]> git.proxmox.com Git - mirror_qemu.git/blob - target/sh4/helper.c
Merge remote-tracking branch 'remotes/nvme/tags/nvme-next-pull-request' into staging
[mirror_qemu.git] / target / sh4 / helper.c
1 /*
2 * SH4 emulation
3 *
4 * Copyright (c) 2005 Samuel Tardieu
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/log.h"
25
26 #if !defined(CONFIG_USER_ONLY)
27 #include "hw/sh4/sh_intc.h"
28 #include "sysemu/runstate.h"
29 #endif
30
31 #define MMU_OK 0
32 #define MMU_ITLB_MISS (-1)
33 #define MMU_ITLB_MULTIPLE (-2)
34 #define MMU_ITLB_VIOLATION (-3)
35 #define MMU_DTLB_MISS_READ (-4)
36 #define MMU_DTLB_MISS_WRITE (-5)
37 #define MMU_DTLB_INITIAL_WRITE (-6)
38 #define MMU_DTLB_VIOLATION_READ (-7)
39 #define MMU_DTLB_VIOLATION_WRITE (-8)
40 #define MMU_DTLB_MULTIPLE (-9)
41 #define MMU_DTLB_MISS (-10)
42 #define MMU_IADDR_ERROR (-11)
43 #define MMU_DADDR_ERROR_READ (-12)
44 #define MMU_DADDR_ERROR_WRITE (-13)
45
46 #if defined(CONFIG_USER_ONLY)
47
48 void superh_cpu_do_interrupt(CPUState *cs)
49 {
50 cs->exception_index = -1;
51 }
52
53 int cpu_sh4_is_cached(CPUSH4State *env, target_ulong addr)
54 {
55 /* For user mode, only U0 area is cacheable. */
56 return !(addr & 0x80000000);
57 }
58
59 #else /* !CONFIG_USER_ONLY */
60
61 void superh_cpu_do_interrupt(CPUState *cs)
62 {
63 SuperHCPU *cpu = SUPERH_CPU(cs);
64 CPUSH4State *env = &cpu->env;
65 int do_irq = cs->interrupt_request & CPU_INTERRUPT_HARD;
66 int do_exp, irq_vector = cs->exception_index;
67
68 /* prioritize exceptions over interrupts */
69
70 do_exp = cs->exception_index != -1;
71 do_irq = do_irq && (cs->exception_index == -1);
72
73 if (env->sr & (1u << SR_BL)) {
74 if (do_exp && cs->exception_index != 0x1e0) {
75 /* In theory a masked exception generates a reset exception,
76 which in turn jumps to the reset vector. However this only
77 works when using a bootloader. When using a kernel and an
78 initrd, they need to be reloaded and the program counter
79 should be loaded with the kernel entry point.
