breakpoints to the kernel.
134 */
135 static struct kvm_hw_breakpoint *hw_breakpoints;
136 static int nb_hw_breakpoints;
137
138 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
139 KVM_CAP_LAST_INFO
140 };
141
142 static int cap_async_pf;
143 static int cap_mem_op;
144 static int cap_mem_op_extension;
145 static int cap_s390_irq;
146 static int cap_ri;
147 static int cap_hpage_1m;
148 static int cap_vcpu_resets;
149 static int cap_protected;
150 static int cap_zpci_op;
151 static int cap_protected_dump;
152
153 static bool mem_op_storage_key_support;
154
155 static int active_cmma;
156
157 static int kvm_s390_query_mem_limit(uint64_t *memory_limit)
158 {
159 struct kvm_device_attr attr = {
160 .group = KVM_S390_VM_MEM_CTRL,
161 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
162 .addr = (uint64_t) memory_limit,
163 };
164
165 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
166 }
167
168 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit)
169 {
170 int rc;
171
172 struct kvm_device_attr attr = {
173 .group = KVM_S390_VM_MEM_CTRL,
174 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
175 .addr = (uint64_t) &new_limit,
176 };
177
178 if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) {
179 return 0;
180 }
181
182 rc = kvm_s390_query_mem_limit(hw_limit);
183 if (rc) {
184 return rc;
185 } else if (*hw_limit < new_limit) {
186 return -E2BIG;
187 }
188
189 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
190 }
191
192 int kvm_s390_cmma_active(void)
193 {
194 return active_cmma;
195 }
196
197 static bool kvm_s390_cmma_available(void)
198 {
199 static bool initialized, value;
200
201 if (!initialized) {
202 initialized = true;
203 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
204 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
205 }
206 return value;
207 }
208
209 void kvm_s390_cmma_reset(void)
210 {
211 int rc;
212 struct kvm_device_attr attr = {
213 .group = KVM_S390_VM_MEM_CTRL,
214 .attr = KVM_S390_VM_MEM_CLR_CMMA,
215 };
216
217 if (!kvm_s390_cmma_active()) {
218 return;
219 }
220
221 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
222 trace_kvm_clear_cmma(rc);
223 }
224
225 static void kvm_s390_enable_cmma(void)
226 {
227 int rc;
228 struct kvm_device_attr attr = {
229 .group = KVM_S390_VM_MEM_CTRL,
230 .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
231 };
232
233 if (cap_hpage_1m) {
234 warn_report("CMM will not be enabled because it is not "
235 "compatible with huge memory backings.");
236 return;
237 }
238 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
239 active_cmma = !rc;
240 trace_kvm_enable_cmma(rc);
241 }
242
243 static void kvm_s390_set_crypto_attr(uint64_t attr)
244 {
245 struct kvm_device_attr attribute = {
246 .group = KVM_S390_VM_CRYPTO,
247 .attr = attr,
248 };
249
250 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
251
252 if (ret) {
253 error_report("Failed to set crypto device attribute %lu: %s",
254 attr, strerror(-ret));
255 }
256 }
257
258 static void kvm_s390_init_aes_kw(void)
259 {
260 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
261
262 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
263 NULL)) {
264 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
265 }
266
267 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
268 kvm_s390_set_crypto_attr(attr);
269 }
270 }
271
272 static void kvm_s390_init_dea_kw(void)
273 {
274 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
275
276 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
277 NULL)) {
278 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
279 }
280
281 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
282 kvm_s390_set_crypto_attr(attr);
283 }
284 }
285
286 void kvm_s390_crypto_reset(void)
287 {
288 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
289 kvm_s390_init_aes_kw();
290 kvm_s390_init_dea_kw();
291 }
292 }
293
294 void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp)
295 {
296 if (pagesize == 4 * KiB) {
297 return;
298 }
299
300 if (!hpage_1m_allowed()) {
301 error_setg(errp, "This QEMU machine does not support huge page "
302 "mappings");
303 return;
304 }
305
306 if (pagesize != 1 * MiB) {
307 error_setg(errp, "Memory backing with 2G pages was specified, "
308 "but KVM does not support this memory backing");
309 return;
310 }
311
312 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) {
313 error_setg(errp, "Memory backing with 1M pages was specified, "
314 "but KVM does not support this memory backing");
315 return;
316 }
317
318 cap_hpage_1m = 1;
319 }
320
321 int kvm_s390_get_hpage_1m(void)
322 {
323 return cap_hpage_1m;
324 }
325
326 static void ccw_machine_class_foreach(ObjectClass *oc, void *opaque)
327 {
328 MachineClass *mc = MACHINE_CLASS(oc);
329
330 mc->default_cpu_type = S390_CPU_TYPE_NAME("host");
331 }
332
333 int kvm_arch_get_default_type(MachineState *ms)
334 {
335 return 0;
336 }
337
338 int kvm_arch_init(MachineState *ms, KVMState *s)
339 {
340 int required_caps[] = {
341 KVM_CAP_DEVICE_CTRL,
342 KVM_CAP_SYNC_REGS,
343 };
344
345 for (int i = 0; i < ARRAY_SIZE(required_caps); i++) {
346 if (!kvm_check_extension(s, required_caps[i])) {
347 error_report("KVM is missing capability #%d - "
348 "please use kernel 3.15 or newer", required_caps[i]);
349 return -1;
350 }
351 }
352
353 object_class_foreach(ccw_machine_class_foreach, TYPE_S390_CCW_MACHINE,
354 false, NULL);
355
356 if (!kvm_check_extension(s, KVM_CAP_S390_COW)) {
357 error_report("KVM is missing capability KVM_CAP_S390_COW - "
358 "unsupported environment");
359 return -1;
360 }
361
362 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
363 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
364 cap_mem_op_extension = kvm_check_extension(s, KVM_CAP_S390_MEM_OP_EXTENSION);
365 mem_op_storage_key_support = cap_mem_op_extension > 0;
366 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
367 cap_vcpu_resets = kvm_check_extension(s, KVM_CAP_S390_VCPU_RESETS);
368 cap_protected = kvm_check_extension(s, KVM_CAP_S390_PROTECTED);
369 cap_zpci_op = kvm_check_extension(s, KVM_CAP_S390_ZPCI_OP);
370 cap_protected_dump = kvm_check_extension(s, KVM_CAP_S390_PROTECTED_DUMP);
371
372 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
373 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
374 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
375 kvm_vm_enable_cap(s, KVM_CAP_S390_CPU_TOPOLOGY, 0);
376 if (ri_allowed()) {
377 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
378 cap_ri = 1;
379 }
380 }
381 if (cpu_model_allowed()) {
382 kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0);
383 }
384
385 /*
386 * The migration interface for ais was introduced with kernel 4.13
387 * but the capability itself had been active since 4.12. As migration
388 * support is considered necessary, we only try to enable this for
389 * newer machine types if KVM_CAP_S390_AIS_MIGRATION is available.
390 */
391 if (cpu_model_allowed() && kvm_kernel_irqchip_allowed() &&
392 kvm_check_extension(s, KVM_CAP_S390_AIS_MIGRATION)) {
393 kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0);
394 }
395
396 kvm_set_max_memslot_size(KVM_SLOT_MAX_BYTES);
397 return 0;
398 }
399
400 int kvm_arch_irqchip_create(KVMState *s)
401 {
402 return 0;
403 }
404
405 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
406 {
407 return cpu->cpu_index;
408 }
409
410 int kvm_arch_init_vcpu(CPUState *cs)
411 {
412 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
413 S390CPU *cpu = S390_CPU(cs);
414 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
415 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE(max_cpus));
416 return 0;
417 }
418
419 int kvm_arch_destroy_vcpu(CPUState *cs)
420 {
421 S390CPU *cpu = S390_CPU(cs);
422
423 g_free(cpu->irqstate);
424 cpu->irqstate = NULL;
425
426 return 0;
427 }
428
429 static void kvm_s390_reset_vcpu(S390CPU *cpu, unsigned long type)
430 {
431 CPUState *cs = CPU(cpu);
432
433 /*
434 * The reset call is needed here to reset in-kernel vcpu data that
435 * we can't access directly from QEMU (i.e. with older kernels
436 * which don't support sync_regs/ONE_REG). Before this ioctl
437 * cpu_synchronize_state() is called in common kvm code
438 * (kvm-all).
