]> git.proxmox.com Git - mirror_qemu.git/blob - target/sh4/op_helper.c
cpu: Replace ENV_GET_CPU with env_cpu
[mirror_qemu.git] / target / sh4 / op_helper.c
1 /*
2 * SH4 emulation
3 *
4 * Copyright (c) 2005 Samuel Tardieu
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "exec/cpu_ldst.h"
24 #include "fpu/softfloat.h"
25
26 #ifndef CONFIG_USER_ONLY
27
28 void superh_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
29 MMUAccessType access_type,
30 int mmu_idx, uintptr_t retaddr)
31 {
32 switch (access_type) {
33 case MMU_INST_FETCH:
34 case MMU_DATA_LOAD:
35 cs->exception_index = 0x0e0;
36 break;
37 case MMU_DATA_STORE:
38 cs->exception_index = 0x100;
39 break;
40 }
41 cpu_loop_exit_restore(cs, retaddr);
42 }
43
44 #endif
45
46 void helper_ldtlb(CPUSH4State *env)
47 {
48 #ifdef CONFIG_USER_ONLY
49 SuperHCPU *cpu = sh_env_get_cpu(env);
50
51 /* XXXXX */
52 cpu_abort(CPU(cpu), "Unhandled ldtlb");
53 #else
54 cpu_load_tlb(env);
55 #endif
56 }
57
58 static inline void QEMU_NORETURN raise_exception(CPUSH4State *env, int index,
59 uintptr_t retaddr)
60 {
61 CPUState *cs = CPU(sh_env_get_cpu(env));
62
63 cs->exception_index = index;
64 cpu_loop_exit_restore(cs, retaddr);
65 }
66
67 void helper_raise_illegal_instruction(CPUSH4State *env)
68 {
69 raise_exception(env, 0x180, 0);
70 }
71
72 void helper_raise_slot_illegal_instruction(CPUSH4State *env)
73 {
74 raise_exception(env, 0x1a0, 0);
75 }
76
77 void helper_raise_fpu_disable(CPUSH4State *env)
78 {
79 raise_exception(env, 0x800, 0);
80 }
81
82 void helper_raise_slot_fpu_disable(CPUSH4State *env)
83 {
84 raise_exception(env, 0x820, 0);
85 }
86
87 void helper_debug(CPUSH4State *env)
88 {
89 raise_exception(env, EXCP_DEBUG, 0);
90 }
91
92 void helper_sleep(CPUSH4State *env)
93 {
94 CPUState *cs = CPU(sh_env_get_cpu(env));
95
96 cs->halted = 1;
97 env->in_sleep = 1;
98 raise_exception(env, EXCP_HLT, 0);
99 }
100
101 void helper_trapa(CPUSH4State *env, uint32_t tra)
102 {
103 env->tra = tra << 2;
104 raise_exception(env, 0x160, 0);
105 }
106
107 void helper_exclusive(CPUSH4State *env)
108 {
109 /* We do not want cpu_restore_state to run. */
110 cpu_loop_exit_atomic(env_cpu(env), 0);
111 }
112
113 void helper_movcal(CPUSH4State *env, uint32_t address, uint32_t value)
114 {
115 if (cpu_sh4_is_cached (env, address))
116 {
117 memory_content *r = g_new(memory_content, 1);
118
119 r->address = address;
120 r->value = value;
121 r->next = NULL;
122
123 *(env->movcal_backup_tail) = r;
124 env->movcal_backup_tail = &(r->next);
125 }
126 }
127
128 void helper_discard_movcal_backup(CPUSH4State *env)
129 {
130 memory_content *current = env->movcal_backup;
131
132 while(current)
133 {
134 memory_content *next = current->next;
135 g_free(current);
136 env->movcal_backup = current = next;
137 if (current == NULL)
138 env->movcal_backup_tail = &(env->movcal_backup);
139 }
140 }
141
142 void helper_ocbi(CPUSH4State *env, uint32_t address)
143 {
144 memory_content **current = &(env->movcal_backup);
145 while (*current)
146 {
147 uint32_t a = (*current)->address;
148 if ((a & ~0x1F) == (address & ~0x1F))
149 {
150 memory_content *next = (*current)->next;
151 cpu_stl_data(env, a, (*current)->value);