80 qemu_system_reset_request takes care of that. */
81 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
82 return;
83 }
84 if (do_irq && !env->in_sleep) {
85 return; /* masked */
86 }
87 }
88 env->in_sleep = 0;
89
90 if (do_irq) {
91 irq_vector = sh_intc_get_pending_vector(env->intc_handle,
92 (env->sr >> 4) & 0xf);
93 if (irq_vector == -1) {
94 return; /* masked */
95 }
96 }
97
98 if (qemu_loglevel_mask(CPU_LOG_INT)) {
99 const char *expname;
100 switch (cs->exception_index) {
101 case 0x0e0:
102 expname = "addr_error";
103 break;
104 case 0x040:
105 expname = "tlb_miss";
106 break;
107 case 0x0a0:
108 expname = "tlb_violation";
109 break;
110 case 0x180:
111 expname = "illegal_instruction";
112 break;
113 case 0x1a0:
114 expname = "slot_illegal_instruction";
115 break;
116 case 0x800:
117 expname = "fpu_disable";
118 break;
119 case 0x820:
120 expname = "slot_fpu";
121 break;
122 case 0x100:
123 expname = "data_write";
124 break;
125 case 0x060:
126 expname = "dtlb_miss_write";
127 break;
128 case 0x0c0:
129 expname = "dtlb_violation_write";
130 break;
131 case 0x120:
132 expname = "fpu_exception";
133 break;
134 case 0x080:
135 expname = "initial_page_write";
136 break;
137 case 0x160:
138 expname = "trapa";
139 break;
140 default:
141 expname = do_irq ? "interrupt" : "???";
142 break;
143 }
144 qemu_log("exception 0x%03x [%s] raised\n",
145 irq_vector, expname);
146 log_cpu_state(cs, 0);
147 }
148
149 env->ssr = cpu_read_sr(env);
150 env->spc = env->pc;
151 env->sgr = env->gregs[15];
152 env->sr |= (1u << SR_BL) | (1u << SR_MD) | (1u << SR_RB);
153 env->lock_addr = -1;
154
155 if (env->flags & DELAY_SLOT_MASK) {
156 /* Branch instruction should be executed again before delay slot. */
157 env->spc -= 2;
158 /* Clear flags for exception/interrupt routine. */
159 env->flags &= ~DELAY_SLOT_MASK;
160 }
161
162 if (do_exp) {
163 env->expevt = cs->exception_index;
164 switch (cs->exception_index) {
165 case 0x000:
166 case 0x020:
167 case 0x140:
168 env->sr &= ~(1u << SR_FD);
169 env->sr |= 0xf << 4; /* IMASK */
170 env->pc = 0xa0000000;
171 break;
172 case 0x040:
173 case 0x060:
174 env->pc = env->vbr + 0x400;
175 break;
176 case 0x160:
177 env->spc += 2; /* special case for TRAPA */
178 /* fall through */
179 default:
180 env->pc = env->vbr + 0x100;
181 break;
182 }
183 return;
184 }
185
186 if (do_irq) {
187 env->intevt = irq_vector;
188 env->pc = env->vbr + 0x600;
189 return;
190 }
191 }
192
193 static void update_itlb_use(CPUSH4State * env, int itlbnb)
194 {
195 uint8_t or_mask = 0, and_mask = (uint8_t) - 1;
196
197 switch (itlbnb) {
198 case 0:
199 and_mask = 0x1f;
200 break;
201 case 1:
202 and_mask = 0xe7;
203 or_mask = 0x80;
204 break;
205 case 2:
206 and_mask = 0xfb;
207 or_mask = 0x50;
208 break;
209 case 3:
210 or_mask = 0x2c;
211 break;
212 }
213
214 env->mmucr &= (and_mask << 24) | 0x00ffffff;