439 */
440 if (kvm_vcpu_ioctl(cs, type)) {
441 error_report("CPU reset failed on CPU %i type %lx",
442 cs->cpu_index, type);
443 }
444 }
445
446 void kvm_s390_reset_vcpu_initial(S390CPU *cpu)
447 {
448 kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET);
449 }
450
451 void kvm_s390_reset_vcpu_clear(S390CPU *cpu)
452 {
453 if (cap_vcpu_resets) {
454 kvm_s390_reset_vcpu(cpu, KVM_S390_CLEAR_RESET);
455 } else {
456 kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET);
457 }
458 }
459
460 void kvm_s390_reset_vcpu_normal(S390CPU *cpu)
461 {
462 if (cap_vcpu_resets) {
463 kvm_s390_reset_vcpu(cpu, KVM_S390_NORMAL_RESET);
464 }
465 }
466
467 static int can_sync_regs(CPUState *cs, int regs)
468 {
469 return (cs->kvm_run->kvm_valid_regs & regs) == regs;
470 }
471
472 #define KVM_SYNC_REQUIRED_REGS (KVM_SYNC_GPRS | KVM_SYNC_ACRS | \
473 KVM_SYNC_CRS | KVM_SYNC_PREFIX)
474
475 int kvm_arch_put_registers(CPUState *cs, int level)
476 {
477 S390CPU *cpu = S390_CPU(cs);
478 CPUS390XState *env = &cpu->env;
479 struct kvm_fpu fpu = {};
480 int r;
481 int i;
482
483 g_assert(can_sync_regs(cs, KVM_SYNC_REQUIRED_REGS));
484
485 /* always save the PSW and the GPRS*/
486 cs->kvm_run->psw_addr = env->psw.addr;
487 cs->kvm_run->psw_mask = env->psw.mask;
488
489 memcpy(cs->kvm_run->s.regs.gprs, env->regs, sizeof(cs->kvm_run->s.regs.gprs));
490 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
491
492 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
493 for (i = 0; i < 32; i++) {
494 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0];
495 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1];
496 }
497 cs->kvm_run->s.regs.fpc = env->fpc;
498 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
499 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
500 for (i = 0; i < 16; i++) {
501 cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i);
502 }
503 cs->kvm_run->s.regs.fpc = env->fpc;
504 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
505 } else {
506 /* Floating point */
507 for (i = 0; i < 16; i++) {
508 fpu.fprs[i] = *get_freg(env, i);
509 }
510 fpu.fpc = env->fpc;
511
512 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
513 if (r < 0) {
514 return r;
515 }
516 }
517
518 /* Do we need to save more than that? */
519 if (level == KVM_PUT_RUNTIME_STATE) {
520 return 0;
521 }
522
523 /*
524 * Access registers, control registers and the prefix - these are
525 * always available via kvm_sync_regs in the kernels that we support
526 */
527 memcpy(cs->kvm_run->s.regs.acrs, env->aregs, sizeof(cs->kvm_run->s.regs.acrs));
528 memcpy(cs->kvm_run->s.regs.crs, env->cregs, sizeof(cs->kvm_run->s.regs.crs));
529 cs->kvm_run->s.regs.prefix = env->psa;
530 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS | KVM_SYNC_CRS | KVM_SYNC_PREFIX;
531
532 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
533 cs->kvm_run->s.regs.cputm = env->cputm;
534 cs->kvm_run->s.regs.ckc = env->ckc;
535 cs->kvm_run->s.regs.todpr = env->todpr;
536 cs->kvm_run->s.regs.gbea = env->gbea;
537 cs->kvm_run->s.regs.pp = env->pp;
538 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
539 } else {
540 /*
541 * These ONE_REGS are not protected by a capability. As they are only
542 * necessary for migration we just trace a possible error, but don't
543 * return with an error return code.
544 */
545 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
546 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
547 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
548 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
549 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
550 }
551
552 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
553 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
554 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
555 }
556
557 /* pfault parameters */
558 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
559 cs->kvm_run->s.regs.pft = env->pfault_token;
560 cs->kvm_run->s.regs.pfs = env->pfault_select;
561 cs->kvm_run->s.regs.pfc = env->pfault_compare;
562 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
563 } else if (cap_async_pf) {
564 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
565 if (r < 0) {
566 return r;
567 }
568 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
569 if (r < 0) {
570 return r;
571 }
572 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
573 if (r < 0) {
574 return r;
575 }
576 }
577
578 if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
579 memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32);
580 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB;
581 }
582
583 if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
584 cs->kvm_run->s.regs.bpbc = env->bpbc;
585 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC;
586 }
587
588 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
589 cs->kvm_run->s.regs.etoken = env->etoken;
590 cs->kvm_run->s.regs.etoken_extension = env->etoken_extension;
591 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN;
592 }
593
594 if (can_sync_regs(cs, KVM_SYNC_DIAG318)) {
595 cs->kvm_run->s.regs.diag318 = env->diag318_info;
596 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318;
597 }
598
599 return 0;
600 }
601
602 int kvm_arch_get_registers(CPUState *cs)
603 {
604 S390CPU *cpu = S390_CPU(cs);
605 CPUS390XState *env = &cpu->env;
606 struct kvm_fpu fpu;
607 int i, r;
608
609 /* get the PSW */
610 env->psw.addr = cs->kvm_run->psw_addr;
611 env->psw.mask = cs->kvm_run->psw_mask;
612
613 /* the GPRS, ACRS and CRS */
614 g_assert(can_sync_regs(cs, KVM_SYNC_REQUIRED_REGS));
615 memcpy(env->regs, cs->kvm_run->s.regs.gprs, sizeof(env->regs));
616 memcpy(env->aregs, cs->kvm_run->s.regs.acrs, sizeof(env->aregs));
617 memcpy(env->cregs, cs->kvm_run->s.regs.crs, sizeof(env->cregs));
618
619 /* The prefix */
620 env->psa = cs->kvm_run->s.regs.prefix;
621
622 /* Floating point and vector registers */
623 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
624 for (i = 0; i < 32; i++) {
625 env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0];
626 env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1];
627 }
628 env->fpc = cs->kvm_run->s.regs.fpc;
629 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
630 for (i = 0; i < 16; i++) {
631 *get_freg(env, i) = cs->kvm_run->s.regs.fprs[i];
632 }
633 env->fpc = cs->kvm_run->s.regs.fpc;
634 } else {
635 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
636 if (r < 0) {
637 return r;
638 }
639 for (i = 0; i < 16; i++) {
640 *get_freg(env, i) = fpu.fprs[i];
641 }
642 env->fpc = fpu.fpc;
643 }
644
645 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
646 env->cputm = cs->kvm_run->s.regs.cputm;
647 env->ckc = cs->kvm_run->s.regs.ckc;
648 env->todpr = cs->kvm_run->s.regs.todpr;
649 env->gbea = cs->kvm_run->s.regs.gbea;
650 env->pp = cs->kvm_run->s.regs.pp;
651 } else {
652 /*
653 * These ONE_REGS are not protected by a capability. As they are only
654 * necessary for migration we just trace a possible error, but don't
655 * return with an error return code.
656 */
657 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
658 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
659 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
660 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
661 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
662 }
663
664 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
665 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
666 }
667
668 if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
669 memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32);
670 }
671
672 if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
673 env->bpbc = cs->kvm_run->s.regs.bpbc;
674 }
675
676 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
677 env->etoken = cs->kvm_run->s.regs.etoken;
678 env->etoken_extension = cs->kvm_run->s.regs.etoken_extension;
679 }
680
681 /* pfault parameters */
682 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
683 env->pfault_token = cs->kvm_run->s.regs.pft;
684 env->pfault_select = cs->kvm_run->s.regs.pfs;
685 env->pfault_compare = cs->kvm_run->s.regs.pfc;
686 } else if (cap_async_pf) {
687 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
688 if (r < 0) {
689 return r;
690 }
691 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
692 if (r < 0) {
693 return r;
694 }
695 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
696 if (r < 0) {
697 return r;
698 }
699 }
700
701 if (can_sync_regs(cs, KVM_SYNC_DIAG318)) {
702 env->diag318_info = cs->kvm_run->s.regs.diag318;
703 }
704
705 return 0;
706 }
707
708 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
709 {
710 int r;
711 struct kvm_device_attr attr = {
712 .group = KVM_S390_VM_TOD,
713 .attr = KVM_S390_VM_TOD_LOW,
714 .addr = (uint64_t)tod_low,
715 };
716
717 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
718 if (r) {
719 return r;
720 }
721
722 attr.attr = KVM_S390_VM_TOD_HIGH;
723 attr.addr = (uint64_t)tod_high;
724 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
725 }
726
727 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low)
728 {
729 int r;
730 struct kvm_s390_vm_tod_clock gtod;
731 struct kvm_device_attr attr = {
732 .group = KVM_S390_VM_TOD,
733 .attr = KVM_S390_VM_TOD_EXT,
734 .addr = (uint64_t)&gtod,
735 };
736
737 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
738 *tod_high = gtod.epoch_idx;
739 *tod_low = gtod.tod;
740
741 return r;
742 }
743
744 int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low)
745 {
746 int r;
747 struct kvm_device_attr attr = {
748 .group = KVM_S390_VM_TOD,
749 .attr = KVM_S390_VM_TOD_LOW,
750 .addr = (uint64_t)&tod_low,
751 };
752
753 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
754 if (r) {
755 return r;
756 }
757
758 attr.attr = KVM_S390_VM_TOD_HIGH;
759 attr.addr = (uint64_t)&tod_high;
760 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
761 }
762
763 int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low)
764 {
765 struct kvm_s390_vm_tod_clock gtod = {
766 .epoch_idx = tod_high,
767 .tod = tod_low,
768 };
769 struct kvm_device_attr attr = {
770 .group = KVM_S390_VM_TOD,
771 .attr = KVM_S390_VM_TOD_EXT,
772 .addr = (uint64_t)&gtod,
773 };
774
775 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
776 }
777
778 /**
779 * kvm_s390_mem_op:
780 * @addr: the logical start address in guest memory
781 * @ar: the access register number
782 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying
783 * @len: length that should be transferred
784 * @is_write: true = write, false = read
785 * Returns: 0 on success, non-zero if an exception or error occurred
786 *
787 * Use KVM ioctl to read/write from/to guest memory. An access exception
788 * is injected into the vCPU in case of translation errors.