152
153 if (next == NULL)
154 {
155 env->movcal_backup_tail = current;
156 }
157
158 g_free(*current);
159 *current = next;
160 break;
161 }
162 }
163 }
164
165 void helper_macl(CPUSH4State *env, uint32_t arg0, uint32_t arg1)
166 {
167 int64_t res;
168
169 res = ((uint64_t) env->mach << 32) | env->macl;
170 res += (int64_t) (int32_t) arg0 *(int64_t) (int32_t) arg1;
171 env->mach = (res >> 32) & 0xffffffff;
172 env->macl = res & 0xffffffff;
173 if (env->sr & (1u << SR_S)) {
174 if (res < 0)
175 env->mach |= 0xffff0000;
176 else
177 env->mach &= 0x00007fff;
178 }
179 }
180
181 void helper_macw(CPUSH4State *env, uint32_t arg0, uint32_t arg1)
182 {
183 int64_t res;
184
185 res = ((uint64_t) env->mach << 32) | env->macl;
186 res += (int64_t) (int16_t) arg0 *(int64_t) (int16_t) arg1;
187 env->mach = (res >> 32) & 0xffffffff;
188 env->macl = res & 0xffffffff;
189 if (env->sr & (1u << SR_S)) {
190 if (res < -0x80000000) {
191 env->mach = 1;
192 env->macl = 0x80000000;
193 } else if (res > 0x000000007fffffff) {
194 env->mach = 1;
195 env->macl = 0x7fffffff;
196 }
197 }
198 }
199
200 void helper_ld_fpscr(CPUSH4State *env, uint32_t val)
201 {
202 env->fpscr = val & FPSCR_MASK;
203 if ((val & FPSCR_RM_MASK) == FPSCR_RM_ZERO) {
204 set_float_rounding_mode(float_round_to_zero, &env->fp_status);
205 } else {
206 set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
207 }
208 set_flush_to_zero((val & FPSCR_DN) != 0, &env->fp_status);
209 }
210
211 static void update_fpscr(CPUSH4State *env, uintptr_t retaddr)
212 {
213 int xcpt, cause, enable;
214
215 xcpt = get_float_exception_flags(&env->fp_status);
216
217 /* Clear the cause entries */
218 env->fpscr &= ~FPSCR_CAUSE_MASK;
219
220 if (unlikely(xcpt)) {
221 if (xcpt & float_flag_invalid) {
222 env->fpscr |= FPSCR_CAUSE_V;
223 }
224 if (xcpt & float_flag_divbyzero) {
225 env->fpscr |= FPSCR_CAUSE_Z;
226 }
227 if (xcpt & float_flag_overflow) {
228 env->fpscr |= FPSCR_CAUSE_O;
229 }
230 if (xcpt & float_flag_underflow) {
231 env->fpscr |= FPSCR_CAUSE_U;
232 }
233 if (xcpt & float_flag_inexact) {
234 env->fpscr |= FPSCR_CAUSE_I;
235 }
236
237 /* Accumulate in flag entries */
238 env->fpscr |= (env->fpscr & FPSCR_CAUSE_MASK)
239 >> (FPSCR_CAUSE_SHIFT - FPSCR_FLAG_SHIFT);
240
241 /* Generate an exception if enabled */
242 cause = (env->fpscr & FPSCR_CAUSE_MASK) >> FPSCR_CAUSE_SHIFT;
243 enable = (env->fpscr & FPSCR_ENABLE_MASK) >> FPSCR_ENABLE_SHIFT;
244 if (cause & enable) {
245 raise_exception(env, 0x120, retaddr);
246 }
247 }
248 }
249
250 float32 helper_fadd_FT(CPUSH4State *env, float32 t0, float32 t1)
251 {
252 set_float_exception_flags(0, &env->fp_status);
253 t0 = float32_add(t0, t1, &env->fp_status);
254 update_fpscr(env, GETPC());
255 return t0;
256 }
257
258 float64 helper_fadd_DT(CPUSH4State *env, float64 t0, float64 t1)
259 {
260 set_float_exception_flags(0, &env->fp_status);
261 t0 = float64_add(t0, t1, &env->fp_status);
262 update_fpscr(env, GETPC());
263 return t0;
264 }
265
266 uint32_t helper_fcmp_eq_FT(CPUSH4State *env, float32 t0, float32 t1)
267 {
268 int relation;
269
270 set_float_exception_flags(0, &env->fp_status);
271 relation = float32_compare(t0, t1, &env->fp_status);
