]> git.proxmox.com Git - mirror_qemu.git/blob - target/s390x/kvm.c
KVM: do not use sigtimedwait to catch SIGBUS
[mirror_qemu.git] / target / s390x / kvm.c
1 /*
2 * QEMU S390x KVM implementation
3 *
4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5 * Copyright IBM Corp. 2012
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * Contributions after 2012-10-29 are licensed under the terms of the
18 * GNU GPL, version 2 or (at your option) any later version.
19 *
20 * You should have received a copy of the GNU (Lesser) General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 */
23
24 #include "qemu/osdep.h"
25 #include <sys/ioctl.h>
26
27 #include <linux/kvm.h>
28 #include <asm/ptrace.h>
29
30 #include "qemu-common.h"
31 #include "cpu.h"
32 #include "qemu/error-report.h"
33 #include "qemu/timer.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hw_accel.h"
36 #include "hw/hw.h"
37 #include "sysemu/device_tree.h"
38 #include "qapi/qmp/qjson.h"
39 #include "exec/gdbstub.h"
40 #include "exec/address-spaces.h"
41 #include "trace.h"
42 #include "qapi-event.h"
43 #include "hw/s390x/s390-pci-inst.h"
44 #include "hw/s390x/s390-pci-bus.h"
45 #include "hw/s390x/ipl.h"
46 #include "hw/s390x/ebcdic.h"
47 #include "exec/memattrs.h"
48 #include "hw/s390x/s390-virtio-ccw.h"
49
50 /* #define DEBUG_KVM */
51
52 #ifdef DEBUG_KVM
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
55 #else
56 #define DPRINTF(fmt, ...) \
57 do { } while (0)
58 #endif
59
60 #define kvm_vm_check_mem_attr(s, attr) \
61 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
62
63 #define IPA0_DIAG 0x8300
64 #define IPA0_SIGP 0xae00
65 #define IPA0_B2 0xb200
66 #define IPA0_B9 0xb900
67 #define IPA0_EB 0xeb00
68 #define IPA0_E3 0xe300
69
70 #define PRIV_B2_SCLP_CALL 0x20
71 #define PRIV_B2_CSCH 0x30
72 #define PRIV_B2_HSCH 0x31
73 #define PRIV_B2_MSCH 0x32
74 #define PRIV_B2_SSCH 0x33
75 #define PRIV_B2_STSCH 0x34
76 #define PRIV_B2_TSCH 0x35
77 #define PRIV_B2_TPI 0x36
78 #define PRIV_B2_SAL 0x37
79 #define PRIV_B2_RSCH 0x38
80 #define PRIV_B2_STCRW 0x39
81 #define PRIV_B2_STCPS 0x3a
82 #define PRIV_B2_RCHP 0x3b
83 #define PRIV_B2_SCHM 0x3c
84 #define PRIV_B2_CHSC 0x5f
85 #define PRIV_B2_SIGA 0x74
86 #define PRIV_B2_XSCH 0x76
87
88 #define PRIV_EB_SQBS 0x8a
89 #define PRIV_EB_PCISTB 0xd0
90 #define PRIV_EB_SIC 0xd1
91
92 #define PRIV_B9_EQBS 0x9c
93 #define PRIV_B9_CLP 0xa0
94 #define PRIV_B9_PCISTG 0xd0
95 #define PRIV_B9_PCILG 0xd2
96 #define PRIV_B9_RPCIT 0xd3
97
98 #define PRIV_E3_MPCIFC 0xd0
99 #define PRIV_E3_STPCIFC 0xd4
100
101 #define DIAG_TIMEREVENT 0x288
102 #define DIAG_IPL 0x308
103 #define DIAG_KVM_HYPERCALL 0x500
104 #define DIAG_KVM_BREAKPOINT 0x501
105
106 #define ICPT_INSTRUCTION 0x04
107 #define ICPT_PROGRAM 0x08
108 #define ICPT_EXT_INT 0x14
109 #define ICPT_WAITPSW 0x1c
110 #define ICPT_SOFT_INTERCEPT 0x24
111 #define ICPT_CPU_STOP 0x28
112 #define ICPT_OPEREXC 0x2c
113 #define ICPT_IO 0x40
114
115 #define NR_LOCAL_IRQS 32
116 /*
117 * Needs to be big enough to contain max_cpus emergency signals
118 * and in addition NR_LOCAL_IRQS interrupts
119 */
120 #define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \
121 (max_cpus + NR_LOCAL_IRQS))
122
123 static CPUWatchpoint hw_watchpoint;
124 /*
125 * We don't use a list because this structure is also used to transmit the
126 * hardware breakpoints to the kernel.
127 */
128 static struct kvm_hw_breakpoint *hw_breakpoints;
129 static int nb_hw_breakpoints;
130
131 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
132 KVM_CAP_LAST_INFO
133 };
134
135 static QemuMutex qemu_sigp_mutex;
136
137 static int cap_sync_regs;
138 static int cap_async_pf;
139 static int cap_mem_op;
140 static int cap_s390_irq;
141 static int cap_ri;
142
143 static void *legacy_s390_alloc(size_t size, uint64_t *align);
144
145 static int kvm_s390_query_mem_limit(KVMState *s, uint64_t *memory_limit)
146 {
147 struct kvm_device_attr attr = {
148 .group = KVM_S390_VM_MEM_CTRL,
149 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
150 .addr = (uint64_t) memory_limit,
151 };
152
153 return kvm_vm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
154 }
155
156 int kvm_s390_set_mem_limit(KVMState *s, uint64_t new_limit, uint64_t *hw_limit)
157 {
158 int rc;
159
160 struct kvm_device_attr attr = {
161 .group = KVM_S390_VM_MEM_CTRL,
162 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
163 .addr = (uint64_t) &new_limit,
164 };
165
166 if (!kvm_vm_check_mem_attr(s, KVM_S390_VM_MEM_LIMIT_SIZE)) {
167 return 0;
168 }
169
170 rc = kvm_s390_query_mem_limit(s, hw_limit);
171 if (rc) {
172 return rc;
173 } else if (*hw_limit < new_limit) {
174 return -E2BIG;
175 }
176
177 return kvm_vm_ioctl(s, KVM_SET_DEVICE_ATTR, &attr);
178 }
179
180 static bool kvm_s390_cmma_available(void)
181 {
182 static bool initialized, value;
183
184 if (!initialized) {
185 initialized = true;
186 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
187 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
188 }
189 return value;
190 }
191
192 void kvm_s390_cmma_reset(void)
193 {
194 int rc;
195 struct kvm_device_attr attr = {
196 .group = KVM_S390_VM_MEM_CTRL,
197 .attr = KVM_S390_VM_MEM_CLR_CMMA,
198 };
199
200 if (mem_path || !kvm_s390_cmma_available()) {
201 return;
202 }
203
204 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
205 trace_kvm_clear_cmma(rc);
206 }
207
208 static void kvm_s390_enable_cmma(void)
209 {
210 int rc;
211 struct kvm_device_attr attr = {
212 .group = KVM_S390_VM_MEM_CTRL,
213 .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
214 };
215
216 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
217 trace_kvm_enable_cmma(rc);
218 }
219
220 static void kvm_s390_set_attr(uint64_t attr)
221 {
222 struct kvm_device_attr attribute = {
223 .group = KVM_S390_VM_CRYPTO,
224 .attr = attr,
225 };
226
227 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
228
229 if (ret) {
230 error_report("Failed to set crypto device attribute %lu: %s",
231 attr, strerror(-ret));
232 }
233 }
234
235 static void kvm_s390_init_aes_kw(void)
236 {
237 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
238
239 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
240 NULL)) {
241 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
242 }
243
244 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
245 kvm_s390_set_attr(attr);
246 }
247 }
248
249 static void kvm_s390_init_dea_kw(void)
250 {
251 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
252
253 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
254 NULL)) {
255 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
256 }
257
258 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
259 kvm_s390_set_attr(attr);
260 }
261 }
262
263 void kvm_s390_crypto_reset(void)
264 {
265 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
266 kvm_s390_init_aes_kw();
267 kvm_s390_init_dea_kw();
268 }
269 }
270
271 int kvm_arch_init(MachineState *ms, KVMState *s)
272 {
273 cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
274 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
275 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
276 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
277
278 if (!kvm_check_extension(s, KVM_CAP_S390_GMAP)
279 || !kvm_check_extension(s, KVM_CAP_S390_COW)) {
280 phys_mem_set_alloc(legacy_s390_alloc);
281 }
282
283 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
284 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
285 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
286 if (ri_allowed()) {
287 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
288 cap_ri = 1;
289 }
290 }
291
292 qemu_mutex_init(&qemu_sigp_mutex);
293
294 return 0;
295 }
296
297 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
298 {
299 return 0;
300 }
301
302 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
303 {
304 return cpu->cpu_index;
305 }
306
307 int kvm_arch_init_vcpu(CPUState *cs)
308 {
309 S390CPU *cpu = S390_CPU(cs);
310 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
311 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE);
312 return 0;
313 }
314
315 void kvm_s390_reset_vcpu(S390CPU *cpu)
316 {
317 CPUState *cs = CPU(cpu);
318
319 /* The initial reset call is needed here to reset in-kernel
320 * vcpu data that we can't access directly from QEMU
321 * (i.e. with older kernels which don't support sync_regs/ONE_REG).