789 */
790 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
791 int len, bool is_write)
792 {
793 struct kvm_s390_mem_op mem_op = {
794 .gaddr = addr,
795 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
796 .size = len,
797 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
798 : KVM_S390_MEMOP_LOGICAL_READ,
799 .buf = (uint64_t)hostbuf,
800 .ar = ar,
801 .key = (cpu->env.psw.mask & PSW_MASK_KEY) >> PSW_SHIFT_KEY,
802 };
803 int ret;
804
805 if (!cap_mem_op) {
806 return -ENOSYS;
807 }
808 if (!hostbuf) {
809 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
810 }
811 if (mem_op_storage_key_support) {
812 mem_op.flags |= KVM_S390_MEMOP_F_SKEY_PROTECTION;
813 }
814
815 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
816 if (ret < 0) {
817 warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
818 }
819 return ret;
820 }
821
822 int kvm_s390_mem_op_pv(S390CPU *cpu, uint64_t offset, void *hostbuf,
823 int len, bool is_write)
824 {
825 struct kvm_s390_mem_op mem_op = {
826 .sida_offset = offset,
827 .size = len,
828 .op = is_write ? KVM_S390_MEMOP_SIDA_WRITE
829 : KVM_S390_MEMOP_SIDA_READ,
830 .buf = (uint64_t)hostbuf,
831 };
832 int ret;
833
834 if (!cap_mem_op || !cap_protected) {
835 return -ENOSYS;
836 }
837
838 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
839 if (ret < 0) {
840 error_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
841 abort();
842 }
843 return ret;
844 }
845
846 static uint8_t const *sw_bp_inst;
847 static uint8_t sw_bp_ilen;
848
849 static void determine_sw_breakpoint_instr(void)
850 {
851 /* DIAG 501 is used for sw breakpoints with old kernels */
852 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
853 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
854 static const uint8_t instr_0x0000[] = {0x00, 0x00};
855
856 if (sw_bp_inst) {
857 return;
858 }
859 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
860 sw_bp_inst = diag_501;
861 sw_bp_ilen = sizeof(diag_501);
862 trace_kvm_sw_breakpoint(4);
863 } else {
864 sw_bp_inst = instr_0x0000;
865 sw_bp_ilen = sizeof(instr_0x0000);
866 trace_kvm_sw_breakpoint(2);
867 }
868 }
869
870 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
871 {
872 determine_sw_breakpoint_instr();
873
874 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
875 sw_bp_ilen, 0) ||
876 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
877 return -EINVAL;
878 }
879 return 0;
880 }
881
882 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
883 {
884 uint8_t t[MAX_ILEN];
885
886 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
887 return -EINVAL;
888 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
889 return -EINVAL;
890 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
891 sw_bp_ilen, 1)) {
892 return -EINVAL;
893 }
894
895 return 0;
896 }
897
898 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
899 int len, int type)
900 {
901 int n;
902
903 for (n = 0; n < nb_hw_breakpoints; n++) {
904 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
905 (hw_breakpoints[n].len == len || len == -1)) {
906 return &hw_breakpoints[n];
907 }
908 }
909
910 return NULL;
911 }
912
913 static int insert_hw_breakpoint(target_ulong addr, int len, int type)
914 {
915 int size;
916
917 if (find_hw_breakpoint(addr, len, type)) {
918 return -EEXIST;
919 }
920
921 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
922
923 if (!hw_breakpoints) {
924 nb_hw_breakpoints = 0;
925 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
926 } else {
927 hw_breakpoints =
928 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
929 }
930
931 if (!hw_breakpoints) {
932 nb_hw_breakpoints = 0;
933 return -ENOMEM;
934 }
935
936 hw_breakpoints[nb_hw_breakpoints].addr = addr;
937 hw_breakpoints[nb_hw_breakpoints].len = len;
938 hw_breakpoints[nb_hw_breakpoints].type = type;
939
940 nb_hw_breakpoints++;
941
942 return 0;
943 }
944
945 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
946 {
947 switch (type) {
948 case GDB_BREAKPOINT_HW:
949 type = KVM_HW_BP;
950 break;
951 case GDB_WATCHPOINT_WRITE:
952 if (len < 1) {
953 return -EINVAL;
954 }
955 type = KVM_HW_WP_WRITE;
956 break;
957 default:
958 return -ENOSYS;
959 }
960 return insert_hw_breakpoint(addr, len, type);
961 }
962
963 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
964 {
965 int size;
966 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
967
968 if (bp == NULL) {
969 return -ENOENT;
970 }
971
972 nb_hw_breakpoints--;
973 if (nb_hw_breakpoints > 0) {
974 /*
975 * In order to trim the array, move the last element to the position to
976 * be removed - if necessary.
977 */
978 if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
979 *bp = hw_breakpoints[nb_hw_breakpoints];
980 }
981 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
982 hw_breakpoints =
983 g_realloc(hw_breakpoints, size);
984 } else {
985 g_free(hw_breakpoints);
986 hw_breakpoints = NULL;
987 }
988
989 return 0;
990 }
991
992 void kvm_arch_remove_all_hw_breakpoints(void)
993 {
994 nb_hw_breakpoints = 0;
995 g_free(hw_breakpoints);
996 hw_breakpoints = NULL;
997 }
998
999 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
1000 {
1001 int i;
1002
1003 if (nb_hw_breakpoints > 0) {
1004 dbg->arch.nr_hw_bp = nb_hw_breakpoints;
1005 dbg->arch.hw_bp = hw_breakpoints;
1006
1007 for (i = 0; i < nb_hw_breakpoints; ++i) {
1008 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
1009 hw_breakpoints[i].addr);
1010 }
1011 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1012 } else {
1013 dbg->arch.nr_hw_bp = 0;
1014 dbg->arch.hw_bp = NULL;
1015 }
1016 }
1017
1018 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1019 {
1020 }
1021
1022 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1023 {
1024 return MEMTXATTRS_UNSPECIFIED;
1025 }
1026
1027 int kvm_arch_process_async_events(CPUState *cs)
1028 {
1029 return cs->halted;
1030 }
1031
1032 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
1033 struct kvm_s390_interrupt *interrupt)
1034 {
1035 int r = 0;
1036
1037 interrupt->type = irq->type;
1038 switch (irq->type) {
1039 case KVM_S390_INT_VIRTIO:
1040 interrupt->parm = irq->u.ext.ext_params;
1041 /* fall through */
1042 case KVM_S390_INT_PFAULT_INIT:
1043 case KVM_S390_INT_PFAULT_DONE:
1044 interrupt->parm64 = irq->u.ext.ext_params2;
1045 break;
1046 case KVM_S390_PROGRAM_INT:
1047 interrupt->parm = irq->u.pgm.code;
1048 break;
1049 case KVM_S390_SIGP_SET_PREFIX:
1050 interrupt->parm = irq->u.prefix.address;
1051 break;
1052 case KVM_S390_INT_SERVICE:
1053 interrupt->parm = irq->u.ext.ext_params;
1054 break;
1055 case KVM_S390_MCHK:
1056 interrupt->parm = irq->u.mchk.cr14;
1057 interrupt->parm64 = irq->u.mchk.mcic;
1058 break;
1059 case KVM_S390_INT_EXTERNAL_CALL:
1060 interrupt->parm = irq->u.extcall.code;
1061 break;
1062 case KVM_S390_INT_EMERGENCY:
1063 interrupt->parm = irq->u.emerg.code;
1064 break;
1065 case KVM_S390_SIGP_STOP:
1066 case KVM_S390_RESTART:
1067 break; /* These types have no parameters */
1068 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1069 interrupt->parm = irq->u.io.subchannel_id << 16;
1070 interrupt->parm |= irq->u.io.subchannel_nr;
1071 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
1072 interrupt->parm64 |= irq->u.io.io_int_word;
1073 break;
1074 default:
1075 r = -EINVAL;
1076 break;
1077 }
1078 return r;
1079 }
1080
1081 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
1082 {
1083 struct kvm_s390_interrupt kvmint = {};
1084 int r;
1085
1086 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1087 if (r < 0) {
1088 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1089 exit(1);
1090 }
1091
1092 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
1093 if (r < 0) {
1094 fprintf(stderr, "KVM failed to inject interrupt\n");
1095 exit(1);
1096 }
1097 }
1098
1099 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
1100 {
1101 CPUState *cs = CPU(cpu);
1102 int r;