215 env->mmucr |= (or_mask << 24);
216 }
217
218 static int itlb_replacement(CPUSH4State * env)
219 {
220 if ((env->mmucr & 0xe0000000) == 0xe0000000) {
221 return 0;
222 }
223 if ((env->mmucr & 0x98000000) == 0x18000000) {
224 return 1;
225 }
226 if ((env->mmucr & 0x54000000) == 0x04000000) {
227 return 2;
228 }
229 if ((env->mmucr & 0x2c000000) == 0x00000000) {
230 return 3;
231 }
232 cpu_abort(env_cpu(env), "Unhandled itlb_replacement");
233 }
234
235 /* Find the corresponding entry in the right TLB
236 Return entry, MMU_DTLB_MISS or MMU_DTLB_MULTIPLE
237 */
238 static int find_tlb_entry(CPUSH4State * env, target_ulong address,
239 tlb_t * entries, uint8_t nbtlb, int use_asid)
240 {
241 int match = MMU_DTLB_MISS;
242 uint32_t start, end;
243 uint8_t asid;
244 int i;
245
246 asid = env->pteh & 0xff;
247
248 for (i = 0; i < nbtlb; i++) {
249 if (!entries[i].v)
250 continue; /* Invalid entry */
251 if (!entries[i].sh && use_asid && entries[i].asid != asid)
252 continue; /* Bad ASID */
253 start = (entries[i].vpn << 10) & ~(entries[i].size - 1);
254 end = start + entries[i].size - 1;
255 if (address >= start && address <= end) { /* Match */
256 if (match != MMU_DTLB_MISS)
257 return MMU_DTLB_MULTIPLE; /* Multiple match */
258 match = i;
259 }
260 }
261 return match;
262 }
263
264 static void increment_urc(CPUSH4State * env)
265 {
266 uint8_t urb, urc;
267
268 /* Increment URC */
269 urb = ((env->mmucr) >> 18) & 0x3f;
270 urc = ((env->mmucr) >> 10) & 0x3f;
271 urc++;
272 if ((urb > 0 && urc > urb) || urc > (UTLB_SIZE - 1))
273 urc = 0;
274 env->mmucr = (env->mmucr & 0xffff03ff) | (urc << 10);
275 }
276
277 /* Copy and utlb entry into itlb
278 Return entry
279 */
280 static int copy_utlb_entry_itlb(CPUSH4State *env, int utlb)
281 {
282 int itlb;
283
284 tlb_t * ientry;
285 itlb = itlb_replacement(env);
286 ientry = &env->itlb[itlb];
287 if (ientry->v) {
288 tlb_flush_page(env_cpu(env), ientry->vpn << 10);
289 }
290 *ientry = env->utlb[utlb];
291 update_itlb_use(env, itlb);
292 return itlb;
293 }
294
295 /* Find itlb entry
296 Return entry, MMU_ITLB_MISS, MMU_ITLB_MULTIPLE or MMU_DTLB_MULTIPLE
297 */
298 static int find_itlb_entry(CPUSH4State * env, target_ulong address,
299 int use_asid)
300 {
301 int e;
302
303 e = find_tlb_entry(env, address, env->itlb, ITLB_SIZE, use_asid);
304 if (e == MMU_DTLB_MULTIPLE) {
305 e = MMU_ITLB_MULTIPLE;
306 } else if (e == MMU_DTLB_MISS) {
307 e = MMU_ITLB_MISS;
308 } else if (e >= 0) {
309 update_itlb_use(env, e);
310 }
311 return e;
312 }
313
314 /* Find utlb entry
315 Return entry, MMU_DTLB_MISS, MMU_DTLB_MULTIPLE */
316 static int find_utlb_entry(CPUSH4State * env, target_ulong address, int use_asid)
317 {
318 /* per utlb access */
319 increment_urc(env);
320
321 /* Return entry */
322 return find_tlb_entry(env, address, env->utlb, UTLB_SIZE, use_asid);