322 * Before this ioctl cpu_synchronize_state() is called in common kvm
323 * code (kvm-all) */
324 if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) {
325 error_report("Initial CPU reset failed on CPU %i", cs->cpu_index);
326 }
327 }
328
329 static int can_sync_regs(CPUState *cs, int regs)
330 {
331 return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
332 }
333
334 int kvm_arch_put_registers(CPUState *cs, int level)
335 {
336 S390CPU *cpu = S390_CPU(cs);
337 CPUS390XState *env = &cpu->env;
338 struct kvm_sregs sregs;
339 struct kvm_regs regs;
340 struct kvm_fpu fpu = {};
341 int r;
342 int i;
343
344 /* always save the PSW and the GPRS*/
345 cs->kvm_run->psw_addr = env->psw.addr;
346 cs->kvm_run->psw_mask = env->psw.mask;
347
348 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
349 for (i = 0; i < 16; i++) {
350 cs->kvm_run->s.regs.gprs[i] = env->regs[i];
351 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
352 }
353 } else {
354 for (i = 0; i < 16; i++) {
355 regs.gprs[i] = env->regs[i];
356 }
357 r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
358 if (r < 0) {
359 return r;
360 }
361 }
362
363 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
364 for (i = 0; i < 32; i++) {
365 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0].ll;
366 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1].ll;
367 }
368 cs->kvm_run->s.regs.fpc = env->fpc;
369 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
370 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
371 for (i = 0; i < 16; i++) {
372 cs->kvm_run->s.regs.fprs[i] = get_freg(env, i)->ll;
373 }
374 cs->kvm_run->s.regs.fpc = env->fpc;
375 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
376 } else {
377 /* Floating point */
378 for (i = 0; i < 16; i++) {
379 fpu.fprs[i] = get_freg(env, i)->ll;
380 }
381 fpu.fpc = env->fpc;
382
383 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
384 if (r < 0) {
385 return r;
386 }
387 }
388
389 /* Do we need to save more than that? */
390 if (level == KVM_PUT_RUNTIME_STATE) {
391 return 0;
392 }
393
394 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
395 cs->kvm_run->s.regs.cputm = env->cputm;
396 cs->kvm_run->s.regs.ckc = env->ckc;
397 cs->kvm_run->s.regs.todpr = env->todpr;
398 cs->kvm_run->s.regs.gbea = env->gbea;
399 cs->kvm_run->s.regs.pp = env->pp;
400 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
401 } else {
402 /*
403 * These ONE_REGS are not protected by a capability. As they are only
404 * necessary for migration we just trace a possible error, but don't
405 * return with an error return code.
406 */
407 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
408 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
409 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
410 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
411 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
412 }
413
414 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
415 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
416 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
417 }
418
419 /* pfault parameters */
420 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
421 cs->kvm_run->s.regs.pft = env->pfault_token;
422 cs->kvm_run->s.regs.pfs = env->pfault_select;
423 cs->kvm_run->s.regs.pfc = env->pfault_compare;
424 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
425 } else if (cap_async_pf) {
426 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
427 if (r < 0) {
428 return r;
429 }
430 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
431 if (r < 0) {
432 return r;
433 }
434 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
435 if (r < 0) {
436 return r;
437 }
438 }
439
440 /* access registers and control registers*/
441 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
442 for (i = 0; i < 16; i++) {
443 cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
444 cs->kvm_run->s.regs.crs[i] = env->cregs[i];
445 }
446 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
447 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
448 } else {
449 for (i = 0; i < 16; i++) {
450 sregs.acrs[i] = env->aregs[i];
451 sregs.crs[i] = env->cregs[i];
452 }
453 r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
454 if (r < 0) {
455 return r;
456 }
457 }
458
459 /* Finally the prefix */
460 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
461 cs->kvm_run->s.regs.prefix = env->psa;
462 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
463 } else {
464 /* prefix is only supported via sync regs */
465 }
466 return 0;
467 }
468
469 int kvm_arch_get_registers(CPUState *cs)
470 {
471 S390CPU *cpu = S390_CPU(cs);
472 CPUS390XState *env = &cpu->env;
473 struct kvm_sregs sregs;
474 struct kvm_regs regs;
475 struct kvm_fpu fpu;
476 int i, r;
477
478 /* get the PSW */
479 env->psw.addr = cs->kvm_run->psw_addr;
480 env->psw.mask = cs->kvm_run->psw_mask;
481
482 /* the GPRS */
483 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
484 for (i = 0; i < 16; i++) {
485 env->regs[i] = cs->kvm_run->s.regs.gprs[i];
486 }
487 } else {
488 r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
489 if (r < 0) {
490 return r;
491 }
492 for (i = 0; i < 16; i++) {
493 env->regs[i] = regs.gprs[i];
494 }
495 }
496
497 /* The ACRS and CRS */
498 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
499 for (i = 0; i < 16; i++) {
500 env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
501 env->cregs[i] = cs->kvm_run->s.regs.crs[i];
502 }
503 } else {
504 r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
505 if (r < 0) {
506 return r;
507 }
508 for (i = 0; i < 16; i++) {
509 env->aregs[i] = sregs.acrs[i];
510 env->cregs[i] = sregs.crs[i];
511 }
512 }
513
514 /* Floating point and vector registers */
515 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
516 for (i = 0; i < 32; i++) {
517 env->vregs[i][0].ll = cs->kvm_run->s.regs.vrs[i][0];
518 env->vregs[i][1].ll = cs->kvm_run->s.regs.vrs[i][1];
519 }
520 env->fpc = cs->kvm_run->s.regs.fpc;
521 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
522 for (i = 0; i < 16; i++) {
523 get_freg(env, i)->ll = cs->kvm_run->s.regs.fprs[i];
524 }
525 env->fpc = cs->kvm_run->s.regs.fpc;
526 } else {
527 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
528 if (r < 0) {
529 return r;
530 }
531 for (i = 0; i < 16; i++) {
532 get_freg(env, i)->ll = fpu.fprs[i];
533 }
534 env->fpc = fpu.fpc;
535 }
536
537 /* The prefix */
538 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
539 env->psa = cs->kvm_run->s.regs.prefix;
540 }
541
542 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
543 env->cputm = cs->kvm_run->s.regs.cputm;
544 env->ckc = cs->kvm_run->s.regs.ckc;
545 env->todpr = cs->kvm_run->s.regs.todpr;
546 env->gbea = cs->kvm_run->s.regs.gbea;
547 env->pp = cs->kvm_run->s.regs.pp;
548 } else {
549 /*
550 * These ONE_REGS are not protected by a capability. As they are only
551 * necessary for migration we just trace a possible error, but don't
552 * return with an error return code.
553 */
554 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
555 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
556 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
557 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
558 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
559 }
560
561 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
562 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
563 }
564
565 /* pfault parameters */
566 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
567 env->pfault_token = cs->kvm_run->s.regs.pft;
568 env->pfault_select = cs->kvm_run->s.regs.pfs;
569 env->pfault_compare = cs->kvm_run->s.regs.pfc;
570 } else if (cap_async_pf) {
571 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
572 if (r < 0) {
573 return r;
574 }
575 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
576 if (r < 0) {
577 return r;
578 }
579 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
580 if (r < 0) {
581 return r;
582 }
583 }
584
585 return 0;
586 }
587
588 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
589 {
590 int r;
591 struct kvm_device_attr attr = {
592 .group = KVM_S390_VM_TOD,
593 .attr = KVM_S390_VM_TOD_LOW,
594 .addr = (uint64_t)tod_low,
595 };
596
597 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
598 if (r) {
599 return r;
600 }
601
602 attr.attr = KVM_S390_VM_TOD_HIGH;
603 attr.addr = (uint64_t)tod_high;
604 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
605 }
606
607 int kvm_s390_set_clock(uint8_t *tod_high, uint64_t *tod_low)
608 {
609 int r;
610
611 struct kvm_device_attr attr = {
612 .group = KVM_S390_VM_TOD,
613 .attr = KVM_S390_VM_TOD_LOW,
614 .addr = (uint64_t)tod_low,
615 };
616
617 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
618 if (r) {
619 return r;
620 }
621
622 attr.attr = KVM_S390_VM_TOD_HIGH;
623 attr.addr = (uint64_t)tod_high;
624 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
625 }
626
627 /**
628 * kvm_s390_mem_op:
629 * @addr: the logical start address in guest memory
630 * @ar: the access register number
631 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying
632 * @len: length that should be transferred
633 * @is_write: true = write, false = read
634 * Returns: 0 on success, non-zero if an exception or error occurred
635 *
636 * Use KVM ioctl to read/write from/to guest memory. An access exception
637 * is injected into the vCPU in case of translation errors.
638 */
639 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
640 int len, bool is_write)
641 {
642 struct kvm_s390_mem_op mem_op = {
643 .gaddr = addr,
644 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
645 .size = len,
646 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
647 : KVM_S390_MEMOP_LOGICAL_READ,
648 .buf = (uint64_t)hostbuf,
649 .ar = ar,
650 };
651 int ret;
652
653 if (!cap_mem_op) {
654 return -ENOSYS;
655 }
656 if (!hostbuf) {
657 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
658 }
659
660 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
661 if (ret < 0) {
662 error_printf("KVM_S390_MEM_OP failed: %s\n", strerror(-ret));
663 }
664 return ret;
665 }
666
667 /*
668 * Legacy layout for s390:
669 * Older S390 KVM requires the topmost vma of the RAM to be
670 * smaller than an system defined value, which is at least 256GB.
671 * Larger systems have larger values. We put the guest between
672 * the end of data segment (system break) and this value. We
673 * use 32GB as a base to have enough room for the system break
674 * to grow. We also have to use MAP parameters that avoid
675 * read-only mapping of guest pages.