1103
1104 if (cap_s390_irq) {
1105 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
1106 if (!r) {
1107 return;
1108 }
1109 error_report("KVM failed to inject interrupt %llx", irq->type);
1110 exit(1);
1111 }
1112
1113 inject_vcpu_irq_legacy(cs, irq);
1114 }
1115
1116 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq)
1117 {
1118 struct kvm_s390_interrupt kvmint = {};
1119 int r;
1120
1121 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1122 if (r < 0) {
1123 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1124 exit(1);
1125 }
1126
1127 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
1128 if (r < 0) {
1129 fprintf(stderr, "KVM failed to inject interrupt\n");
1130 exit(1);
1131 }
1132 }
1133
1134 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code)
1135 {
1136 struct kvm_s390_irq irq = {
1137 .type = KVM_S390_PROGRAM_INT,
1138 .u.pgm.code = code,
1139 };
1140 qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n",
1141 cpu->env.psw.addr);
1142 kvm_s390_vcpu_interrupt(cpu, &irq);
1143 }
1144
1145 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1146 {
1147 struct kvm_s390_irq irq = {
1148 .type = KVM_S390_PROGRAM_INT,
1149 .u.pgm.code = code,
1150 .u.pgm.trans_exc_code = te_code,
1151 .u.pgm.exc_access_id = te_code & 3,
1152 };
1153
1154 kvm_s390_vcpu_interrupt(cpu, &irq);
1155 }
1156
1157 static void kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1158 uint16_t ipbh0)
1159 {
1160 CPUS390XState *env = &cpu->env;
1161 uint64_t sccb;
1162 uint32_t code;
1163 int r;
1164
1165 sccb = env->regs[ipbh0 & 0xf];
1166 code = env->regs[(ipbh0 & 0xf0) >> 4];
1167
1168 switch (run->s390_sieic.icptcode) {
1169 case ICPT_PV_INSTR_NOTIFICATION:
1170 g_assert(s390_is_pv());
1171 /* The notification intercepts are currently handled by KVM */
1172 error_report("unexpected SCLP PV notification");
1173 exit(1);
1174 break;
1175 case ICPT_PV_INSTR:
1176 g_assert(s390_is_pv());
1177 sclp_service_call_protected(cpu, sccb, code);
1178 /* Setting the CC is done by the Ultravisor. */
1179 break;
1180 case ICPT_INSTRUCTION:
1181 g_assert(!s390_is_pv());
1182 r = sclp_service_call(cpu, sccb, code);
1183 if (r < 0) {
1184 kvm_s390_program_interrupt(cpu, -r);
1185 return;
1186 }
1187 setcc(cpu, r);
1188 }
1189 }
1190
1191 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1192 {
1193 CPUS390XState *env = &cpu->env;
1194 int rc = 0;
1195 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1196
1197 switch (ipa1) {
1198 case PRIV_B2_XSCH:
1199 ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED);
1200 break;
1201 case PRIV_B2_CSCH:
1202 ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED);
1203 break;
1204 case PRIV_B2_HSCH:
1205 ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED);
1206 break;
1207 case PRIV_B2_MSCH:
1208 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1209 break;
1210 case PRIV_B2_SSCH:
1211 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1212 break;
1213 case PRIV_B2_STCRW:
1214 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED);
1215 break;
1216 case PRIV_B2_STSCH:
1217 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1218 break;
1219 case PRIV_B2_TSCH:
1220 /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1221 fprintf(stderr, "Spurious tsch intercept\n");
1222 break;
1223 case PRIV_B2_CHSC:
1224 ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED);
1225 break;
1226 case PRIV_B2_TPI:
1227 /* This should have been handled by kvm already. */
1228 fprintf(stderr, "Spurious tpi intercept\n");
1229 break;
1230 case PRIV_B2_SCHM:
1231 ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1232 run->s390_sieic.ipb, RA_IGNORED);
1233 break;
1234 case PRIV_B2_RSCH:
1235 ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED);
1236 break;
1237 case PRIV_B2_RCHP:
1238 ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED);
1239 break;
1240 case PRIV_B2_STCPS:
1241 /* We do not provide this instruction, it is suppressed. */
1242 break;
1243 case PRIV_B2_SAL:
1244 ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED);
1245 break;
1246 case PRIV_B2_SIGA:
1247 /* Not provided, set CC = 3 for subchannel not operational */
1248 setcc(cpu, 3);
1249 break;
1250 case PRIV_B2_SCLP_CALL:
1251 kvm_sclp_service_call(cpu, run, ipbh0);
1252 break;
1253 default:
1254 rc = -1;
1255 trace_kvm_insn_unhandled_priv(ipa1);
1256 break;
1257 }
1258
1259 return rc;
1260 }
1261
1262 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1263 uint8_t *ar)
1264 {
1265 CPUS390XState *env = &cpu->env;
1266 uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1267 uint32_t base2 = run->s390_sieic.ipb >> 28;
1268 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1269 ((run->s390_sieic.ipb & 0xff00) << 4);
1270
1271 if (disp2 & 0x80000) {
1272 disp2 += 0xfff00000;
1273 }
1274 if (ar) {
1275 *ar = base2;
1276 }
1277
1278 return (base2 ? env->regs[base2] : 0) +
1279 (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1280 }
1281
1282 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1283 uint8_t *ar)
1284 {
1285 CPUS390XState *env = &cpu->env;
1286 uint32_t base2 = run->s390_sieic.ipb >> 28;
1287 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1288 ((run->s390_sieic.ipb & 0xff00) << 4);
1289
1290 if (disp2 & 0x80000) {
1291 disp2 += 0xfff00000;
1292 }
1293 if (ar) {
1294 *ar = base2;
1295 }
1296
1297 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1298 }
1299
1300 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1301 {
1302 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1303
1304 if (s390_has_feat(S390_FEAT_ZPCI)) {
1305 return clp_service_call(cpu, r2, RA_IGNORED);
1306 } else {
1307 return -1;
1308 }
1309 }
1310
1311 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1312 {
1313 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1314 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1315
1316 if (s390_has_feat(S390_FEAT_ZPCI)) {
1317 return pcilg_service_call(cpu, r1, r2, RA_IGNORED);
1318 } else {
1319 return -1;
1320 }
1321 }
1322
1323 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1324 {
1325 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1326 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1327
1328 if (s390_has_feat(S390_FEAT_ZPCI)) {
1329 return pcistg_service_call(cpu, r1, r2, RA_IGNORED);
1330 } else {
1331 return -1;
1332 }
1333 }
1334
1335 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1336 {
1337 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1338 uint64_t fiba;
1339 uint8_t ar;
1340
1341 if (s390_has_feat(S390_FEAT_ZPCI)) {
1342 fiba = get_base_disp_rxy(cpu, run, &ar);
1343
1344 return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1345 } else {
1346 return -1;
1347 }
1348 }
1349
1350 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1351 {
1352 CPUS390XState *env = &cpu->env;
1353 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1354 uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1355 uint8_t isc;
1356 uint16_t mode;
1357 int r;
1358
1359 mode = env->regs[r1] & 0xffff;
1360 isc = (env->regs[r3] >> 27) & 0x7;
1361 r = css_do_sic(cpu, isc, mode);
1362 if (r) {
1363 kvm_s390_program_interrupt(cpu, -r);
1364 }
1365
1366 return 0;
1367 }
1368
1369 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1370 {
1371 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1372 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1373
1374 if (s390_has_feat(S390_FEAT_ZPCI)) {
1375 return rpcit_service_call(cpu, r1, r2, RA_IGNORED);
1376 } else {
1377 return -1;
1378 }
1379 }
1380
1381 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1382 {
1383 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1384 uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1385 uint64_t gaddr;
1386 uint8_t ar;
1387
1388 if (s390_has_feat(S390_FEAT_ZPCI)) {
1389 gaddr = get_base_disp_rsy(cpu, run, &ar);
1390
1391 return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED);