323 }
324
325 /* Match address against MMU
326 Return MMU_OK, MMU_DTLB_MISS_READ, MMU_DTLB_MISS_WRITE,
327 MMU_DTLB_INITIAL_WRITE, MMU_DTLB_VIOLATION_READ,
328 MMU_DTLB_VIOLATION_WRITE, MMU_ITLB_MISS,
329 MMU_ITLB_MULTIPLE, MMU_ITLB_VIOLATION,
330 MMU_IADDR_ERROR, MMU_DADDR_ERROR_READ, MMU_DADDR_ERROR_WRITE.
331 */
332 static int get_mmu_address(CPUSH4State * env, target_ulong * physical,
333 int *prot, target_ulong address,
334 MMUAccessType access_type)
335 {
336 int use_asid, n;
337 tlb_t *matching = NULL;
338
339 use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD));
340
341 if (access_type == MMU_INST_FETCH) {
342 n = find_itlb_entry(env, address, use_asid);
343 if (n >= 0) {
344 matching = &env->itlb[n];
345 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
346 n = MMU_ITLB_VIOLATION;
347 } else {
348 *prot = PAGE_EXEC;
349 }
350 } else {
351 n = find_utlb_entry(env, address, use_asid);
352 if (n >= 0) {
353 n = copy_utlb_entry_itlb(env, n);
354 matching = &env->itlb[n];
355 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
356 n = MMU_ITLB_VIOLATION;
357 } else {
358 *prot = PAGE_READ | PAGE_EXEC;
359 if ((matching->pr & 1) && matching->d) {
360 *prot |= PAGE_WRITE;
361 }
362 }
363 } else if (n == MMU_DTLB_MULTIPLE) {
364 n = MMU_ITLB_MULTIPLE;
365 } else if (n == MMU_DTLB_MISS) {
366 n = MMU_ITLB_MISS;
367 }
368 }
369 } else {
370 n = find_utlb_entry(env, address, use_asid);
371 if (n >= 0) {
372 matching = &env->utlb[n];
373 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
374 n = (access_type == MMU_DATA_STORE)
375 ? MMU_DTLB_VIOLATION_WRITE : MMU_DTLB_VIOLATION_READ;
376 } else if ((access_type == MMU_DATA_STORE) && !(matching->pr & 1)) {
377 n = MMU_DTLB_VIOLATION_WRITE;
378 } else if ((access_type == MMU_DATA_STORE) && !matching->d) {
379 n = MMU_DTLB_INITIAL_WRITE;
380 } else {
381 *prot = PAGE_READ;
382 if ((matching->pr & 1) && matching->d) {
383 *prot |= PAGE_WRITE;
384 }
385 }
386 } else if (n == MMU_DTLB_MISS) {
387 n = (access_type == MMU_DATA_STORE)
388 ? MMU_DTLB_MISS_WRITE : MMU_DTLB_MISS_READ;
389 }
390 }
391 if (n >= 0) {
392 n = MMU_OK;
393 *physical = ((matching->ppn << 10) & ~(matching->size - 1))
394 | (address & (matching->size - 1));
395 }
396 return n;
397 }
398
399 static int get_physical_address(CPUSH4State * env, target_ulong * physical,
400 int *prot, target_ulong address,
401 MMUAccessType access_type)
402 {
403 /* P1, P2 and P4 areas do not use translation */
404 if ((address >= 0x80000000 && address < 0xc0000000) || address >= 0xe0000000) {
405 if (!(env->sr & (1u << SR_MD))
406 && (address < 0xe0000000 || address >= 0xe4000000)) {
407 /* Unauthorized access in user mode (only store queues are available) */
408 qemu_log_mask(LOG_GUEST_ERROR, "Unauthorized access\n");
409 if (access_type == MMU_DATA_LOAD) {
410 return MMU_DADDR_ERROR_READ;
411 } else if (access_type == MMU_DATA_STORE) {
412 return MMU_DADDR_ERROR_WRITE;
413 } else {
414 return MMU_IADDR_ERROR;
415 }
416 }
417 if (address >= 0x80000000 && address < 0xc0000000) {
418 /* Mask upper 3 bits for P1 and P2 areas */