676 */
677 static void *legacy_s390_alloc(size_t size, uint64_t *align)
678 {
679 void *mem;
680
681 mem = mmap((void *) 0x800000000ULL, size,
682 PROT_EXEC|PROT_READ|PROT_WRITE,
683 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
684 return mem == MAP_FAILED ? NULL : mem;
685 }
686
687 static uint8_t const *sw_bp_inst;
688 static uint8_t sw_bp_ilen;
689
690 static void determine_sw_breakpoint_instr(void)
691 {
692 /* DIAG 501 is used for sw breakpoints with old kernels */
693 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
694 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
695 static const uint8_t instr_0x0000[] = {0x00, 0x00};
696
697 if (sw_bp_inst) {
698 return;
699 }
700 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
701 sw_bp_inst = diag_501;
702 sw_bp_ilen = sizeof(diag_501);
703 DPRINTF("KVM: will use 4-byte sw breakpoints.\n");
704 } else {
705 sw_bp_inst = instr_0x0000;
706 sw_bp_ilen = sizeof(instr_0x0000);
707 DPRINTF("KVM: will use 2-byte sw breakpoints.\n");
708 }
709 }
710
711 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
712 {
713 determine_sw_breakpoint_instr();
714
715 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
716 sw_bp_ilen, 0) ||
717 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
718 return -EINVAL;
719 }
720 return 0;
721 }
722
723 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
724 {
725 uint8_t t[MAX_ILEN];
726
727 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
728 return -EINVAL;
729 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
730 return -EINVAL;
731 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
732 sw_bp_ilen, 1)) {
733 return -EINVAL;
734 }
735
736 return 0;
737 }
738
739 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
740 int len, int type)
741 {
742 int n;
743
744 for (n = 0; n < nb_hw_breakpoints; n++) {
745 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
746 (hw_breakpoints[n].len == len || len == -1)) {
747 return &hw_breakpoints[n];
748 }
749 }
750
751 return NULL;
752 }
753
754 static int insert_hw_breakpoint(target_ulong addr, int len, int type)
755 {
756 int size;
757
758 if (find_hw_breakpoint(addr, len, type)) {
759 return -EEXIST;
760 }
761
762 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
763
764 if (!hw_breakpoints) {
765 nb_hw_breakpoints = 0;
766 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
767 } else {
768 hw_breakpoints =
769 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
770 }
771
772 if (!hw_breakpoints) {
773 nb_hw_breakpoints = 0;
774 return -ENOMEM;
775 }
776
777 hw_breakpoints[nb_hw_breakpoints].addr = addr;
778 hw_breakpoints[nb_hw_breakpoints].len = len;
779 hw_breakpoints[nb_hw_breakpoints].type = type;
780
781 nb_hw_breakpoints++;
782
783 return 0;
784 }
785
786 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
787 target_ulong len, int type)
788 {
789 switch (type) {
790 case GDB_BREAKPOINT_HW:
791 type = KVM_HW_BP;
792 break;
793 case GDB_WATCHPOINT_WRITE:
794 if (len < 1) {
795 return -EINVAL;
796 }
797 type = KVM_HW_WP_WRITE;
798 break;
799 default:
800 return -ENOSYS;
801 }
802 return insert_hw_breakpoint(addr, len, type);
803 }
804
805 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
806 target_ulong len, int type)
807 {
808 int size;
809 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
810
811 if (bp == NULL) {
812 return -ENOENT;
813 }
814
815 nb_hw_breakpoints--;
816 if (nb_hw_breakpoints > 0) {
817 /*
818 * In order to trim the array, move the last element to the position to
819 * be removed - if necessary.
820 */
821 if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
822 *bp = hw_breakpoints[nb_hw_breakpoints];
823 }
824 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
825 hw_breakpoints =
826 (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size);
827 } else {
828 g_free(hw_breakpoints);
829 hw_breakpoints = NULL;
830 }
831
832 return 0;
833 }
834
835 void kvm_arch_remove_all_hw_breakpoints(void)
836 {
837 nb_hw_breakpoints = 0;
838 g_free(hw_breakpoints);
839 hw_breakpoints = NULL;
840 }
841
842 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
843 {
844 int i;
845
846 if (nb_hw_breakpoints > 0) {
847 dbg->arch.nr_hw_bp = nb_hw_breakpoints;
848 dbg->arch.hw_bp = hw_breakpoints;
849
850 for (i = 0; i < nb_hw_breakpoints; ++i) {
851 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
852 hw_breakpoints[i].addr);
853 }
854 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
855 } else {
856 dbg->arch.nr_hw_bp = 0;
857 dbg->arch.hw_bp = NULL;
858 }
859 }
860
861 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
862 {
863 }
864
865 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
866 {
867 return MEMTXATTRS_UNSPECIFIED;
868 }
869
870 int kvm_arch_process_async_events(CPUState *cs)
871 {
872 return cs->halted;
873 }
874
875 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
876 struct kvm_s390_interrupt *interrupt)
877 {
878 int r = 0;
879
880 interrupt->type = irq->type;
881 switch (irq->type) {
882 case KVM_S390_INT_VIRTIO:
883 interrupt->parm = irq->u.ext.ext_params;
884 /* fall through */
885 case KVM_S390_INT_PFAULT_INIT:
886 case KVM_S390_INT_PFAULT_DONE:
887 interrupt->parm64 = irq->u.ext.ext_params2;
888 break;
889 case KVM_S390_PROGRAM_INT:
890 interrupt->parm = irq->u.pgm.code;
891 break;
892 case KVM_S390_SIGP_SET_PREFIX:
893 interrupt->parm = irq->u.prefix.address;
894 break;
895 case KVM_S390_INT_SERVICE:
896 interrupt->parm = irq->u.ext.ext_params;
897 break;
898 case KVM_S390_MCHK:
899 interrupt->parm = irq->u.mchk.cr14;
900 interrupt->parm64 = irq->u.mchk.mcic;
901 break;
902 case KVM_S390_INT_EXTERNAL_CALL:
903 interrupt->parm = irq->u.extcall.code;
904 break;
905 case KVM_S390_INT_EMERGENCY:
906 interrupt->parm = irq->u.emerg.code;
907 break;
908 case KVM_S390_SIGP_STOP:
909 case KVM_S390_RESTART:
910 break; /* These types have no parameters */
911 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
912 interrupt->parm = irq->u.io.subchannel_id << 16;
913 interrupt->parm |= irq->u.io.subchannel_nr;
914 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
915 interrupt->parm64 |= irq->u.io.io_int_word;
916 break;
917 default:
918 r = -EINVAL;
919 break;
920 }
921 return r;
922 }
923
924 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
925 {
926 struct kvm_s390_interrupt kvmint = {};
927 int r;
928
929 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
930 if (r < 0) {
931 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
932 exit(1);
933 }
934
935 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
936 if (r < 0) {
937 fprintf(stderr, "KVM failed to inject interrupt\n");
938 exit(1);
939 }
940 }
941
942 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
943 {
944 CPUState *cs = CPU(cpu);
945 int r;
946
947 if (cap_s390_irq) {
948 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
949 if (!r) {
950 return;
951 }
952 error_report("KVM failed to inject interrupt %llx", irq->type);
953 exit(1);
954 }
955
956 inject_vcpu_irq_legacy(cs, irq);
957 }
958
959 static void __kvm_s390_floating_interrupt(struct kvm_s390_irq *irq)
960 {
961 struct kvm_s390_interrupt kvmint = {};
962 int r;
963
964 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
965 if (r < 0) {
966 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
967 exit(1);
968 }
969
970 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
971 if (r < 0) {
972 fprintf(stderr, "KVM failed to inject interrupt\n");
973 exit(1);
974 }
975 }
976
977 void kvm_s390_floating_interrupt(struct kvm_s390_irq *irq)
978 {
979 static bool use_flic = true;
980 int r;
981
982 if (use_flic) {
983 r = kvm_s390_inject_flic(irq);
984 if (r == -ENOSYS) {
985 use_flic = false;
986 }
987 if (!r) {
988 return;
989 }
990 }
991 __kvm_s390_floating_interrupt(irq);
992 }
993
994 void kvm_s390_service_interrupt(uint32_t parm)
995 {
996 struct kvm_s390_irq irq = {
997 .type = KVM_S390_INT_SERVICE,
998 .u.ext.ext_params = parm,
999 };
1000
1001 kvm_s390_floating_interrupt(&irq);
1002 }
1003
1004 static void enter_pgmcheck(S390CPU *cpu, uint16_t code)
1005 {
1006 struct kvm_s390_irq irq = {
1007 .type = KVM_S390_PROGRAM_INT,
1008 .u.pgm.code = code,
1009 };
1010
1011 kvm_s390_vcpu_interrupt(cpu, &irq);
1012 }
1013
1014 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1015 {
1016 struct kvm_s390_irq irq = {
1017 .type = KVM_S390_PROGRAM_INT,
1018 .u.pgm.code = code,
1019 .u.pgm.trans_exc_code = te_code,
1020 .u.pgm.exc_access_id = te_code & 3,
1021 };
1022
1023 kvm_s390_vcpu_interrupt(cpu, &irq);
1024 }
1025
1026 static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1027 uint16_t ipbh0)
1028 {
1029 CPUS390XState *env = &cpu->env;
1030 uint64_t sccb;
1031 uint32_t code;
1032 int r = 0;
1033
1034 cpu_synchronize_state(CPU(cpu));