1392 } else {
1393 return -1;
1394 }
1395 }
1396
1397 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1398 {
1399 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1400 uint64_t fiba;
1401 uint8_t ar;
1402
1403 if (s390_has_feat(S390_FEAT_ZPCI)) {
1404 fiba = get_base_disp_rxy(cpu, run, &ar);
1405
1406 return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1407 } else {
1408 return -1;
1409 }
1410 }
1411
1412 static void kvm_handle_ptf(S390CPU *cpu, struct kvm_run *run)
1413 {
1414 uint8_t r1 = (run->s390_sieic.ipb >> 20) & 0x0f;
1415
1416 s390_handle_ptf(cpu, r1, RA_IGNORED);
1417 }
1418
1419 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1420 {
1421 int r = 0;
1422
1423 switch (ipa1) {
1424 case PRIV_B9_CLP:
1425 r = kvm_clp_service_call(cpu, run);
1426 break;
1427 case PRIV_B9_PCISTG:
1428 r = kvm_pcistg_service_call(cpu, run);
1429 break;
1430 case PRIV_B9_PCILG:
1431 r = kvm_pcilg_service_call(cpu, run);
1432 break;
1433 case PRIV_B9_RPCIT:
1434 r = kvm_rpcit_service_call(cpu, run);
1435 break;
1436 case PRIV_B9_PTF:
1437 kvm_handle_ptf(cpu, run);
1438 break;
1439 case PRIV_B9_EQBS:
1440 /* just inject exception */
1441 r = -1;
1442 break;
1443 default:
1444 r = -1;
1445 trace_kvm_insn_unhandled_priv(ipa1);
1446 break;
1447 }
1448
1449 return r;
1450 }
1451
1452 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1453 {
1454 int r = 0;
1455
1456 switch (ipbl) {
1457 case PRIV_EB_PCISTB:
1458 r = kvm_pcistb_service_call(cpu, run);
1459 break;
1460 case PRIV_EB_SIC:
1461 r = kvm_sic_service_call(cpu, run);
1462 break;
1463 case PRIV_EB_SQBS:
1464 /* just inject exception */
1465 r = -1;
1466 break;
1467 default:
1468 r = -1;
1469 trace_kvm_insn_unhandled_priv(ipbl);
1470 break;
1471 }
1472
1473 return r;
1474 }
1475
1476 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1477 {
1478 int r = 0;
1479
1480 switch (ipbl) {
1481 case PRIV_E3_MPCIFC:
1482 r = kvm_mpcifc_service_call(cpu, run);
1483 break;
1484 case PRIV_E3_STPCIFC:
1485 r = kvm_stpcifc_service_call(cpu, run);
1486 break;
1487 default:
1488 r = -1;
1489 trace_kvm_insn_unhandled_priv(ipbl);
1490 break;
1491 }
1492
1493 return r;
1494 }
1495
1496 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1497 {
1498 CPUS390XState *env = &cpu->env;
1499 int ret;
1500
1501 ret = s390_virtio_hypercall(env);
1502 if (ret == -EINVAL) {
1503 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1504 return 0;
1505 }
1506
1507 return ret;
1508 }
1509
1510 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1511 {
1512 uint64_t r1, r3;
1513 int rc;
1514
1515 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1516 r3 = run->s390_sieic.ipa & 0x000f;
1517 rc = handle_diag_288(&cpu->env, r1, r3);
1518 if (rc) {
1519 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1520 }
1521 }
1522
1523 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1524 {
1525 uint64_t r1, r3;
1526
1527 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1528 r3 = run->s390_sieic.ipa & 0x000f;
1529 handle_diag_308(&cpu->env, r1, r3, RA_IGNORED);
1530 }
1531
1532 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1533 {
1534 CPUS390XState *env = &cpu->env;
1535 unsigned long pc;
1536
1537 pc = env->psw.addr - sw_bp_ilen;
1538 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1539 env->psw.addr = pc;
1540 return EXCP_DEBUG;
1541 }
1542
1543 return -ENOENT;
1544 }
1545
1546 void kvm_s390_set_diag318(CPUState *cs, uint64_t diag318_info)
1547 {
1548 CPUS390XState *env = &S390_CPU(cs)->env;
1549
1550 /* Feat bit is set only if KVM supports sync for diag318 */
1551 if (s390_has_feat(S390_FEAT_DIAG_318)) {
1552 env->diag318_info = diag318_info;
1553 cs->kvm_run->s.regs.diag318 = diag318_info;
1554 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318;
1555 /*
1556 * diag 318 info is zeroed during a clear reset and
1557 * diag 308 IPL subcodes.
1558 */
1559 }
1560 }
1561
1562 static void handle_diag_318(S390CPU *cpu, struct kvm_run *run)
1563 {
1564 uint64_t reg = (run->s390_sieic.ipa & 0x00f0) >> 4;
1565 uint64_t diag318_info = run->s.regs.gprs[reg];
1566 CPUState *t;
1567
1568 /*
1569 * DIAG 318 can only be enabled with KVM support. As such, let's
1570 * ensure a guest cannot execute this instruction erroneously.
1571 */
1572 if (!s390_has_feat(S390_FEAT_DIAG_318)) {
1573 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1574 return;
1575 }
1576
1577 CPU_FOREACH(t) {
1578 run_on_cpu(t, s390_do_cpu_set_diag318,
1579 RUN_ON_CPU_HOST_ULONG(diag318_info));
1580 }
1581 }
1582
1583 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1584
1585 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1586 {
1587 int r = 0;
1588 uint16_t func_code;
1589
1590 /*
1591 * For any diagnose call we support, bits 48-63 of the resulting
1592 * address specify the function code; the remainder is ignored.
1593 */
1594 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1595 switch (func_code) {
1596 case DIAG_TIMEREVENT:
1597 kvm_handle_diag_288(cpu, run);
1598 break;
1599 case DIAG_IPL:
1600 kvm_handle_diag_308(cpu, run);
1601 break;
1602 case DIAG_SET_CONTROL_PROGRAM_CODES:
1603 handle_diag_318(cpu, run);
1604 break;
1605 case DIAG_KVM_HYPERCALL:
1606 r = handle_hypercall(cpu, run);
1607 break;
1608 case DIAG_KVM_BREAKPOINT:
1609 r = handle_sw_breakpoint(cpu, run);
1610 break;
1611 default:
1612 trace_kvm_insn_diag(func_code);
1613 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1614 break;
1615 }
1616
1617 return r;
1618 }
1619
1620 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb)
1621 {
1622 CPUS390XState *env = &cpu->env;
1623 const uint8_t r1 = ipa1 >> 4;
1624 const uint8_t r3 = ipa1 & 0x0f;
1625 int ret;
1626 uint8_t order;
1627
1628 /* get order code */
1629 order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK;
1630
1631 ret = handle_sigp(env, order, r1, r3);
1632 setcc(cpu, ret);
1633 return 0;
1634 }
1635
1636 static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1637 {
1638 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1639 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1640 int r = -1;
1641
1642 trace_kvm_insn(run->s390_sieic.ipa, run->s390_sieic.ipb);
1643 switch (ipa0) {
1644 case IPA0_B2:
1645 r = handle_b2(cpu, run, ipa1);
1646 break;
1647 case IPA0_B9:
1648 r = handle_b9(cpu, run, ipa1);
1649 break;
1650 case IPA0_EB:
1651 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1652 break;
1653 case IPA0_E3:
1654 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1655 break;
1656 case IPA0_DIAG:
1657 r = handle_diag(cpu, run, run->s390_sieic.ipb);
1658 break;
1659 case IPA0_SIGP:
1660 r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb);
1661 break;
1662 }
1663
1664 if (r < 0) {
1665 r = 0;
1666 kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1667 }
1668
1669 return r;
1670 }
1671
1672 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason,
1673 int pswoffset)
1674 {
1675 CPUState *cs = CPU(cpu);
1676
1677 s390_cpu_halt(cpu);
1678 cpu->env.crash_reason = reason;
1679 qemu_system_guest_panicked(cpu_get_crash_info(cs));
1680 }
1681
1682 /* try to detect pgm check loops */
1683 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run)
1684 {
1685 CPUState *cs = CPU(cpu);
1686 PSW oldpsw, newpsw;
1687
1688 newpsw.mask = ldq_phys(cs->as, cpu->env.psa +
1689 offsetof(LowCore, program_new_psw));
1690 newpsw.addr = ldq_phys(cs->as, cpu->env.psa +
1691 offsetof(LowCore, program_new_psw) + 8);
1692 oldpsw.mask = run->psw_mask;
1693 oldpsw.addr = run->psw_addr;
1694 /*
1695 * Avoid endless loops of operation exceptions, if the pgm new
1696 * PSW will cause a new operation exception.
1697 * The heuristic checks if the pgm new psw is within 6 bytes before
1698 * the faulting psw address (with same DAT, AS settings) and the
1699 * new psw is not a wait psw and the fault was not triggered by
1700 * problem state. In that case go into crashed state.