419 *physical = address & 0x1fffffff;
420 } else {
421 *physical = address;
422 }
423 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
424 return MMU_OK;
425 }
426
427 /* If MMU is disabled, return the corresponding physical page */
428 if (!(env->mmucr & MMUCR_AT)) {
429 *physical = address & 0x1FFFFFFF;
430 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
431 return MMU_OK;
432 }
433
434 /* We need to resort to the MMU */
435 return get_mmu_address(env, physical, prot, address, access_type);
436 }
437
438 hwaddr superh_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
439 {
440 SuperHCPU *cpu = SUPERH_CPU(cs);
441 target_ulong physical;
442 int prot;
443
444 if (get_physical_address(&cpu->env, &physical, &prot, addr, MMU_DATA_LOAD)
445 == MMU_OK) {
446 return physical;
447 }
448
449 return -1;
450 }
451
452 void cpu_load_tlb(CPUSH4State * env)
453 {
454 CPUState *cs = env_cpu(env);
455 int n = cpu_mmucr_urc(env->mmucr);
456 tlb_t * entry = &env->utlb[n];
457
458 if (entry->v) {
459 /* Overwriting valid entry in utlb. */
460 target_ulong address = entry->vpn << 10;
461 tlb_flush_page(cs, address);
462 }
463
464 /* Take values into cpu status from registers. */
465 entry->asid = (uint8_t)cpu_pteh_asid(env->pteh);
466 entry->vpn = cpu_pteh_vpn(env->pteh);
467 entry->v = (uint8_t)cpu_ptel_v(env->ptel);
468 entry->ppn = cpu_ptel_ppn(env->ptel);
469 entry->sz = (uint8_t)cpu_ptel_sz(env->ptel);
470 switch (entry->sz) {
471 case 0: /* 00 */
472 entry->size = 1024; /* 1K */
473 break;
474 case 1: /* 01 */
475 entry->size = 1024 * 4; /* 4K */
476 break;
477 case 2: /* 10 */
478 entry->size = 1024 * 64; /* 64K */
479 break;
480 case 3: /* 11 */
481 entry->size = 1024 * 1024; /* 1M */
482 break;
483 default:
484 cpu_abort(cs, "Unhandled load_tlb");
485 break;
486 }
487 entry->sh = (uint8_t)cpu_ptel_sh(env->ptel);
488 entry->c = (uint8_t)cpu_ptel_c(env->ptel);
489 entry->pr = (uint8_t)cpu_ptel_pr(env->ptel);
490 entry->d = (uint8_t)cpu_ptel_d(env->ptel);
491 entry->wt = (uint8_t)cpu_ptel_wt(env->ptel);
492 entry->sa = (uint8_t)cpu_ptea_sa(env->ptea);
493 entry->tc = (uint8_t)cpu_ptea_tc(env->ptea);
494 }
495
496 void cpu_sh4_invalidate_tlb(CPUSH4State *s)
497 {
498 int i;
499
500 /* UTLB */
501 for (i = 0; i < UTLB_SIZE; i++) {
502 tlb_t * entry = &s->utlb[i];
503 entry->v = 0;
504 }
505 /* ITLB */
506 for (i = 0; i < ITLB_SIZE; i++) {
507 tlb_t * entry = &s->itlb[i];
508 entry->v = 0;
509 }
510
511 tlb_flush(env_cpu(s));
512 }
513
514 uint32_t cpu_sh4_read_mmaped_itlb_addr(CPUSH4State *s,
515 hwaddr addr)
516 {
517 int index = (addr & 0x00000300) >> 8;
518 tlb_t * entry = &s->itlb[index];
519
520 return (entry->vpn << 10) |
521 (entry->v << 8) |
522 (entry->asid);
523 }
524
525 void cpu_sh4_write_mmaped_itlb_addr(CPUSH4State *s, hwaddr addr,
526 uint32_t mem_value)
527 {
528 uint32_t vpn = (mem_value & 0xfffffc00) >> 10;
529 uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8);
530 uint8_t asid = (uint8_t)(mem_value & 0x000000ff);
531
532 int index = (addr & 0x00000300) >> 8;
533 tlb_t * entry = &s->itlb[index];
534 if (entry->v) {