1035 sccb = env->regs[ipbh0 & 0xf];
1036 code = env->regs[(ipbh0 & 0xf0) >> 4];
1037
1038 r = sclp_service_call(env, sccb, code);
1039 if (r < 0) {
1040 enter_pgmcheck(cpu, -r);
1041 } else {
1042 setcc(cpu, r);
1043 }
1044
1045 return 0;
1046 }
1047
1048 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1049 {
1050 CPUS390XState *env = &cpu->env;
1051 int rc = 0;
1052 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1053
1054 cpu_synchronize_state(CPU(cpu));
1055
1056 switch (ipa1) {
1057 case PRIV_B2_XSCH:
1058 ioinst_handle_xsch(cpu, env->regs[1]);
1059 break;
1060 case PRIV_B2_CSCH:
1061 ioinst_handle_csch(cpu, env->regs[1]);
1062 break;
1063 case PRIV_B2_HSCH:
1064 ioinst_handle_hsch(cpu, env->regs[1]);
1065 break;
1066 case PRIV_B2_MSCH:
1067 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb);
1068 break;
1069 case PRIV_B2_SSCH:
1070 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb);
1071 break;
1072 case PRIV_B2_STCRW:
1073 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb);
1074 break;
1075 case PRIV_B2_STSCH:
1076 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb);
1077 break;
1078 case PRIV_B2_TSCH:
1079 /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1080 fprintf(stderr, "Spurious tsch intercept\n");
1081 break;
1082 case PRIV_B2_CHSC:
1083 ioinst_handle_chsc(cpu, run->s390_sieic.ipb);
1084 break;
1085 case PRIV_B2_TPI:
1086 /* This should have been handled by kvm already. */
1087 fprintf(stderr, "Spurious tpi intercept\n");
1088 break;
1089 case PRIV_B2_SCHM:
1090 ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1091 run->s390_sieic.ipb);
1092 break;
1093 case PRIV_B2_RSCH:
1094 ioinst_handle_rsch(cpu, env->regs[1]);
1095 break;
1096 case PRIV_B2_RCHP:
1097 ioinst_handle_rchp(cpu, env->regs[1]);
1098 break;
1099 case PRIV_B2_STCPS:
1100 /* We do not provide this instruction, it is suppressed. */
1101 break;
1102 case PRIV_B2_SAL:
1103 ioinst_handle_sal(cpu, env->regs[1]);
1104 break;
1105 case PRIV_B2_SIGA:
1106 /* Not provided, set CC = 3 for subchannel not operational */
1107 setcc(cpu, 3);
1108 break;
1109 case PRIV_B2_SCLP_CALL:
1110 rc = kvm_sclp_service_call(cpu, run, ipbh0);
1111 break;
1112 default:
1113 rc = -1;
1114 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1);
1115 break;
1116 }
1117
1118 return rc;
1119 }
1120
1121 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1122 uint8_t *ar)
1123 {
1124 CPUS390XState *env = &cpu->env;
1125 uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1126 uint32_t base2 = run->s390_sieic.ipb >> 28;
1127 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1128 ((run->s390_sieic.ipb & 0xff00) << 4);
1129
1130 if (disp2 & 0x80000) {
1131 disp2 += 0xfff00000;
1132 }
1133 if (ar) {
1134 *ar = base2;
1135 }
1136
1137 return (base2 ? env->regs[base2] : 0) +
1138 (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1139 }
1140
1141 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1142 uint8_t *ar)
1143 {
1144 CPUS390XState *env = &cpu->env;
1145 uint32_t base2 = run->s390_sieic.ipb >> 28;
1146 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1147 ((run->s390_sieic.ipb & 0xff00) << 4);
1148
1149 if (disp2 & 0x80000) {
1150 disp2 += 0xfff00000;
1151 }
1152 if (ar) {
1153 *ar = base2;
1154 }
1155
1156 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1157 }
1158
1159 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1160 {
1161 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1162
1163 return clp_service_call(cpu, r2);
1164 }
1165
1166 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1167 {
1168 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1169 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1170
1171 return pcilg_service_call(cpu, r1, r2);
1172 }
1173
1174 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1175 {
1176 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1177 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1178
1179 return pcistg_service_call(cpu, r1, r2);
1180 }
1181
1182 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1183 {
1184 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1185 uint64_t fiba;
1186 uint8_t ar;
1187
1188 cpu_synchronize_state(CPU(cpu));
1189 fiba = get_base_disp_rxy(cpu, run, &ar);
1190
1191 return stpcifc_service_call(cpu, r1, fiba, ar);
1192 }
1193
1194 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1195 {
1196 /* NOOP */
1197 return 0;
1198 }
1199
1200 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1201 {
1202 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1203 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1204
1205 return rpcit_service_call(cpu, r1, r2);
1206 }
1207
1208 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1209 {
1210 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1211 uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1212 uint64_t gaddr;
1213 uint8_t ar;
1214
1215 cpu_synchronize_state(CPU(cpu));
1216 gaddr = get_base_disp_rsy(cpu, run, &ar);
1217
1218 return pcistb_service_call(cpu, r1, r3, gaddr, ar);
1219 }
1220
1221 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1222 {
1223 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1224 uint64_t fiba;
1225 uint8_t ar;
1226
1227 cpu_synchronize_state(CPU(cpu));
1228 fiba = get_base_disp_rxy(cpu, run, &ar);
1229
1230 return mpcifc_service_call(cpu, r1, fiba, ar);
1231 }
1232
1233 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1234 {
1235 int r = 0;
1236
1237 switch (ipa1) {
1238 case PRIV_B9_CLP:
1239 r = kvm_clp_service_call(cpu, run);
1240 break;
1241 case PRIV_B9_PCISTG:
1242 r = kvm_pcistg_service_call(cpu, run);
1243 break;
1244 case PRIV_B9_PCILG:
1245 r = kvm_pcilg_service_call(cpu, run);
1246 break;
1247 case PRIV_B9_RPCIT:
1248 r = kvm_rpcit_service_call(cpu, run);
1249 break;
1250 case PRIV_B9_EQBS:
1251 /* just inject exception */
1252 r = -1;
1253 break;
1254 default:
1255 r = -1;
1256 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1);
1257 break;
1258 }
1259
1260 return r;
1261 }
1262
1263 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1264 {
1265 int r = 0;
1266
1267 switch (ipbl) {
1268 case PRIV_EB_PCISTB:
1269 r = kvm_pcistb_service_call(cpu, run);
1270 break;
1271 case PRIV_EB_SIC:
1272 r = kvm_sic_service_call(cpu, run);
1273 break;
1274 case PRIV_EB_SQBS:
1275 /* just inject exception */
1276 r = -1;
1277 break;
1278 default:
1279 r = -1;
1280 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl);
1281 break;
1282 }
1283
1284 return r;
1285 }
1286
1287 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1288 {
1289 int r = 0;
1290
1291 switch (ipbl) {
1292 case PRIV_E3_MPCIFC:
1293 r = kvm_mpcifc_service_call(cpu, run);
1294 break;
1295 case PRIV_E3_STPCIFC:
1296 r = kvm_stpcifc_service_call(cpu, run);
1297 break;
1298 default:
1299 r = -1;
1300 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl);
1301 break;
1302 }
1303
1304 return r;
1305 }
1306
1307 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1308 {
1309 CPUS390XState *env = &cpu->env;
1310 int ret;
1311
1312 cpu_synchronize_state(CPU(cpu));
1313 ret = s390_virtio_hypercall(env);
1314 if (ret == -EINVAL) {
1315 enter_pgmcheck(cpu, PGM_SPECIFICATION);
1316 return 0;
1317 }
1318
1319 return ret;
1320 }
1321
1322 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1323 {
1324 uint64_t r1, r3;
1325 int rc;
1326
1327 cpu_synchronize_state(CPU(cpu));
1328 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1329 r3 = run->s390_sieic.ipa & 0x000f;
1330 rc = handle_diag_288(&cpu->env, r1, r3);
1331 if (rc) {
1332 enter_pgmcheck(cpu, PGM_SPECIFICATION);
1333 }
1334 }
1335
1336 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1337 {
1338 uint64_t r1, r3;
1339
1340 cpu_synchronize_state(CPU(cpu));
1341 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1342 r3 = run->s390_sieic.ipa & 0x000f;
1343 handle_diag_308(&cpu->env, r1, r3);
1344 }
1345
1346 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1347 {
1348 CPUS390XState *env = &cpu->env;
1349 unsigned long pc;
1350
1351 cpu_synchronize_state(CPU(cpu));
1352
1353 pc = env->psw.addr - sw_bp_ilen;
1354 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1355 env->psw.addr = pc;
1356 return EXCP_DEBUG;
1357 }
1358
1359 return -ENOENT;
1360 }
1361
1362 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1363
1364 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1365 {
1366 int r = 0;
1367 uint16_t func_code;
1368
1369 /*
1370 * For any diagnose call we support, bits 48-63 of the resulting
1371 * address specify the function code; the remainder is ignored.
1372 */
1373 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1374 switch (func_code) {
1375 case DIAG_TIMEREVENT:
1376 kvm_handle_diag_288(cpu, run);
1377 break;
1378 case DIAG_IPL:
1379 kvm_handle_diag_308(cpu, run);
1380 break;