1701 */
1702
1703 if (oldpsw.addr - newpsw.addr <= 6 &&
1704 !(newpsw.mask & PSW_MASK_WAIT) &&
1705 !(oldpsw.mask & PSW_MASK_PSTATE) &&
1706 (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) &&
1707 (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) {
1708 unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP,
1709 offsetof(LowCore, program_new_psw));
1710 return EXCP_HALTED;
1711 }
1712 return 0;
1713 }
1714
1715 static int handle_intercept(S390CPU *cpu)
1716 {
1717 CPUState *cs = CPU(cpu);
1718 struct kvm_run *run = cs->kvm_run;
1719 int icpt_code = run->s390_sieic.icptcode;
1720 int r = 0;
1721
1722 trace_kvm_intercept(icpt_code, (long)run->psw_addr);
1723 switch (icpt_code) {
1724 case ICPT_INSTRUCTION:
1725 case ICPT_PV_INSTR:
1726 case ICPT_PV_INSTR_NOTIFICATION:
1727 r = handle_instruction(cpu, run);
1728 break;
1729 case ICPT_PROGRAM:
1730 unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP,
1731 offsetof(LowCore, program_new_psw));
1732 r = EXCP_HALTED;
1733 break;
1734 case ICPT_EXT_INT:
1735 unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP,
1736 offsetof(LowCore, external_new_psw));
1737 r = EXCP_HALTED;
1738 break;
1739 case ICPT_WAITPSW:
1740 /* disabled wait, since enabled wait is handled in kernel */
1741 s390_handle_wait(cpu);
1742 r = EXCP_HALTED;
1743 break;
1744 case ICPT_CPU_STOP:
1745 do_stop_interrupt(&cpu->env);
1746 r = EXCP_HALTED;
1747 break;
1748 case ICPT_OPEREXC:
1749 /* check for break points */
1750 r = handle_sw_breakpoint(cpu, run);
1751 if (r == -ENOENT) {
1752 /* Then check for potential pgm check loops */
1753 r = handle_oper_loop(cpu, run);
1754 if (r == 0) {
1755 kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1756 }
1757 }
1758 break;
1759 case ICPT_SOFT_INTERCEPT:
1760 fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1761 exit(1);
1762 break;
1763 case ICPT_IO:
1764 fprintf(stderr, "KVM unimplemented icpt IO\n");
1765 exit(1);
1766 break;
1767 default:
1768 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1769 exit(1);
1770 break;
1771 }
1772
1773 return r;
1774 }
1775
1776 static int handle_tsch(S390CPU *cpu)
1777 {
1778 CPUState *cs = CPU(cpu);
1779 struct kvm_run *run = cs->kvm_run;
1780 int ret;
1781
1782 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb,
1783 RA_IGNORED);
1784 if (ret < 0) {
1785 /*
1786 * Failure.
1787 * If an I/O interrupt had been dequeued, we have to reinject it.
1788 */
1789 if (run->s390_tsch.dequeued) {
1790 s390_io_interrupt(run->s390_tsch.subchannel_id,
1791 run->s390_tsch.subchannel_nr,
1792 run->s390_tsch.io_int_parm,
1793 run->s390_tsch.io_int_word);
1794 }
1795 ret = 0;
1796 }
1797 return ret;
1798 }
1799
1800 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
1801 {
1802 const MachineState *ms = MACHINE(qdev_get_machine());
1803 uint16_t conf_cpus = 0, reserved_cpus = 0;
1804 SysIB_322 sysib;
1805 int del, i;
1806
1807 if (s390_is_pv()) {
1808 s390_cpu_pv_mem_read(cpu, 0, &sysib, sizeof(sysib));
1809 } else if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
1810 return;
1811 }
1812 /* Shift the stack of Extended Names to prepare for our own data */
1813 memmove(&sysib.ext_names[1], &sysib.ext_names[0],
1814 sizeof(sysib.ext_names[0]) * (sysib.count - 1));
1815 /* First virt level, that doesn't provide Ext Names delimits stack. It is
1816 * assumed it's not capable of managing Extended Names for lower levels.
1817 */
1818 for (del = 1; del < sysib.count; del++) {
1819 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
1820 break;
1821 }
1822 }
1823 if (del < sysib.count) {
1824 memset(sysib.ext_names[del], 0,
1825 sizeof(sysib.ext_names[0]) * (sysib.count - del));
1826 }
1827
1828 /* count the cpus and split them into configured and reserved ones */
1829 for (i = 0; i < ms->possible_cpus->len; i++) {
1830 if (ms->possible_cpus->cpus[i].cpu) {
1831 conf_cpus++;
1832 } else {
1833 reserved_cpus++;
1834 }
1835 }
1836 sysib.vm[0].total_cpus = conf_cpus + reserved_cpus;
1837 sysib.vm[0].conf_cpus = conf_cpus;
1838 sysib.vm[0].reserved_cpus = reserved_cpus;
1839
1840 /* Insert short machine name in EBCDIC, padded with blanks */
1841 if (qemu_name) {
1842 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
1843 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
1844 strlen(qemu_name)));
1845 }
1846 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
1847 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1848 * considered by s390 as not capable of providing any Extended Name.
1849 * Therefore if no name was specified on qemu invocation, we go with the
1850 * same "KVMguest" default, which KVM has filled into short name field.
1851 */
1852 strpadcpy((char *)sysib.ext_names[0],
1853 sizeof(sysib.ext_names[0]),
1854 qemu_name ?: "KVMguest", '\0');
1855
1856 /* Insert UUID */
1857 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid));
1858
1859 if (s390_is_pv()) {
1860 s390_cpu_pv_mem_write(cpu, 0, &sysib, sizeof(sysib));
1861 } else {
1862 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
1863 }
1864 }
1865
1866 static int handle_stsi(S390CPU *cpu)
1867 {
1868 CPUState *cs = CPU(cpu);
1869 struct kvm_run *run = cs->kvm_run;
1870
1871 switch (run->s390_stsi.fc) {
1872 case 3:
1873 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
1874 return 0;
1875 }
1876 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
1877 return 0;
1878 case 15:
1879 insert_stsi_15_1_x(cpu, run->s390_stsi.sel2, run->s390_stsi.addr,
1880 run->s390_stsi.ar, RA_IGNORED);
1881 return 0;
1882 default:
1883 return 0;
1884 }
1885 }
1886
1887 static int kvm_arch_handle_debug_exit(S390CPU *cpu)
1888 {
1889 CPUState *cs = CPU(cpu);
1890 struct kvm_run *run = cs->kvm_run;
1891
1892 int ret = 0;
1893 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1894
1895 switch (arch_info->type) {
1896 case KVM_HW_WP_WRITE:
1897 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1898 cs->watchpoint_hit = &hw_watchpoint;
1899 hw_watchpoint.vaddr = arch_info->addr;
1900 hw_watchpoint.flags = BP_MEM_WRITE;
1901 ret = EXCP_DEBUG;
1902 }
1903 break;
1904 case KVM_HW_BP:
1905 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1906 ret = EXCP_DEBUG;
1907 }
1908 break;
1909 case KVM_SINGLESTEP:
1910 if (cs->singlestep_enabled) {
1911 ret = EXCP_DEBUG;
1912 }
1913 break;
1914 default:
1915 ret = -ENOSYS;
1916 }
1917
1918 return ret;
1919 }
1920
1921 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1922 {
1923 S390CPU *cpu = S390_CPU(cs);
1924 int ret = 0;
1925
1926 bql_lock();
1927
1928 kvm_cpu_synchronize_state(cs);
1929
1930 switch (run->exit_reason) {
1931 case KVM_EXIT_S390_SIEIC:
1932 ret = handle_intercept(cpu);
1933 break;
1934 case KVM_EXIT_S390_RESET:
1935 s390_ipl_reset_request(cs, S390_RESET_REIPL);
1936 break;
1937 case KVM_EXIT_S390_TSCH:
1938 ret = handle_tsch(cpu);
1939 break;
1940 case KVM_EXIT_S390_STSI:
1941 ret = handle_stsi(cpu);
1942 break;
1943 case KVM_EXIT_DEBUG:
1944 ret = kvm_arch_handle_debug_exit(cpu);
1945 break;
1946 default:
1947 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
1948 break;
1949 }
1950 bql_unlock();
1951
1952 if (ret == 0) {
1953 ret = EXCP_INTERRUPT;
1954 }
1955 return ret;
1956 }
1957
1958 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
1959 {
1960 return true;
1961 }
1962
1963 void kvm_s390_enable_css_support(S390CPU *cpu)
1964 {
1965 int r;
1966
1967 /* Activate host kernel channel subsystem support. */
1968 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
1969 assert(r == 0);
1970 }
1971
1972 void kvm_arch_init_irq_routing(KVMState *s)
1973 {
1974 /*
1975 * Note that while irqchip capabilities generally imply that cpustates
1976 * are handled in-kernel, it is not true for s390 (yet); therefore, we
1977 * have to override the common code kvm_halt_in_kernel_allowed setting.