535 /* Overwriting valid entry in itlb. */
536 target_ulong address = entry->vpn << 10;
537 tlb_flush_page(env_cpu(s), address);
538 }
539 entry->asid = asid;
540 entry->vpn = vpn;
541 entry->v = v;
542 }
543
544 uint32_t cpu_sh4_read_mmaped_itlb_data(CPUSH4State *s,
545 hwaddr addr)
546 {
547 int array = (addr & 0x00800000) >> 23;
548 int index = (addr & 0x00000300) >> 8;
549 tlb_t * entry = &s->itlb[index];
550
551 if (array == 0) {
552 /* ITLB Data Array 1 */
553 return (entry->ppn << 10) |
554 (entry->v << 8) |
555 (entry->pr << 5) |
556 ((entry->sz & 1) << 6) |
557 ((entry->sz & 2) << 4) |
558 (entry->c << 3) |
559 (entry->sh << 1);
560 } else {
561 /* ITLB Data Array 2 */
562 return (entry->tc << 1) |
563 (entry->sa);
564 }
565 }
566
567 void cpu_sh4_write_mmaped_itlb_data(CPUSH4State *s, hwaddr addr,
568 uint32_t mem_value)
569 {
570 int array = (addr & 0x00800000) >> 23;
571 int index = (addr & 0x00000300) >> 8;
572 tlb_t * entry = &s->itlb[index];
573
574 if (array == 0) {
575 /* ITLB Data Array 1 */
576 if (entry->v) {
577 /* Overwriting valid entry in utlb. */
578 target_ulong address = entry->vpn << 10;
579 tlb_flush_page(env_cpu(s), address);
580 }
581 entry->ppn = (mem_value & 0x1ffffc00) >> 10;
582 entry->v = (mem_value & 0x00000100) >> 8;
583 entry->sz = (mem_value & 0x00000080) >> 6 |
584 (mem_value & 0x00000010) >> 4;
585 entry->pr = (mem_value & 0x00000040) >> 5;
586 entry->c = (mem_value & 0x00000008) >> 3;
587 entry->sh = (mem_value & 0x00000002) >> 1;
588 } else {
589 /* ITLB Data Array 2 */
590 entry->tc = (mem_value & 0x00000008) >> 3;
591 entry->sa = (mem_value & 0x00000007);
592 }
593 }
594
595 uint32_t cpu_sh4_read_mmaped_utlb_addr(CPUSH4State *s,
596 hwaddr addr)
597 {
598 int index = (addr & 0x00003f00) >> 8;
599 tlb_t * entry = &s->utlb[index];
600
601 increment_urc(s); /* per utlb access */
602
603 return (entry->vpn << 10) |
604 (entry->v << 8) |
605 (entry->asid);
606 }
607
608 void cpu_sh4_write_mmaped_utlb_addr(CPUSH4State *s, hwaddr addr,
609 uint32_t mem_value)
610 {
611 int associate = addr & 0x0000080;
612 uint32_t vpn = (mem_value & 0xfffffc00) >> 10;
613 uint8_t d = (uint8_t)((mem_value & 0x00000200) >> 9);
614 uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8);
615 uint8_t asid = (uint8_t)(mem_value & 0x000000ff);
616 int use_asid = !(s->mmucr & MMUCR_SV) || !(s->sr & (1u << SR_MD));
617
618 if (associate) {
619 int i;
620 tlb_t * utlb_match_entry = NULL;
621 int needs_tlb_flush = 0;
622
623 /* search UTLB */
624 for (i = 0; i < UTLB_SIZE; i++) {
625 tlb_t * entry = &s->utlb[i];
626 if (!entry->v)
627 continue;
628
629 if (entry->vpn == vpn
630 && (!use_asid || entry->asid == asid || entry->sh)) {
631 if (utlb_match_entry) {
632 CPUState *cs = env_cpu(s);
633
634 /* Multiple TLB Exception */
635 cs->exception_index = 0x140;
636 s->tea = addr;
637 break;
638 }
639 if (entry->v && !v)
640 needs_tlb_flush = 1;
641 entry->v = v;
642 entry->d = d;
643 utlb_match_entry = entry;
644 }
645 increment_urc(s); /* per utlb access */
646 }
647
648 /* search ITLB */
649 for (i = 0; i < ITLB_SIZE; i++) {