1381 case DIAG_KVM_HYPERCALL:
1382 r = handle_hypercall(cpu, run);
1383 break;
1384 case DIAG_KVM_BREAKPOINT:
1385 r = handle_sw_breakpoint(cpu, run);
1386 break;
1387 default:
1388 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
1389 enter_pgmcheck(cpu, PGM_SPECIFICATION);
1390 break;
1391 }
1392
1393 return r;
1394 }
1395
1396 typedef struct SigpInfo {
1397 uint64_t param;
1398 int cc;
1399 uint64_t *status_reg;
1400 } SigpInfo;
1401
1402 static void set_sigp_status(SigpInfo *si, uint64_t status)
1403 {
1404 *si->status_reg &= 0xffffffff00000000ULL;
1405 *si->status_reg |= status;
1406 si->cc = SIGP_CC_STATUS_STORED;
1407 }
1408
1409 static void sigp_start(CPUState *cs, run_on_cpu_data arg)
1410 {
1411 S390CPU *cpu = S390_CPU(cs);
1412 SigpInfo *si = arg.host_ptr;
1413
1414 if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) {
1415 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1416 return;
1417 }
1418
1419 s390_cpu_set_state(CPU_STATE_OPERATING, cpu);
1420 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1421 }
1422
1423 static void sigp_stop(CPUState *cs, run_on_cpu_data arg)
1424 {
1425 S390CPU *cpu = S390_CPU(cs);
1426 SigpInfo *si = arg.host_ptr;
1427 struct kvm_s390_irq irq = {
1428 .type = KVM_S390_SIGP_STOP,
1429 };
1430
1431 if (s390_cpu_get_state(cpu) != CPU_STATE_OPERATING) {
1432 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1433 return;
1434 }
1435
1436 /* disabled wait - sleeping in user space */
1437 if (cs->halted) {
1438 s390_cpu_set_state(CPU_STATE_STOPPED, cpu);
1439 } else {
1440 /* execute the stop function */
1441 cpu->env.sigp_order = SIGP_STOP;
1442 kvm_s390_vcpu_interrupt(cpu, &irq);
1443 }
1444 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1445 }
1446
1447 #define ADTL_SAVE_AREA_SIZE 1024
1448 static int kvm_s390_store_adtl_status(S390CPU *cpu, hwaddr addr)
1449 {
1450 void *mem;
1451 hwaddr len = ADTL_SAVE_AREA_SIZE;
1452
1453 mem = cpu_physical_memory_map(addr, &len, 1);
1454 if (!mem) {
1455 return -EFAULT;
1456 }
1457 if (len != ADTL_SAVE_AREA_SIZE) {
1458 cpu_physical_memory_unmap(mem, len, 1, 0);
1459 return -EFAULT;
1460 }
1461
1462 memcpy(mem, &cpu->env.vregs, 512);
1463
1464 cpu_physical_memory_unmap(mem, len, 1, len);
1465
1466 return 0;
1467 }
1468
1469 #define KVM_S390_STORE_STATUS_DEF_ADDR offsetof(LowCore, floating_pt_save_area)
1470 #define SAVE_AREA_SIZE 512
1471 static int kvm_s390_store_status(S390CPU *cpu, hwaddr addr, bool store_arch)
1472 {
1473 static const uint8_t ar_id = 1;
1474 uint64_t ckc = cpu->env.ckc >> 8;
1475 void *mem;
1476 int i;
1477 hwaddr len = SAVE_AREA_SIZE;
1478
1479 mem = cpu_physical_memory_map(addr, &len, 1);
1480 if (!mem) {
1481 return -EFAULT;
1482 }
1483 if (len != SAVE_AREA_SIZE) {
1484 cpu_physical_memory_unmap(mem, len, 1, 0);
1485 return -EFAULT;
1486 }
1487
1488 if (store_arch) {
1489 cpu_physical_memory_write(offsetof(LowCore, ar_access_id), &ar_id, 1);
1490 }
1491 for (i = 0; i < 16; ++i) {
1492 *((uint64_t *)mem + i) = get_freg(&cpu->env, i)->ll;
1493 }
1494 memcpy(mem + 128, &cpu->env.regs, 128);
1495 memcpy(mem + 256, &cpu->env.psw, 16);
1496 memcpy(mem + 280, &cpu->env.psa, 4);
1497 memcpy(mem + 284, &cpu->env.fpc, 4);
1498 memcpy(mem + 292, &cpu->env.todpr, 4);
1499 memcpy(mem + 296, &cpu->env.cputm, 8);
1500 memcpy(mem + 304, &ckc, 8);
1501 memcpy(mem + 320, &cpu->env.aregs, 64);
1502 memcpy(mem + 384, &cpu->env.cregs, 128);
1503
1504 cpu_physical_memory_unmap(mem, len, 1, len);
1505
1506 return 0;
1507 }
1508
1509 static void sigp_stop_and_store_status(CPUState *cs, run_on_cpu_data arg)
1510 {
1511 S390CPU *cpu = S390_CPU(cs);
1512 SigpInfo *si = arg.host_ptr;
1513 struct kvm_s390_irq irq = {
1514 .type = KVM_S390_SIGP_STOP,
1515 };
1516
1517 /* disabled wait - sleeping in user space */
1518 if (s390_cpu_get_state(cpu) == CPU_STATE_OPERATING && cs->halted) {
1519 s390_cpu_set_state(CPU_STATE_STOPPED, cpu);
1520 }
1521
1522 switch (s390_cpu_get_state(cpu)) {
1523 case CPU_STATE_OPERATING:
1524 cpu->env.sigp_order = SIGP_STOP_STORE_STATUS;
1525 kvm_s390_vcpu_interrupt(cpu, &irq);
1526 /* store will be performed when handling the stop intercept */
1527 break;
1528 case CPU_STATE_STOPPED:
1529 /* already stopped, just store the status */
1530 cpu_synchronize_state(cs);
1531 kvm_s390_store_status(cpu, KVM_S390_STORE_STATUS_DEF_ADDR, true);
1532 break;
1533 }
1534 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1535 }
1536
1537 static void sigp_store_status_at_address(CPUState *cs, run_on_cpu_data arg)
1538 {
1539 S390CPU *cpu = S390_CPU(cs);
1540 SigpInfo *si = arg.host_ptr;
1541 uint32_t address = si->param & 0x7ffffe00u;
1542
1543 /* cpu has to be stopped */
1544 if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) {
1545 set_sigp_status(si, SIGP_STAT_INCORRECT_STATE);
1546 return;
1547 }
1548
1549 cpu_synchronize_state(cs);
1550
1551 if (kvm_s390_store_status(cpu, address, false)) {
1552 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1553 return;
1554 }
1555 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1556 }
1557
1558 static void sigp_store_adtl_status(CPUState *cs, run_on_cpu_data arg)
1559 {
1560 S390CPU *cpu = S390_CPU(cs);
1561 SigpInfo *si = arg.host_ptr;
1562
1563 if (!s390_has_feat(S390_FEAT_VECTOR)) {
1564 set_sigp_status(si, SIGP_STAT_INVALID_ORDER);
1565 return;
1566 }
1567
1568 /* cpu has to be stopped */
1569 if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) {
1570 set_sigp_status(si, SIGP_STAT_INCORRECT_STATE);
1571 return;
1572 }
1573
1574 /* parameter must be aligned to 1024-byte boundary */
1575 if (si->param & 0x3ff) {
1576 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1577 return;
1578 }
1579
1580 cpu_synchronize_state(cs);
1581
1582 if (kvm_s390_store_adtl_status(cpu, si->param)) {
1583 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1584 return;
1585 }
1586 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1587 }
1588
1589 static void sigp_restart(CPUState *cs, run_on_cpu_data arg)
1590 {
1591 S390CPU *cpu = S390_CPU(cs);
1592 SigpInfo *si = arg.host_ptr;
1593 struct kvm_s390_irq irq = {
1594 .type = KVM_S390_RESTART,
1595 };
1596
1597 switch (s390_cpu_get_state(cpu)) {
1598 case CPU_STATE_STOPPED:
1599 /* the restart irq has to be delivered prior to any other pending irq */
1600 cpu_synchronize_state(cs);
1601 do_restart_interrupt(&cpu->env);
1602 s390_cpu_set_state(CPU_STATE_OPERATING, cpu);
1603 break;
1604 case CPU_STATE_OPERATING:
1605 kvm_s390_vcpu_interrupt(cpu, &irq);
1606 break;
1607 }
1608 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1609 }
1610
1611 int kvm_s390_cpu_restart(S390CPU *cpu)
1612 {
1613 SigpInfo si = {};
1614
1615 run_on_cpu(CPU(cpu), sigp_restart, RUN_ON_CPU_HOST_PTR(&si));
1616 DPRINTF("DONE: KVM cpu restart: %p\n", &cpu->env);
1617 return 0;
1618 }
1619
1620 static void sigp_initial_cpu_reset(CPUState *cs, run_on_cpu_data arg)
1621 {
1622 S390CPU *cpu = S390_CPU(cs);
1623 S390CPUClass *scc = S390_CPU_GET_CLASS(cpu);
1624 SigpInfo *si = arg.host_ptr;
1625
1626 cpu_synchronize_state(cs);
1627 scc->initial_cpu_reset(cs);
1628 cpu_synchronize_post_reset(cs);
1629 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1630 }
1631
1632 static void sigp_cpu_reset(CPUState *cs, run_on_cpu_data arg)
1633 {
1634 S390CPU *cpu = S390_CPU(cs);
1635 S390CPUClass *scc = S390_CPU_GET_CLASS(cpu);
1636 SigpInfo *si = arg.host_ptr;
1637
1638 cpu_synchronize_state(cs);
1639 scc->cpu_reset(cs);
1640 cpu_synchronize_post_reset(cs);
1641 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1642 }
1643
1644 static void sigp_set_prefix(CPUState *cs, run_on_cpu_data arg)
1645 {
1646 S390CPU *cpu = S390_CPU(cs);
1647 SigpInfo *si = arg.host_ptr;
1648 uint32_t addr = si->param & 0x7fffe000u;
1649
1650 cpu_synchronize_state(cs);
1651
1652 if (!address_space_access_valid(&address_space_memory, addr,
1653 sizeof(struct LowCore), false)) {
1654 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1655 return;
1656 }
1657
1658 /* cpu has to be stopped */
1659 if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) {
1660 set_sigp_status(si, SIGP_STAT_INCORRECT_STATE);
1661 return;
1662 }
1663
1664 cpu->env.psa = addr;
1665 cpu_synchronize_post_init(cs);
1666 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1667 }
1668
1669 static int handle_sigp_single_dst(S390CPU *dst_cpu, uint8_t order,
1670 uint64_t param, uint64_t *status_reg)
1671 {
1672 SigpInfo si = {
1673 .param = param,
1674 .status_reg = status_reg,
1675 };
1676
1677 /* cpu available? */
1678 if (dst_cpu == NULL) {
1679 return SIGP_CC_NOT_OPERATIONAL;
1680 }
1681
1682 /* only resets can break pending orders */
1683 if (dst_cpu->env.sigp_order != 0 &&
1684 order != SIGP_CPU_RESET &&
1685 order != SIGP_INITIAL_CPU_RESET) {
1686 return SIGP_CC_BUSY;
1687 }
1688
1689 switch (order) {