1978 */
1979 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
1980 kvm_gsi_routing_allowed = true;
1981 kvm_halt_in_kernel_allowed = false;
1982 }
1983 }
1984
1985 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
1986 int vq, bool assign)
1987 {
1988 struct kvm_ioeventfd kick = {
1989 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
1990 KVM_IOEVENTFD_FLAG_DATAMATCH,
1991 .fd = event_notifier_get_fd(notifier),
1992 .datamatch = vq,
1993 .addr = sch,
1994 .len = 8,
1995 };
1996 trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign,
1997 kick.datamatch);
1998 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
1999 return -ENOSYS;
2000 }
2001 if (!assign) {
2002 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
2003 }
2004 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
2005 }
2006
2007 int kvm_s390_get_protected_dump(void)
2008 {
2009 return cap_protected_dump;
2010 }
2011
2012 int kvm_s390_get_ri(void)
2013 {
2014 return cap_ri;
2015 }
2016
2017 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
2018 {
2019 struct kvm_mp_state mp_state = {};
2020 int ret;
2021
2022 /* the kvm part might not have been initialized yet */
2023 if (CPU(cpu)->kvm_state == NULL) {
2024 return 0;
2025 }
2026
2027 switch (cpu_state) {
2028 case S390_CPU_STATE_STOPPED:
2029 mp_state.mp_state = KVM_MP_STATE_STOPPED;
2030 break;
2031 case S390_CPU_STATE_CHECK_STOP:
2032 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
2033 break;
2034 case S390_CPU_STATE_OPERATING:
2035 mp_state.mp_state = KVM_MP_STATE_OPERATING;
2036 break;
2037 case S390_CPU_STATE_LOAD:
2038 mp_state.mp_state = KVM_MP_STATE_LOAD;
2039 break;
2040 default:
2041 error_report("Requested CPU state is not a valid S390 CPU state: %u",
2042 cpu_state);
2043 exit(1);
2044 }
2045
2046 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2047 if (ret) {
2048 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
2049 strerror(-ret));
2050 }
2051
2052 return ret;
2053 }
2054
2055 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
2056 {
2057 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
2058 struct kvm_s390_irq_state irq_state = {
2059 .buf = (uint64_t) cpu->irqstate,
2060 .len = VCPU_IRQ_BUF_SIZE(max_cpus),
2061 };
2062 CPUState *cs = CPU(cpu);
2063 int32_t bytes;
2064
2065 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2066 return;
2067 }
2068
2069 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
2070 if (bytes < 0) {
2071 cpu->irqstate_saved_size = 0;
2072 error_report("Migration of interrupt state failed");
2073 return;
2074 }
2075
2076 cpu->irqstate_saved_size = bytes;
2077 }
2078
2079 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
2080 {
2081 CPUState *cs = CPU(cpu);
2082 struct kvm_s390_irq_state irq_state = {
2083 .buf = (uint64_t) cpu->irqstate,
2084 .len = cpu->irqstate_saved_size,
2085 };
2086 int r;
2087
2088 if (cpu->irqstate_saved_size == 0) {
2089 return 0;
2090 }
2091
2092 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2093 return -ENOSYS;
2094 }
2095
2096 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
2097 if (r) {
2098 error_report("Setting interrupt state failed %d", r);
2099 }
2100 return r;
2101 }
2102
2103 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2104 uint64_t address, uint32_t data, PCIDevice *dev)
2105 {
2106 S390PCIBusDevice *pbdev;
2107 uint32_t vec = data & ZPCI_MSI_VEC_MASK;
2108
2109 if (!dev) {
2110 trace_kvm_msi_route_fixup("no pci device");
2111 return -ENODEV;
2112 }
2113
2114 pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id);
2115 if (!pbdev) {
2116 trace_kvm_msi_route_fixup("no zpci device");
2117 return -ENODEV;
2118 }
2119
2120 route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2121 route->flags = 0;
2122 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2123 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2124 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2125 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec;
2126 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2127 return 0;
2128 }
2129
2130 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2131 int vector, PCIDevice *dev)
2132 {
2133 return 0;
2134 }
2135
2136 int kvm_arch_release_virq_post(int virq)
2137 {
2138 return 0;
2139 }
2140
2141 int kvm_arch_msi_data_to_gsi(uint32_t data)
2142 {
2143 abort();
2144 }
2145
2146 static int query_cpu_subfunc(S390FeatBitmap features)
2147 {
2148 struct kvm_s390_vm_cpu_subfunc prop = {};
2149 struct kvm_device_attr attr = {
2150 .group = KVM_S390_VM_CPU_MODEL,
2151 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2152 .addr = (uint64_t) &prop,
2153 };
2154 int rc;
2155
2156 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2157 if (rc) {
2158 return rc;
2159 }
2160
2161 /*
2162 * We're going to add all subfunctions now, if the corresponding feature
2163 * is available that unlocks the query functions.
2164 */
2165 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2166 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2167 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2168 }
2169 if (test_bit(S390_FEAT_MSA, features)) {
2170 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2171 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2172 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2173 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2174 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2175 }
2176 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2177 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2178 }
2179 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2180 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2181 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2182 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2183 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2184 }
2185 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2186 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2187 }
2188 if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2189 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2190 }
2191 if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2192 s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2193 }
2194 if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2195 s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2196 }
2197 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2198 s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2199 }
2200 return 0;
2201 }
2202
2203 static int configure_cpu_subfunc(const S390FeatBitmap features)
2204 {
2205 struct kvm_s390_vm_cpu_subfunc prop = {};
2206 struct kvm_device_attr attr = {
2207 .group = KVM_S390_VM_CPU_MODEL,
2208 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2209 .addr = (uint64_t) &prop,
2210 };
2211
2212 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2213 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2214 /* hardware support might be missing, IBC will handle most of this */
2215 return 0;
2216 }
2217
2218 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2219 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2220 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2221 }
2222 if (test_bit(S390_FEAT_MSA, features)) {
2223 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2224 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2225 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2226 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2227 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2228 }
2229 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2230 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2231 }
2232 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2233 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2234 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2235 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2236 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2237 }
2238 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2239 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2240 }
2241 if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2242 s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2243 }
2244 if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2245 s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2246 }
2247 if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2248 s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2249 }
2250 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2251 s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2252 }
2253 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2254 }
2255
2256 static bool ap_available(void)
2257 {
2258 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO,
2259 KVM_S390_VM_CRYPTO_ENABLE_APIE);
2260 }
2261
2262 static bool ap_enabled(const S390FeatBitmap features)
2263 {
2264 return test_bit(S390_FEAT_AP, features);
2265 }
2266
2267 static bool uv_feat_supported(void)
2268 {
2269 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2270 KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST);
2271 }
2272
2273 static int query_uv_feat_guest(S390FeatBitmap features)
2274 {
2275 struct kvm_s390_vm_cpu_uv_feat prop = {};
2276 struct kvm_device_attr attr = {
2277 .group = KVM_S390_VM_CPU_MODEL,
2278 .attr = KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST,
2279 .addr = (uint64_t) &prop,
2280 };
2281 int rc;
2282
2283 /* AP support check is currently the only user of the UV feature test */
2284 if (!(uv_feat_supported() && ap_available())) {
2285 return 0;
2286 }
2287
2288 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2289 if (rc) {
2290 return rc;
2291 }
2292
2293 if (prop.ap) {
2294 set_bit(S390_FEAT_UV_FEAT_AP, features);
2295 }
2296 if (prop.ap_intr) {
2297 set_bit(S390_FEAT_UV_FEAT_AP_INTR, features);
2298 }
2299
2300 return 0;
2301 }
2302
2303 static int kvm_to_feat[][2] = {
2304 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2305 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2306 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2307 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2308 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2309 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2310 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2311 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2312 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2313 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2314 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2315 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2316 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2317 { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS},
2318 };
2319
2320 static int query_cpu_feat(S390FeatBitmap features)
2321 {
2322 struct kvm_s390_vm_cpu_feat prop = {};
2323 struct kvm_device_attr attr = {
2324 .group = KVM_S390_VM_CPU_MODEL,
2325 .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2326 .addr = (uint64_t) &prop,
2327 };
2328 int rc;
2329 int i;
2330
2331 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2332 if (rc) {
2333 return rc;
2334 }
2335
2336 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2337 if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) {
2338 set_bit(kvm_to_feat[i][1], features);
2339 }
2340 }
2341 return 0;
2342 }
2343
2344 static int configure_cpu_feat(const S390FeatBitmap features)
2345 {
2346 struct kvm_s390_vm_cpu_feat prop = {};
2347 struct kvm_device_attr attr = {
2348 .group = KVM_S390_VM_CPU_MODEL,
2349 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2350 .addr = (uint64_t) &prop,
2351 };
2352 int i;
2353
2354 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2355 if (test_bit(kvm_to_feat[i][1], features)) {
2356 set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat);
2357 }
2358 }
2359 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2360 }
2361
2362 bool kvm_s390_cpu_models_supported(void)
2363 {
2364 if (!cpu_model_allowed()) {
2365 /* compatibility machines interfere with the cpu model */
2366 return false;
2367 }
2368 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2369 KVM_S390_VM_CPU_MACHINE) &&
2370 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2371 KVM_S390_VM_CPU_PROCESSOR) &&
2372 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2373 KVM_S390_VM_CPU_MACHINE_FEAT) &&
2374 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2375 KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2376 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2377 KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2378 }
2379
2380 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2381 {
2382 struct kvm_s390_vm_cpu_machine prop = {};
2383 struct kvm_device_attr attr = {
2384 .group = KVM_S390_VM_CPU_MODEL,
2385 .attr = KVM_S390_VM_CPU_MACHINE,
2386 .addr = (uint64_t) &prop,
2387 };
2388 uint16_t unblocked_ibc = 0, cpu_type = 0;
2389 int rc;
2390
2391 memset(model, 0, sizeof(*model));
2392
2393 if (!kvm_s390_cpu_models_supported()) {
2394 error_setg(errp, "KVM doesn't support CPU models");
2395 return;
2396 }
2397
2398 /* query the basic cpu model properties */
2399 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2400 if (rc) {
2401 error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2402 return;
2403 }
2404
2405 cpu_type = cpuid_type(prop.cpuid);
2406 if (has_ibc(prop.ibc)) {
2407 model->lowest_ibc = lowest_ibc(prop.ibc);
2408 unblocked_ibc = unblocked_ibc(prop.ibc);
2409 }
2410 model->cpu_id = cpuid_id(prop.cpuid);
2411 model->cpu_id_format = cpuid_format(prop.cpuid);
2412 model->cpu_ver = 0xff;
2413
2414 /* get supported cpu features indicated via STFL(E) */
2415 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2416 (uint8_t *) prop.fac_mask);
2417 /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2418 if (test_bit(S390_FEAT_STFLE, model->features)) {
2419 set_bit(S390_FEAT_DAT_ENH_2, model->features);
2420 }
2421 /* get supported cpu features indicated e.g. via SCLP */
2422 rc = query_cpu_feat(model->features);
2423 if (rc) {
2424 error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2425 return;
2426 }
2427 /* get supported cpu subfunctions indicated via query / test bit */
2428 rc = query_cpu_subfunc(model->features);
2429 if (rc) {
2430 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2431 return;
2432 }
2433
2434 /* PTFF subfunctions might be indicated although kernel support missing */
2435 if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) {
2436 clear_bit(S390_FEAT_PTFF_QSIE, model->features);
2437 clear_bit(S390_FEAT_PTFF_QTOUE, model->features);
2438 clear_bit(S390_FEAT_PTFF_STOE, model->features);
2439 clear_bit(S390_FEAT_PTFF_STOUE, model->features);
2440 }
2441
2442 /* with cpu model support, CMM is only indicated if really available */
2443 if (kvm_s390_cmma_available()) {
2444 set_bit(S390_FEAT_CMM, model->features);
2445 } else {
2446 /* no cmm -> no cmm nt */
2447 clear_bit(S390_FEAT_CMM_NT, model->features);
2448 }
2449
2450 /* bpb needs kernel support for migration, VSIE and reset */
2451 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) {
2452 clear_bit(S390_FEAT_BPB, model->features);
2453 }
2454
2455 /*
2456 * If we have support for protected virtualization, indicate
2457 * the protected virtualization IPL unpack facility.