272 update_fpscr(env, GETPC());
273 return relation == float_relation_equal;
274 }
275
276 uint32_t helper_fcmp_eq_DT(CPUSH4State *env, float64 t0, float64 t1)
277 {
278 int relation;
279
280 set_float_exception_flags(0, &env->fp_status);
281 relation = float64_compare(t0, t1, &env->fp_status);
282 update_fpscr(env, GETPC());
283 return relation == float_relation_equal;
284 }
285
286 uint32_t helper_fcmp_gt_FT(CPUSH4State *env, float32 t0, float32 t1)
287 {
288 int relation;
289
290 set_float_exception_flags(0, &env->fp_status);
291 relation = float32_compare(t0, t1, &env->fp_status);
292 update_fpscr(env, GETPC());
293 return relation == float_relation_greater;
294 }
295
296 uint32_t helper_fcmp_gt_DT(CPUSH4State *env, float64 t0, float64 t1)
297 {
298 int relation;
299
300 set_float_exception_flags(0, &env->fp_status);
301 relation = float64_compare(t0, t1, &env->fp_status);
302 update_fpscr(env, GETPC());
303 return relation == float_relation_greater;
304 }
305
306 float64 helper_fcnvsd_FT_DT(CPUSH4State *env, float32 t0)
307 {
308 float64 ret;
309 set_float_exception_flags(0, &env->fp_status);
310 ret = float32_to_float64(t0, &env->fp_status);
311 update_fpscr(env, GETPC());
312 return ret;
313 }
314
315 float32 helper_fcnvds_DT_FT(CPUSH4State *env, float64 t0)
316 {
317 float32 ret;
318 set_float_exception_flags(0, &env->fp_status);
319 ret = float64_to_float32(t0, &env->fp_status);
320 update_fpscr(env, GETPC());
321 return ret;
322 }
323
324 float32 helper_fdiv_FT(CPUSH4State *env, float32 t0, float32 t1)
325 {
326 set_float_exception_flags(0, &env->fp_status);
327 t0 = float32_div(t0, t1, &env->fp_status);
328 update_fpscr(env, GETPC());
329 return t0;
330 }
331
332 float64 helper_fdiv_DT(CPUSH4State *env, float64 t0, float64 t1)
333 {
334 set_float_exception_flags(0, &env->fp_status);
335 t0 = float64_div(t0, t1, &env->fp_status);
336 update_fpscr(env, GETPC());
337 return t0;
338 }
339
340 float32 helper_float_FT(CPUSH4State *env, uint32_t t0)
341 {
342 float32 ret;
343 set_float_exception_flags(0, &env->fp_status);
344 ret = int32_to_float32(t0, &env->fp_status);
345 update_fpscr(env, GETPC());
346 return ret;
347 }
348
349 float64 helper_float_DT(CPUSH4State *env, uint32_t t0)
350 {
351 float64 ret;
352 set_float_exception_flags(0, &env->fp_status);
353 ret = int32_to_float64(t0, &env->fp_status);
354 update_fpscr(env, GETPC());
355 return ret;
356 }
357
358 float32 helper_fmac_FT(CPUSH4State *env, float32 t0, float32 t1, float32 t2)
359 {
360 set_float_exception_flags(0, &env->fp_status);
361 t0 = float32_muladd(t0, t1, t2, 0, &env->fp_status);
362 update_fpscr(env, GETPC());
363 return t0;
364 }
365
366 float32 helper_fmul_FT(CPUSH4State *env, float32 t0, float32 t1)
367 {
368 set_float_exception_flags(0, &env->fp_status);
369 t0 = float32_mul(t0, t1, &env->fp_status);
370 update_fpscr(env, GETPC());
371 return t0;
372 }
373
374 float64 helper_fmul_DT(CPUSH4State *env, float64 t0, float64 t1)
375 {
376 set_float_exception_flags(0, &env->fp_status);
377 t0 = float64_mul(t0, t1, &env->fp_status);
378 update_fpscr(env, GETPC());
379 return t0;
380 }
381
382 float32 helper_fsqrt_FT(CPUSH4State *env, float32 t0)