1690 case SIGP_START:
1691 run_on_cpu(CPU(dst_cpu), sigp_start, RUN_ON_CPU_HOST_PTR(&si));
1692 break;
1693 case SIGP_STOP:
1694 run_on_cpu(CPU(dst_cpu), sigp_stop, RUN_ON_CPU_HOST_PTR(&si));
1695 break;
1696 case SIGP_RESTART:
1697 run_on_cpu(CPU(dst_cpu), sigp_restart, RUN_ON_CPU_HOST_PTR(&si));
1698 break;
1699 case SIGP_STOP_STORE_STATUS:
1700 run_on_cpu(CPU(dst_cpu), sigp_stop_and_store_status, RUN_ON_CPU_HOST_PTR(&si));
1701 break;
1702 case SIGP_STORE_STATUS_ADDR:
1703 run_on_cpu(CPU(dst_cpu), sigp_store_status_at_address, RUN_ON_CPU_HOST_PTR(&si));
1704 break;
1705 case SIGP_STORE_ADTL_STATUS:
1706 run_on_cpu(CPU(dst_cpu), sigp_store_adtl_status, RUN_ON_CPU_HOST_PTR(&si));
1707 break;
1708 case SIGP_SET_PREFIX:
1709 run_on_cpu(CPU(dst_cpu), sigp_set_prefix, RUN_ON_CPU_HOST_PTR(&si));
1710 break;
1711 case SIGP_INITIAL_CPU_RESET:
1712 run_on_cpu(CPU(dst_cpu), sigp_initial_cpu_reset, RUN_ON_CPU_HOST_PTR(&si));
1713 break;
1714 case SIGP_CPU_RESET:
1715 run_on_cpu(CPU(dst_cpu), sigp_cpu_reset, RUN_ON_CPU_HOST_PTR(&si));
1716 break;
1717 default:
1718 DPRINTF("KVM: unknown SIGP: 0x%x\n", order);
1719 set_sigp_status(&si, SIGP_STAT_INVALID_ORDER);
1720 }
1721
1722 return si.cc;
1723 }
1724
1725 static int sigp_set_architecture(S390CPU *cpu, uint32_t param,
1726 uint64_t *status_reg)
1727 {
1728 CPUState *cur_cs;
1729 S390CPU *cur_cpu;
1730
1731 /* due to the BQL, we are the only active cpu */
1732 CPU_FOREACH(cur_cs) {
1733 cur_cpu = S390_CPU(cur_cs);
1734 if (cur_cpu->env.sigp_order != 0) {
1735 return SIGP_CC_BUSY;
1736 }
1737 cpu_synchronize_state(cur_cs);
1738 /* all but the current one have to be stopped */
1739 if (cur_cpu != cpu &&
1740 s390_cpu_get_state(cur_cpu) != CPU_STATE_STOPPED) {
1741 *status_reg &= 0xffffffff00000000ULL;
1742 *status_reg |= SIGP_STAT_INCORRECT_STATE;
1743 return SIGP_CC_STATUS_STORED;
1744 }
1745 }
1746
1747 switch (param & 0xff) {
1748 case SIGP_MODE_ESA_S390:
1749 /* not supported */
1750 return SIGP_CC_NOT_OPERATIONAL;
1751 case SIGP_MODE_Z_ARCH_TRANS_ALL_PSW:
1752 case SIGP_MODE_Z_ARCH_TRANS_CUR_PSW:
1753 CPU_FOREACH(cur_cs) {
1754 cur_cpu = S390_CPU(cur_cs);
1755 cur_cpu->env.pfault_token = -1UL;
1756 }
1757 break;
1758 default:
1759 *status_reg &= 0xffffffff00000000ULL;
1760 *status_reg |= SIGP_STAT_INVALID_PARAMETER;
1761 return SIGP_CC_STATUS_STORED;
1762 }
1763
1764 return SIGP_CC_ORDER_CODE_ACCEPTED;
1765 }
1766
1767 #define SIGP_ORDER_MASK 0x000000ff
1768
1769 static int handle_sigp(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1770 {
1771 CPUS390XState *env = &cpu->env;
1772 const uint8_t r1 = ipa1 >> 4;
1773 const uint8_t r3 = ipa1 & 0x0f;
1774 int ret;
1775 uint8_t order;
1776 uint64_t *status_reg;
1777 uint64_t param;
1778 S390CPU *dst_cpu = NULL;
1779
1780 cpu_synchronize_state(CPU(cpu));
1781
1782 /* get order code */
1783 order = decode_basedisp_rs(env, run->s390_sieic.ipb, NULL)
1784 & SIGP_ORDER_MASK;
1785 status_reg = &env->regs[r1];
1786 param = (r1 % 2) ? env->regs[r1] : env->regs[r1 + 1];
1787
1788 if (qemu_mutex_trylock(&qemu_sigp_mutex)) {
1789 ret = SIGP_CC_BUSY;
1790 goto out;
1791 }
1792
1793 switch (order) {
1794 case SIGP_SET_ARCH:
1795 ret = sigp_set_architecture(cpu, param, status_reg);
1796 break;
1797 default:
1798 /* all other sigp orders target a single vcpu */
1799 dst_cpu = s390_cpu_addr2state(env->regs[r3]);
1800 ret = handle_sigp_single_dst(dst_cpu, order, param, status_reg);
1801 }
1802 qemu_mutex_unlock(&qemu_sigp_mutex);
1803
1804 out:
1805 trace_kvm_sigp_finished(order, CPU(cpu)->cpu_index,
1806 dst_cpu ? CPU(dst_cpu)->cpu_index : -1, ret);
1807
1808 if (ret >= 0) {
1809 setcc(cpu, ret);
1810 return 0;
1811 }
1812
1813 return ret;
1814 }
1815
1816 static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1817 {
1818 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1819 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1820 int r = -1;
1821
1822 DPRINTF("handle_instruction 0x%x 0x%x\n",
1823 run->s390_sieic.ipa, run->s390_sieic.ipb);
1824 switch (ipa0) {
1825 case IPA0_B2:
1826 r = handle_b2(cpu, run, ipa1);
1827 break;
1828 case IPA0_B9:
1829 r = handle_b9(cpu, run, ipa1);
1830 break;
1831 case IPA0_EB:
1832 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1833 break;
1834 case IPA0_E3:
1835 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1836 break;
1837 case IPA0_DIAG:
1838 r = handle_diag(cpu, run, run->s390_sieic.ipb);
1839 break;
1840 case IPA0_SIGP:
1841 r = handle_sigp(cpu, run, ipa1);
1842 break;
1843 }
1844
1845 if (r < 0) {
1846 r = 0;
1847 enter_pgmcheck(cpu, 0x0001);
1848 }
1849
1850 return r;
1851 }
1852
1853 static bool is_special_wait_psw(CPUState *cs)
1854 {
1855 /* signal quiesce */
1856 return cs->kvm_run->psw_addr == 0xfffUL;
1857 }
1858
1859 static void unmanageable_intercept(S390CPU *cpu, const char *str, int pswoffset)
1860 {
1861 CPUState *cs = CPU(cpu);
1862
1863 error_report("Unmanageable %s! CPU%i new PSW: 0x%016lx:%016lx",
1864 str, cs->cpu_index, ldq_phys(cs->as, cpu->env.psa + pswoffset),
1865 ldq_phys(cs->as, cpu->env.psa + pswoffset + 8));
1866 s390_cpu_halt(cpu);
1867 qemu_system_guest_panicked(NULL);
1868 }
1869
1870 /* try to detect pgm check loops */
1871 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run)
1872 {
1873 CPUState *cs = CPU(cpu);
1874 PSW oldpsw, newpsw;
1875
1876 cpu_synchronize_state(cs);
1877 newpsw.mask = ldq_phys(cs->as, cpu->env.psa +
1878 offsetof(LowCore, program_new_psw));
1879 newpsw.addr = ldq_phys(cs->as, cpu->env.psa +
1880 offsetof(LowCore, program_new_psw) + 8);
1881 oldpsw.mask = run->psw_mask;
1882 oldpsw.addr = run->psw_addr;
1883 /*
1884 * Avoid endless loops of operation exceptions, if the pgm new
1885 * PSW will cause a new operation exception.
1886 * The heuristic checks if the pgm new psw is within 6 bytes before
1887 * the faulting psw address (with same DAT, AS settings) and the
1888 * new psw is not a wait psw and the fault was not triggered by
1889 * problem state. In that case go into crashed state.
1890 */
1891
1892 if (oldpsw.addr - newpsw.addr <= 6 &&
1893 !(newpsw.mask & PSW_MASK_WAIT) &&
1894 !(oldpsw.mask & PSW_MASK_PSTATE) &&
1895 (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) &&
1896 (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) {
1897 unmanageable_intercept(cpu, "operation exception loop",
1898 offsetof(LowCore, program_new_psw));
1899 return EXCP_HALTED;
1900 }
1901 return 0;
1902 }
1903
1904 static int handle_intercept(S390CPU *cpu)
1905 {
1906 CPUState *cs = CPU(cpu);
1907 struct kvm_run *run = cs->kvm_run;
1908 int icpt_code = run->s390_sieic.icptcode;
1909 int r = 0;
1910
1911 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code,
1912 (long)cs->kvm_run->psw_addr);
1913 switch (icpt_code) {
1914 case ICPT_INSTRUCTION:
1915 r = handle_instruction(cpu, run);
1916 break;
1917 case ICPT_PROGRAM:
1918 unmanageable_intercept(cpu, "program interrupt",
1919 offsetof(LowCore, program_new_psw));
1920 r = EXCP_HALTED;
1921 break;
1922 case ICPT_EXT_INT:
1923 unmanageable_intercept(cpu, "external interrupt",
1924 offsetof(LowCore, external_new_psw));
1925 r = EXCP_HALTED;
1926 break;
1927 case ICPT_WAITPSW:
1928 /* disabled wait, since enabled wait is handled in kernel */
1929 cpu_synchronize_state(cs);
1930 if (s390_cpu_halt(cpu) == 0) {
1931 if (is_special_wait_psw(cs)) {
1932 qemu_system_shutdown_request();
1933 } else {
1934 qemu_system_guest_panicked(NULL);
1935 }
1936 }
1937 r = EXCP_HALTED;
1938 break;
1939 case ICPT_CPU_STOP:
1940 if (s390_cpu_set_state(CPU_STATE_STOPPED, cpu) == 0) {
1941 qemu_system_shutdown_request();
1942 }
1943 if (cpu->env.sigp_order == SIGP_STOP_STORE_STATUS) {
1944 kvm_s390_store_status(cpu, KVM_S390_STORE_STATUS_DEF_ADDR,
1945 true);
1946 }
1947 cpu->env.sigp_order = 0;
1948 r = EXCP_HALTED;
1949 break;
1950 case ICPT_OPEREXC:
1951 /* check for break points */
1952 r = handle_sw_breakpoint(cpu, run);
1953 if (r == -ENOENT) {
1954 /* Then check for potential pgm check loops */
1955 r = handle_oper_loop(cpu, run);
1956 if (r == 0) {
1957 enter_pgmcheck(cpu, PGM_OPERATION);
1958 }
1959 }
1960 break;
1961 case ICPT_SOFT_INTERCEPT:
1962 fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1963 exit(1);
1964 break;
1965 case ICPT_IO:
1966 fprintf(stderr, "KVM unimplemented icpt IO\n");
1967 exit(1);
1968 break;
1969 default:
1970 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1971 exit(1);
1972 break;
1973 }
1974
1975 return r;
1976 }
1977
1978 static int handle_tsch(S390CPU *cpu)
1979 {
1980 CPUState *cs = CPU(cpu);
1981 struct kvm_run *run = cs->kvm_run;
1982 int ret;
1983
1984 cpu_synchronize_state(cs);
1985
1986 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb);
1987 if (ret < 0) {
1988 /*
1989 * Failure.
1990 * If an I/O interrupt had been dequeued, we have to reinject it.