650 tlb_t * entry = &s->itlb[i];
651 if (entry->vpn == vpn
652 && (!use_asid || entry->asid == asid || entry->sh)) {
653 if (entry->v && !v)
654 needs_tlb_flush = 1;
655 if (utlb_match_entry)
656 *entry = *utlb_match_entry;
657 else
658 entry->v = v;
659 break;
660 }
661 }
662
663 if (needs_tlb_flush) {
664 tlb_flush_page(env_cpu(s), vpn << 10);
665 }
666 } else {
667 int index = (addr & 0x00003f00) >> 8;
668 tlb_t * entry = &s->utlb[index];
669 if (entry->v) {
670 CPUState *cs = env_cpu(s);
671
672 /* Overwriting valid entry in utlb. */
673 target_ulong address = entry->vpn << 10;
674 tlb_flush_page(cs, address);
675 }
676 entry->asid = asid;
677 entry->vpn = vpn;
678 entry->d = d;
679 entry->v = v;
680 increment_urc(s);
681 }
682 }
683
684 uint32_t cpu_sh4_read_mmaped_utlb_data(CPUSH4State *s,
685 hwaddr addr)
686 {
687 int array = (addr & 0x00800000) >> 23;
688 int index = (addr & 0x00003f00) >> 8;
689 tlb_t * entry = &s->utlb[index];
690
691 increment_urc(s); /* per utlb access */
692
693 if (array == 0) {
694 /* ITLB Data Array 1 */
695 return (entry->ppn << 10) |
696 (entry->v << 8) |
697 (entry->pr << 5) |
698 ((entry->sz & 1) << 6) |
699 ((entry->sz & 2) << 4) |
700 (entry->c << 3) |
701 (entry->d << 2) |
702 (entry->sh << 1) |
703 (entry->wt);
704 } else {
705 /* ITLB Data Array 2 */
706 return (entry->tc << 1) |
707 (entry->sa);
708 }
709 }
710
711 void cpu_sh4_write_mmaped_utlb_data(CPUSH4State *s, hwaddr addr,
712 uint32_t mem_value)
713 {
714 int array = (addr & 0x00800000) >> 23;
715 int index = (addr & 0x00003f00) >> 8;
716 tlb_t * entry = &s->utlb[index];
717
718 increment_urc(s); /* per utlb access */
719
720 if (array == 0) {
721 /* UTLB Data Array 1 */
722 if (entry->v) {
723 /* Overwriting valid entry in utlb. */
724 target_ulong address = entry->vpn << 10;
725 tlb_flush_page(env_cpu(s), address);
726 }
727 entry->ppn = (mem_value & 0x1ffffc00) >> 10;
728 entry->v = (mem_value & 0x00000100) >> 8;
729 entry->sz = (mem_value & 0x00000080) >> 6 |
730 (mem_value & 0x00000010) >> 4;
731 entry->pr = (mem_value & 0x00000060) >> 5;
732 entry->c = (mem_value & 0x00000008) >> 3;
733 entry->d = (mem_value & 0x00000004) >> 2;
734 entry->sh = (mem_value & 0x00000002) >> 1;
735 entry->wt = (mem_value & 0x00000001);
736 } else {
737 /* UTLB Data Array 2 */
738 entry->tc = (mem_value & 0x00000008) >> 3;
739 entry->sa = (mem_value & 0x00000007);
740 }
741 }
742
743 int cpu_sh4_is_cached(CPUSH4State * env, target_ulong addr)
744 {
745 int n;
746 int use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD));
747
748 /* check area */
749 if (env->sr & (1u << SR_MD)) {
750 /* For privileged mode, P2 and P4 area is not cacheable. */
751 if ((0xA0000000 <= addr && addr < 0xC0000000) || 0xE0000000 <= addr)
752 return 0;
753 } else {
754 /* For user mode, only U0 area is cacheable. */
755 if (0x80000000 <= addr)
756 return 0;
757 }
758
759 /*
760 * TODO : Evaluate CCR and check if the cache is on or off.
761 * Now CCR is not in CPUSH4State, but in SH7750State.
762 * When you move the ccr into CPUSH4State, the code will be
763 * as follows.