383 {
384 set_float_exception_flags(0, &env->fp_status);
385 t0 = float32_sqrt(t0, &env->fp_status);
386 update_fpscr(env, GETPC());
387 return t0;
388 }
389
390 float64 helper_fsqrt_DT(CPUSH4State *env, float64 t0)
391 {
392 set_float_exception_flags(0, &env->fp_status);
393 t0 = float64_sqrt(t0, &env->fp_status);
394 update_fpscr(env, GETPC());
395 return t0;
396 }
397
398 float32 helper_fsrra_FT(CPUSH4State *env, float32 t0)
399 {
400 set_float_exception_flags(0, &env->fp_status);
401 /* "Approximate" 1/sqrt(x) via actual computation. */
402 t0 = float32_sqrt(t0, &env->fp_status);
403 t0 = float32_div(float32_one, t0, &env->fp_status);
404 /* Since this is supposed to be an approximation, an imprecision
405 exception is required. One supposes this also follows the usual
406 IEEE rule that other exceptions take precidence. */
407 if (get_float_exception_flags(&env->fp_status) == 0) {
408 set_float_exception_flags(float_flag_inexact, &env->fp_status);
409 }
410 update_fpscr(env, GETPC());
411 return t0;
412 }
413
414 float32 helper_fsub_FT(CPUSH4State *env, float32 t0, float32 t1)
415 {
416 set_float_exception_flags(0, &env->fp_status);
417 t0 = float32_sub(t0, t1, &env->fp_status);
418 update_fpscr(env, GETPC());
419 return t0;
420 }
421
422 float64 helper_fsub_DT(CPUSH4State *env, float64 t0, float64 t1)
423 {
424 set_float_exception_flags(0, &env->fp_status);
425 t0 = float64_sub(t0, t1, &env->fp_status);
426 update_fpscr(env, GETPC());
427 return t0;
428 }
429
430 uint32_t helper_ftrc_FT(CPUSH4State *env, float32 t0)
431 {
432 uint32_t ret;
433 set_float_exception_flags(0, &env->fp_status);
434 ret = float32_to_int32_round_to_zero(t0, &env->fp_status);
435 update_fpscr(env, GETPC());
436 return ret;
437 }
438
439 uint32_t helper_ftrc_DT(CPUSH4State *env, float64 t0)
440 {
441 uint32_t ret;
442 set_float_exception_flags(0, &env->fp_status);
443 ret = float64_to_int32_round_to_zero(t0, &env->fp_status);
444 update_fpscr(env, GETPC());
445 return ret;
446 }
447
448 void helper_fipr(CPUSH4State *env, uint32_t m, uint32_t n)
449 {
450 int bank, i;
451 float32 r, p;
452
453 bank = (env->sr & FPSCR_FR) ? 16 : 0;
454 r = float32_zero;
455 set_float_exception_flags(0, &env->fp_status);
456
457 for (i = 0 ; i < 4 ; i++) {
458 p = float32_mul(env->fregs[bank + m + i],
459 env->fregs[bank + n + i],
460 &env->fp_status);
461 r = float32_add(r, p, &env->fp_status);
462 }
463 update_fpscr(env, GETPC());
464
465 env->fregs[bank + n + 3] = r;
466 }
467
468 void helper_ftrv(CPUSH4State *env, uint32_t n)
469 {
470 int bank_matrix, bank_vector;
471 int i, j;
472 float32 r[4];
473 float32 p;
474
475 bank_matrix = (env->sr & FPSCR_FR) ? 0 : 16;
476 bank_vector = (env->sr & FPSCR_FR) ? 16 : 0;
477 set_float_exception_flags(0, &env->fp_status);
478 for (i = 0 ; i < 4 ; i++) {
479 r[i] = float32_zero;
480 for (j = 0 ; j < 4 ; j++) {
481 p = float32_mul(env->fregs[bank_matrix + 4 * j + i],
482 env->fregs[bank_vector + j],
483 &env->fp_status);
484 r[i] = float32_add(r[i], p, &env->fp_status);
485 }
486 }
487 update_fpscr(env, GETPC());
488
489 for (i = 0 ; i < 4 ; i++) {
490 env->fregs[bank_vector + i] = r[i];
491 }
492 }