1991 */
1992 if (run->s390_tsch.dequeued) {
1993 kvm_s390_io_interrupt(run->s390_tsch.subchannel_id,
1994 run->s390_tsch.subchannel_nr,
1995 run->s390_tsch.io_int_parm,
1996 run->s390_tsch.io_int_word);
1997 }
1998 ret = 0;
1999 }
2000 return ret;
2001 }
2002
2003 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
2004 {
2005 struct sysib_322 sysib;
2006 int del;
2007
2008 if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
2009 return;
2010 }
2011 /* Shift the stack of Extended Names to prepare for our own data */
2012 memmove(&sysib.ext_names[1], &sysib.ext_names[0],
2013 sizeof(sysib.ext_names[0]) * (sysib.count - 1));
2014 /* First virt level, that doesn't provide Ext Names delimits stack. It is
2015 * assumed it's not capable of managing Extended Names for lower levels.
2016 */
2017 for (del = 1; del < sysib.count; del++) {
2018 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
2019 break;
2020 }
2021 }
2022 if (del < sysib.count) {
2023 memset(sysib.ext_names[del], 0,
2024 sizeof(sysib.ext_names[0]) * (sysib.count - del));
2025 }
2026 /* Insert short machine name in EBCDIC, padded with blanks */
2027 if (qemu_name) {
2028 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
2029 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
2030 strlen(qemu_name)));
2031 }
2032 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
2033 memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0]));
2034 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
2035 * considered by s390 as not capable of providing any Extended Name.
2036 * Therefore if no name was specified on qemu invocation, we go with the
2037 * same "KVMguest" default, which KVM has filled into short name field.
2038 */
2039 if (qemu_name) {
2040 strncpy((char *)sysib.ext_names[0], qemu_name,
2041 sizeof(sysib.ext_names[0]));
2042 } else {
2043 strcpy((char *)sysib.ext_names[0], "KVMguest");
2044 }
2045 /* Insert UUID */
2046 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid));
2047
2048 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
2049 }
2050
2051 static int handle_stsi(S390CPU *cpu)
2052 {
2053 CPUState *cs = CPU(cpu);
2054 struct kvm_run *run = cs->kvm_run;
2055
2056 switch (run->s390_stsi.fc) {
2057 case 3:
2058 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
2059 return 0;
2060 }
2061 /* Only sysib 3.2.2 needs post-handling for now. */
2062 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
2063 return 0;
2064 default:
2065 return 0;
2066 }
2067 }
2068
2069 static int kvm_arch_handle_debug_exit(S390CPU *cpu)
2070 {
2071 CPUState *cs = CPU(cpu);
2072 struct kvm_run *run = cs->kvm_run;
2073
2074 int ret = 0;
2075 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
2076
2077 switch (arch_info->type) {
2078 case KVM_HW_WP_WRITE:
2079 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
2080 cs->watchpoint_hit = &hw_watchpoint;
2081 hw_watchpoint.vaddr = arch_info->addr;
2082 hw_watchpoint.flags = BP_MEM_WRITE;
2083 ret = EXCP_DEBUG;
2084 }
2085 break;
2086 case KVM_HW_BP:
2087 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
2088 ret = EXCP_DEBUG;
2089 }
2090 break;
2091 case KVM_SINGLESTEP:
2092 if (cs->singlestep_enabled) {
2093 ret = EXCP_DEBUG;
2094 }
2095 break;
2096 default:
2097 ret = -ENOSYS;
2098 }
2099
2100 return ret;
2101 }
2102
2103 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2104 {
2105 S390CPU *cpu = S390_CPU(cs);
2106 int ret = 0;
2107
2108 qemu_mutex_lock_iothread();
2109
2110 switch (run->exit_reason) {
2111 case KVM_EXIT_S390_SIEIC:
2112 ret = handle_intercept(cpu);
2113 break;
2114 case KVM_EXIT_S390_RESET:
2115 s390_reipl_request();
2116 break;
2117 case KVM_EXIT_S390_TSCH:
2118 ret = handle_tsch(cpu);
2119 break;
2120 case KVM_EXIT_S390_STSI:
2121 ret = handle_stsi(cpu);
2122 break;
2123 case KVM_EXIT_DEBUG:
2124 ret = kvm_arch_handle_debug_exit(cpu);
2125 break;
2126 default:
2127 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
2128 break;
2129 }
2130 qemu_mutex_unlock_iothread();
2131
2132 if (ret == 0) {
2133 ret = EXCP_INTERRUPT;
2134 }
2135 return ret;
2136 }
2137
2138 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2139 {
2140 return true;
2141 }
2142
2143 void kvm_s390_io_interrupt(uint16_t subchannel_id,
2144 uint16_t subchannel_nr, uint32_t io_int_parm,
2145 uint32_t io_int_word)
2146 {
2147 struct kvm_s390_irq irq = {
2148 .u.io.subchannel_id = subchannel_id,
2149 .u.io.subchannel_nr = subchannel_nr,
2150 .u.io.io_int_parm = io_int_parm,
2151 .u.io.io_int_word = io_int_word,
2152 };
2153
2154 if (io_int_word & IO_INT_WORD_AI) {
2155 irq.type = KVM_S390_INT_IO(1, 0, 0, 0);
2156 } else {
2157 irq.type = KVM_S390_INT_IO(0, (subchannel_id & 0xff00) >> 8,
2158 (subchannel_id & 0x0006),
2159 subchannel_nr);
2160 }
2161 kvm_s390_floating_interrupt(&irq);
2162 }
2163
2164 static uint64_t build_channel_report_mcic(void)
2165 {
2166 uint64_t mcic;
2167
2168 /* subclass: indicate channel report pending */
2169 mcic = MCIC_SC_CP |
2170 /* subclass modifiers: none */
2171 /* storage errors: none */
2172 /* validity bits: no damage */
2173 MCIC_VB_WP | MCIC_VB_MS | MCIC_VB_PM | MCIC_VB_IA | MCIC_VB_FP |
2174 MCIC_VB_GR | MCIC_VB_CR | MCIC_VB_ST | MCIC_VB_AR | MCIC_VB_PR |
2175 MCIC_VB_FC | MCIC_VB_CT | MCIC_VB_CC;
2176 if (s390_has_feat(S390_FEAT_VECTOR)) {
2177 mcic |= MCIC_VB_VR;
2178 }
2179 return mcic;
2180 }
2181
2182 void kvm_s390_crw_mchk(void)
2183 {
2184 struct kvm_s390_irq irq = {
2185 .type = KVM_S390_MCHK,
2186 .u.mchk.cr14 = 1 << 28,
2187 .u.mchk.mcic = build_channel_report_mcic(),
2188 };
2189 kvm_s390_floating_interrupt(&irq);
2190 }
2191
2192 void kvm_s390_enable_css_support(S390CPU *cpu)
2193 {
2194 int r;
2195
2196 /* Activate host kernel channel subsystem support. */
2197 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
2198 assert(r == 0);
2199 }
2200
2201 void kvm_arch_init_irq_routing(KVMState *s)
2202 {
2203 /*
2204 * Note that while irqchip capabilities generally imply that cpustates
2205 * are handled in-kernel, it is not true for s390 (yet); therefore, we
2206 * have to override the common code kvm_halt_in_kernel_allowed setting.
2207 */
2208 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2209 kvm_gsi_routing_allowed = true;
2210 kvm_halt_in_kernel_allowed = false;
2211 }
2212 }
2213
2214 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
2215 int vq, bool assign)
2216 {
2217 struct kvm_ioeventfd kick = {
2218 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
2219 KVM_IOEVENTFD_FLAG_DATAMATCH,
2220 .fd = event_notifier_get_fd(notifier),
2221 .datamatch = vq,
2222 .addr = sch,
2223 .len = 8,
2224 };
2225 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
2226 return -ENOSYS;
2227 }
2228 if (!assign) {
2229 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
2230 }
2231 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
2232 }
2233
2234 int kvm_s390_get_memslot_count(KVMState *s)
2235 {
2236 return kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2237 }
2238
2239 int kvm_s390_get_ri(void)
2240 {
2241 return cap_ri;
2242 }
2243
2244 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
2245 {
2246 struct kvm_mp_state mp_state = {};
2247 int ret;
2248
2249 /* the kvm part might not have been initialized yet */
2250 if (CPU(cpu)->kvm_state == NULL) {
2251 return 0;
2252 }
2253
2254 switch (cpu_state) {
2255 case CPU_STATE_STOPPED:
2256 mp_state.mp_state = KVM_MP_STATE_STOPPED;
2257 break;
2258 case CPU_STATE_CHECK_STOP:
2259 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
2260 break;
2261 case CPU_STATE_OPERATING:
2262 mp_state.mp_state = KVM_MP_STATE_OPERATING;
2263 break;
2264 case CPU_STATE_LOAD:
2265 mp_state.mp_state = KVM_MP_STATE_LOAD;
2266 break;
2267 default:
2268 error_report("Requested CPU state is not a valid S390 CPU state: %u",
2269 cpu_state);
2270 exit(1);
2271 }
2272
2273 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2274 if (ret) {
2275 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
2276 strerror(-ret));
2277 }
2278
2279 return ret;
2280 }
2281
2282 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
2283 {
2284 struct kvm_s390_irq_state irq_state;
2285 CPUState *cs = CPU(cpu);
2286 int32_t bytes;
2287
2288 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2289 return;
2290 }
2291
2292 irq_state.buf = (uint64_t) cpu->irqstate;
2293 irq_state.len = VCPU_IRQ_BUF_SIZE;
2294
2295 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
2296 if (bytes < 0) {
2297 cpu->irqstate_saved_size = 0;
2298 error_report("Migration of interrupt state failed");
2299 return;
2300 }
2301
2302 cpu->irqstate_saved_size = bytes;
2303 }
2304
2305 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
2306 {
2307 CPUState *cs = CPU(cpu);
2308 struct kvm_s390_irq_state irq_state;
2309 int r;
2310
2311 if (cpu->irqstate_saved_size == 0) {
2312 return 0;
2313 }
2314
2315 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2316 return -ENOSYS;
2317 }
2318
2319 irq_state.buf = (uint64_t) cpu->irqstate;
2320 irq_state.len = cpu->irqstate_saved_size;
2321
2322 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
2323 if (r) {
2324 error_report("Setting interrupt state failed %d", r);
2325 }
2326 return r;
2327 }
2328
2329 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2330 uint64_t address, uint32_t data, PCIDevice *dev)
2331 {
2332 S390PCIBusDevice *pbdev;
2333 uint32_t idx = data >> ZPCI_MSI_VEC_BITS;
2334 uint32_t vec = data & ZPCI_MSI_VEC_MASK;
2335
2336 pbdev = s390_pci_find_dev_by_idx(s390_get_phb(), idx);
2337 if (!pbdev) {
2338 DPRINTF("add_msi_route no dev\n");
2339 return -ENODEV;
2340 }
2341
2342 pbdev->routes.adapter.ind_offset = vec;
2343
2344 route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2345 route->flags = 0;
2346 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2347 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2348 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2349 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset;
2350 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2351 return 0;
2352 }
2353
2354 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2355 int vector, PCIDevice *dev)
2356 {
2357 return 0;
2358 }
2359
2360 int kvm_arch_release_virq_post(int virq)
2361 {
2362 return 0;
2363 }
2364
2365 int kvm_arch_msi_data_to_gsi(uint32_t data)
2366 {
2367 abort();
2368 }
2369
2370 static inline int test_bit_inv(long nr, const unsigned long *addr)
2371 {
2372 return test_bit(BE_BIT_NR(nr), addr);
2373 }
2374
2375 static inline void set_bit_inv(long nr, unsigned long *addr)
2376 {
2377 set_bit(BE_BIT_NR(nr), addr);
2378 }
2379
2380 static int query_cpu_subfunc(S390FeatBitmap features)
2381 {
2382 struct kvm_s390_vm_cpu_subfunc prop;
2383 struct kvm_device_attr attr = {
2384 .group = KVM_S390_VM_CPU_MODEL,
2385 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2386 .addr = (uint64_t) &prop,
2387 };
2388 int rc;
2389
2390 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2391 if (rc) {
2392 return rc;
2393 }
2394
2395 /*
2396 * We're going to add all subfunctions now, if the corresponding feature
2397 * is available that unlocks the query functions.