2458 */
2459 if (cap_protected) {
2460 set_bit(S390_FEAT_UNPACK, model->features);
2461 }
2462
2463 /*
2464 * If we have kernel support for CPU Topology indicate the
2465 * configuration-topology facility.
2466 */
2467 if (kvm_check_extension(kvm_state, KVM_CAP_S390_CPU_TOPOLOGY)) {
2468 set_bit(S390_FEAT_CONFIGURATION_TOPOLOGY, model->features);
2469 }
2470
2471 /* We emulate a zPCI bus and AEN, therefore we don't need HW support */
2472 set_bit(S390_FEAT_ZPCI, model->features);
2473 set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features);
2474
2475 if (s390_known_cpu_type(cpu_type)) {
2476 /* we want the exact model, even if some features are missing */
2477 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2478 ibc_ec_ga(unblocked_ibc), NULL);
2479 } else {
2480 /* model unknown, e.g. too new - search using features */
2481 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2482 ibc_ec_ga(unblocked_ibc),
2483 model->features);
2484 }
2485 if (!model->def) {
2486 error_setg(errp, "KVM: host CPU model could not be identified");
2487 return;
2488 }
2489 /* for now, we can only provide the AP feature with HW support */
2490 if (ap_available()) {
2491 set_bit(S390_FEAT_AP, model->features);
2492 }
2493
2494 /*
2495 * Extended-Length SCCB is handled entirely within QEMU.
2496 * For PV guests this is completely fenced by the Ultravisor, as Service
2497 * Call error checking and STFLE interpretation are handled via SIE.
2498 */
2499 set_bit(S390_FEAT_EXTENDED_LENGTH_SCCB, model->features);
2500
2501 if (kvm_check_extension(kvm_state, KVM_CAP_S390_DIAG318)) {
2502 set_bit(S390_FEAT_DIAG_318, model->features);
2503 }
2504
2505 /* Test for Ultravisor features that influence secure guest behavior */
2506 query_uv_feat_guest(model->features);
2507
2508 /* strip of features that are not part of the maximum model */
2509 bitmap_and(model->features, model->features, model->def->full_feat,
2510 S390_FEAT_MAX);
2511 }
2512
2513 static int configure_uv_feat_guest(const S390FeatBitmap features)
2514 {
2515 struct kvm_s390_vm_cpu_uv_feat uv_feat = {};
2516 struct kvm_device_attr attribute = {
2517 .group = KVM_S390_VM_CPU_MODEL,
2518 .attr = KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST,
2519 .addr = (__u64) &uv_feat,
2520 };
2521
2522 /* AP support check is currently the only user of the UV feature test */
2523 if (!(uv_feat_supported() && ap_enabled(features))) {
2524 return 0;
2525 }
2526
2527 if (test_bit(S390_FEAT_UV_FEAT_AP, features)) {
2528 uv_feat.ap = 1;
2529 }
2530 if (test_bit(S390_FEAT_UV_FEAT_AP_INTR, features)) {
2531 uv_feat.ap_intr = 1;
2532 }
2533
2534 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
2535 }
2536
2537 static void kvm_s390_configure_apie(bool interpret)
2538 {
2539 uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE :
2540 KVM_S390_VM_CRYPTO_DISABLE_APIE;
2541
2542 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
2543 kvm_s390_set_crypto_attr(attr);
2544 }
2545 }
2546
2547 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2548 {
2549 struct kvm_s390_vm_cpu_processor prop = {
2550 .fac_list = { 0 },
2551 };
2552 struct kvm_device_attr attr = {
2553 .group = KVM_S390_VM_CPU_MODEL,
2554 .attr = KVM_S390_VM_CPU_PROCESSOR,
2555 .addr = (uint64_t) &prop,
2556 };
2557 int rc;
2558
2559 if (!model) {
2560 /* compatibility handling if cpu models are disabled */
2561 if (kvm_s390_cmma_available()) {
2562 kvm_s390_enable_cmma();
2563 }
2564 return;
2565 }
2566 if (!kvm_s390_cpu_models_supported()) {
2567 error_setg(errp, "KVM doesn't support CPU models");
2568 return;
2569 }
2570 prop.cpuid = s390_cpuid_from_cpu_model(model);
2571 prop.ibc = s390_ibc_from_cpu_model(model);
2572 /* configure cpu features indicated via STFL(e) */
2573 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2574 (uint8_t *) prop.fac_list);
2575 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2576 if (rc) {
2577 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2578 return;
2579 }
2580 /* configure cpu features indicated e.g. via SCLP */
2581 rc = configure_cpu_feat(model->features);
2582 if (rc) {
2583 error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2584 return;
2585 }
2586 /* configure cpu subfunctions indicated via query / test bit */
2587 rc = configure_cpu_subfunc(model->features);
2588 if (rc) {
2589 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2590 return;
2591 }
2592 /* enable CMM via CMMA */
2593 if (test_bit(S390_FEAT_CMM, model->features)) {
2594 kvm_s390_enable_cmma();
2595 }
2596
2597 if (ap_enabled(model->features)) {
2598 kvm_s390_configure_apie(true);
2599 }
2600
2601 /* configure UV-features for the guest indicated via query / test_bit */
2602 rc = configure_uv_feat_guest(model->features);
2603 if (rc) {
2604 error_setg(errp, "KVM: Error configuring CPU UV features %d", rc);
2605 return;
2606 }
2607 }
2608
2609 void kvm_s390_restart_interrupt(S390CPU *cpu)
2610 {
2611 struct kvm_s390_irq irq = {
2612 .type = KVM_S390_RESTART,
2613 };
2614
2615 kvm_s390_vcpu_interrupt(cpu, &irq);
2616 }
2617
2618 void kvm_s390_stop_interrupt(S390CPU *cpu)
2619 {
2620 struct kvm_s390_irq irq = {
2621 .type = KVM_S390_SIGP_STOP,
2622 };
2623
2624 kvm_s390_vcpu_interrupt(cpu, &irq);
2625 }
2626
2627 bool kvm_arch_cpu_check_are_resettable(void)
2628 {
2629 return true;
2630 }
2631
2632 int kvm_s390_get_zpci_op(void)
2633 {
2634 return cap_zpci_op;
2635 }
2636
2637 int kvm_s390_topology_set_mtcr(uint64_t attr)
2638 {
2639 struct kvm_device_attr attribute = {
2640 .group = KVM_S390_VM_CPU_TOPOLOGY,
2641 .attr = attr,
2642 };
2643
2644 if (!s390_has_feat(S390_FEAT_CONFIGURATION_TOPOLOGY)) {
2645 return 0;
2646 }
2647 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_TOPOLOGY, attr)) {
2648 return -ENOTSUP;
2649 }
2650
2651 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
2652 }
2653
2654 void kvm_arch_accel_class_init(ObjectClass *oc)
2655 {
2656 }