764 */
765 #if 0
766 /* check if operand cache is enabled or not. */
767 if (!(env->ccr & 1))
768 return 0;
769 #endif
770
771 /* if MMU is off, no check for TLB. */
772 if (env->mmucr & MMUCR_AT)
773 return 1;
774
775 /* check TLB */
776 n = find_tlb_entry(env, addr, env->itlb, ITLB_SIZE, use_asid);
777 if (n >= 0)
778 return env->itlb[n].c;
779
780 n = find_tlb_entry(env, addr, env->utlb, UTLB_SIZE, use_asid);
781 if (n >= 0)
782 return env->utlb[n].c;
783
784 return 0;
785 }
786
787 #endif
788
789 bool superh_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
790 {
791 if (interrupt_request & CPU_INTERRUPT_HARD) {
792 SuperHCPU *cpu = SUPERH_CPU(cs);
793 CPUSH4State *env = &cpu->env;
794
795 /* Delay slots are indivisible, ignore interrupts */
796 if (env->flags & DELAY_SLOT_MASK) {
797 return false;
798 } else {
799 superh_cpu_do_interrupt(cs);
800 return true;
801 }
802 }
803 return false;
804 }
805
806 bool superh_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
807 MMUAccessType access_type, int mmu_idx,
808 bool probe, uintptr_t retaddr)
809 {
810 SuperHCPU *cpu = SUPERH_CPU(cs);
811 CPUSH4State *env = &cpu->env;
812 int ret;
813
814 #ifdef CONFIG_USER_ONLY
815 ret = (access_type == MMU_DATA_STORE ? MMU_DTLB_VIOLATION_WRITE :
816 access_type == MMU_INST_FETCH ? MMU_ITLB_VIOLATION :
817 MMU_DTLB_VIOLATION_READ);
818 #else
819 target_ulong physical;
820 int prot;
821
822 ret = get_physical_address(env, &physical, &prot, address, access_type);
823
824 if (ret == MMU_OK) {
825 address &= TARGET_PAGE_MASK;
826 physical &= TARGET_PAGE_MASK;
827 tlb_set_page(cs, address, physical, prot, mmu_idx, TARGET_PAGE_SIZE);
828 return true;
829 }
830 if (probe) {
831 return false;
832 }
833
834 if (ret != MMU_DTLB_MULTIPLE && ret != MMU_ITLB_MULTIPLE) {
835 env->pteh = (env->pteh & PTEH_ASID_MASK) | (address & PTEH_VPN_MASK);
836 }
837 #endif
838
839 env->tea = address;
840 switch (ret) {
841 case MMU_ITLB_MISS:
842 case MMU_DTLB_MISS_READ:
843 cs->exception_index = 0x040;
844 break;
845 case MMU_DTLB_MULTIPLE:
846 case MMU_ITLB_MULTIPLE:
847 cs->exception_index = 0x140;
848 break;
849 case MMU_ITLB_VIOLATION:
850 cs->exception_index = 0x0a0;
851 break;
852 case MMU_DTLB_MISS_WRITE:
853 cs->exception_index = 0x060;
854 break;
855 case MMU_DTLB_INITIAL_WRITE:
856 cs->exception_index = 0x080;
857 break;
858 case MMU_DTLB_VIOLATION_READ:
859 cs->exception_index = 0x0a0;
860 break;
861 case MMU_DTLB_VIOLATION_WRITE:
862 cs->exception_index = 0x0c0;
863 break;
864 case MMU_IADDR_ERROR:
865 case MMU_DADDR_ERROR_READ:
866 cs->exception_index = 0x0e0;
867 break;
868 case MMU_DADDR_ERROR_WRITE:
869 cs->exception_index = 0x100;
870 break;
871 default:
872 cpu_abort(cs, "Unhandled MMU fault");
873 }
874 cpu_loop_exit_restore(cs, retaddr);
875 }