2398 */
2399 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2400 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2401 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2402 }
2403 if (test_bit(S390_FEAT_MSA, features)) {
2404 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2405 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2406 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2407 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2408 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2409 }
2410 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2411 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2412 }
2413 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2414 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2415 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2416 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2417 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2418 }
2419 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2420 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2421 }
2422 return 0;
2423 }
2424
2425 static int configure_cpu_subfunc(const S390FeatBitmap features)
2426 {
2427 struct kvm_s390_vm_cpu_subfunc prop = {};
2428 struct kvm_device_attr attr = {
2429 .group = KVM_S390_VM_CPU_MODEL,
2430 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2431 .addr = (uint64_t) &prop,
2432 };
2433
2434 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2435 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2436 /* hardware support might be missing, IBC will handle most of this */
2437 return 0;
2438 }
2439
2440 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2441 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2442 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2443 prop.ptff[0] |= 0x80; /* query is always available */
2444 }
2445 if (test_bit(S390_FEAT_MSA, features)) {
2446 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2447 prop.kmac[0] |= 0x80; /* query is always available */
2448 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2449 prop.kmc[0] |= 0x80; /* query is always available */
2450 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2451 prop.km[0] |= 0x80; /* query is always available */
2452 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2453 prop.kimd[0] |= 0x80; /* query is always available */
2454 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2455 prop.klmd[0] |= 0x80; /* query is always available */
2456 }
2457 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2458 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2459 prop.pckmo[0] |= 0x80; /* query is always available */
2460 }
2461 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2462 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2463 prop.kmctr[0] |= 0x80; /* query is always available */
2464 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2465 prop.kmf[0] |= 0x80; /* query is always available */
2466 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2467 prop.kmo[0] |= 0x80; /* query is always available */
2468 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2469 prop.pcc[0] |= 0x80; /* query is always available */
2470 }
2471 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2472 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2473 prop.ppno[0] |= 0x80; /* query is always available */
2474 }
2475 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2476 }
2477
2478 static int kvm_to_feat[][2] = {
2479 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2480 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2481 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2482 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2483 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2484 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2485 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2486 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2487 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2488 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2489 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2490 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2491 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2492 };
2493
2494 static int query_cpu_feat(S390FeatBitmap features)
2495 {
2496 struct kvm_s390_vm_cpu_feat prop;
2497 struct kvm_device_attr attr = {
2498 .group = KVM_S390_VM_CPU_MODEL,
2499 .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2500 .addr = (uint64_t) &prop,
2501 };
2502 int rc;
2503 int i;
2504
2505 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2506 if (rc) {
2507 return rc;
2508 }
2509
2510 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2511 if (test_bit_inv(kvm_to_feat[i][0], (unsigned long *)prop.feat)) {
2512 set_bit(kvm_to_feat[i][1], features);
2513 }
2514 }
2515 return 0;
2516 }
2517
2518 static int configure_cpu_feat(const S390FeatBitmap features)
2519 {
2520 struct kvm_s390_vm_cpu_feat prop = {};
2521 struct kvm_device_attr attr = {
2522 .group = KVM_S390_VM_CPU_MODEL,
2523 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2524 .addr = (uint64_t) &prop,
2525 };
2526 int i;
2527
2528 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2529 if (test_bit(kvm_to_feat[i][1], features)) {
2530 set_bit_inv(kvm_to_feat[i][0], (unsigned long *)prop.feat);
2531 }
2532 }
2533 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2534 }
2535
2536 bool kvm_s390_cpu_models_supported(void)
2537 {
2538 if (!cpu_model_allowed()) {
2539 /* compatibility machines interfere with the cpu model */
2540 return false;
2541 }
2542 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2543 KVM_S390_VM_CPU_MACHINE) &&
2544 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2545 KVM_S390_VM_CPU_PROCESSOR) &&
2546 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2547 KVM_S390_VM_CPU_MACHINE_FEAT) &&
2548 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2549 KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2550 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2551 KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2552 }
2553
2554 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2555 {
2556 struct kvm_s390_vm_cpu_machine prop = {};
2557 struct kvm_device_attr attr = {
2558 .group = KVM_S390_VM_CPU_MODEL,
2559 .attr = KVM_S390_VM_CPU_MACHINE,
2560 .addr = (uint64_t) &prop,
2561 };
2562 uint16_t unblocked_ibc = 0, cpu_type = 0;
2563 int rc;
2564
2565 memset(model, 0, sizeof(*model));
2566
2567 if (!kvm_s390_cpu_models_supported()) {
2568 error_setg(errp, "KVM doesn't support CPU models");
2569 return;
2570 }
2571
2572 /* query the basic cpu model properties */
2573 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2574 if (rc) {
2575 error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2576 return;
2577 }
2578
2579 cpu_type = cpuid_type(prop.cpuid);
2580 if (has_ibc(prop.ibc)) {
2581 model->lowest_ibc = lowest_ibc(prop.ibc);
2582 unblocked_ibc = unblocked_ibc(prop.ibc);
2583 }
2584 model->cpu_id = cpuid_id(prop.cpuid);
2585 model->cpu_ver = 0xff;
2586
2587 /* get supported cpu features indicated via STFL(E) */
2588 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2589 (uint8_t *) prop.fac_mask);
2590 /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2591 if (test_bit(S390_FEAT_STFLE, model->features)) {
2592 set_bit(S390_FEAT_DAT_ENH_2, model->features);
2593 }
2594 /* get supported cpu features indicated e.g. via SCLP */
2595 rc = query_cpu_feat(model->features);
2596 if (rc) {
2597 error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2598 return;
2599 }
2600 /* get supported cpu subfunctions indicated via query / test bit */
2601 rc = query_cpu_subfunc(model->features);
2602 if (rc) {
2603 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2604 return;
2605 }
2606
2607 /* with cpu model support, CMM is only indicated if really available */
2608 if (kvm_s390_cmma_available()) {
2609 set_bit(S390_FEAT_CMM, model->features);
2610 }
2611
2612 if (s390_known_cpu_type(cpu_type)) {
2613 /* we want the exact model, even if some features are missing */
2614 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2615 ibc_ec_ga(unblocked_ibc), NULL);
2616 } else {
2617 /* model unknown, e.g. too new - search using features */
2618 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2619 ibc_ec_ga(unblocked_ibc),
2620 model->features);
2621 }
2622 if (!model->def) {
2623 error_setg(errp, "KVM: host CPU model could not be identified");
2624 return;
2625 }
2626 /* strip of features that are not part of the maximum model */
2627 bitmap_and(model->features, model->features, model->def->full_feat,
2628 S390_FEAT_MAX);
2629 }
2630
2631 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2632 {
2633 struct kvm_s390_vm_cpu_processor prop = {
2634 .fac_list = { 0 },
2635 };
2636 struct kvm_device_attr attr = {
2637 .group = KVM_S390_VM_CPU_MODEL,
2638 .attr = KVM_S390_VM_CPU_PROCESSOR,
2639 .addr = (uint64_t) &prop,
2640 };
2641 int rc;
2642
2643 if (!model) {
2644 /* compatibility handling if cpu models are disabled */
2645 if (kvm_s390_cmma_available() && !mem_path) {
2646 kvm_s390_enable_cmma();
2647 }
2648 return;
2649 }
2650 if (!kvm_s390_cpu_models_supported()) {
2651 error_setg(errp, "KVM doesn't support CPU models");
2652 return;
2653 }
2654 prop.cpuid = s390_cpuid_from_cpu_model(model);
2655 prop.ibc = s390_ibc_from_cpu_model(model);
2656 /* configure cpu features indicated via STFL(e) */
2657 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2658 (uint8_t *) prop.fac_list);
2659 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2660 if (rc) {
2661 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2662 return;
2663 }
2664 /* configure cpu features indicated e.g. via SCLP */
2665 rc = configure_cpu_feat(model->features);
2666 if (rc) {
2667 error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2668 return;
2669 }
2670 /* configure cpu subfunctions indicated via query / test bit */
2671 rc = configure_cpu_subfunc(model->features);
2672 if (rc) {
2673 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2674 return;
2675 }
2676 /* enable CMM via CMMA - disable on hugetlbfs */
2677 if (test_bit(S390_FEAT_CMM, model->features)) {
2678 if (mem_path) {
2679 error_report("Warning: CMM will not be enabled because it is not "
2680 "compatible to hugetlbfs.");
2681 } else {
2682 kvm_s390_enable_cmma();
2683 }
2684 }
2685 }