]> git.proxmox.com Git - mirror_qemu.git/blob - target/sparc/ldst_helper.c
Merge tag 'pull-tcg-20230117' of https://gitlab.com/rth7680/qemu into staging
[mirror_qemu.git] / target / sparc / ldst_helper.c
1 /*
2 * Helpers for loads and stores
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "tcg/tcg.h"
24 #include "exec/helper-proto.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
27 #include "asi.h"
28
29 //#define DEBUG_MMU
30 //#define DEBUG_MXCC
31 //#define DEBUG_UNASSIGNED
32 //#define DEBUG_ASI
33 //#define DEBUG_CACHE_CONTROL
34
35 #ifdef DEBUG_MMU
36 #define DPRINTF_MMU(fmt, ...) \
37 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF_MMU(fmt, ...) do {} while (0)
40 #endif
41
42 #ifdef DEBUG_MXCC
43 #define DPRINTF_MXCC(fmt, ...) \
44 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
45 #else
46 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
47 #endif
48
49 #ifdef DEBUG_ASI
50 #define DPRINTF_ASI(fmt, ...) \
51 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
52 #endif
53
54 #ifdef DEBUG_CACHE_CONTROL
55 #define DPRINTF_CACHE_CONTROL(fmt, ...) \
56 do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
57 #else
58 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
59 #endif
60
61 #ifdef TARGET_SPARC64
62 #ifndef TARGET_ABI32
63 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
64 #else
65 #define AM_CHECK(env1) (1)
66 #endif
67 #endif
68
69 #define QT0 (env->qt0)
70 #define QT1 (env->qt1)
71
72 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
73 /* Calculates TSB pointer value for fault page size
74 * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers
75 * UA2005 holds the page size configuration in mmu_ctx registers */
76 static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env,
77 const SparcV9MMU *mmu, const int idx)
78 {
79 uint64_t tsb_register;
80 int page_size;
81 if (cpu_has_hypervisor(env)) {
82 int tsb_index = 0;
83 int ctx = mmu->tag_access & 0x1fffULL;
84 uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0];
85 tsb_index = idx;
86 tsb_index |= ctx ? 2 : 0;
87 page_size = idx ? ctx_register >> 8 : ctx_register;
88 page_size &= 7;
89 tsb_register = mmu->sun4v_tsb_pointers[tsb_index];
90 } else {
91 page_size = idx;
92 tsb_register = mmu->tsb;
93 }
94 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
95 int tsb_size = tsb_register & 0xf;
96
97 uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size;
98
99 /* move va bits to correct position,
100 * the context bits will be masked out later */
101 uint64_t va = mmu->tag_access >> (3 * page_size + 9);
102
103 /* calculate tsb_base mask and adjust va if split is in use */
104 if (tsb_split) {
105 if (idx == 0) {
106 va &= ~(1ULL << (13 + tsb_size));
107 } else {
108 va |= (1ULL << (13 + tsb_size));
109 }
110 tsb_base_mask <<= 1;
111 }
112
113 return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
114 }
115
116 /* Calculates tag target register value by reordering bits
117 in tag access register */
118 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
119 {
120 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
121 }
122
123 static void replace_tlb_entry(SparcTLBEntry *tlb,
124 uint64_t tlb_tag, uint64_t tlb_tte,
125 CPUSPARCState *env)
126 {
127 target_ulong mask, size, va, offset;
128
129 /* flush page range if translation is valid */
130 if (TTE_IS_VALID(tlb->tte)) {
131 CPUState *cs = env_cpu(env);
132
133 size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte);
134 mask = 1ULL + ~size;
135
136 va = tlb->tag & mask;
137
138 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
139 tlb_flush_page(cs, va + offset);
140 }
141 }
142
143 tlb->tag = tlb_tag;
144 tlb->tte = tlb_tte;
145 }
146
147 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
148 const char *strmmu, CPUSPARCState *env1)
149 {
150 unsigned int i;
151 target_ulong mask;
152 uint64_t context;
153
154 int is_demap_context = (demap_addr >> 6) & 1;
155
156 /* demap context */
157 switch ((demap_addr >> 4) & 3) {
158 case 0: /* primary */
159 context = env1->dmmu.mmu_primary_context;
160 break;
161 case 1: /* secondary */
162 context = env1->dmmu.mmu_secondary_context;
163 break;
164 case 2: /* nucleus */
165 context = 0;
166 break;
167 case 3: /* reserved */
168 default:
169 return;
170 }
171
172 for (i = 0; i < 64; i++) {
173 if (TTE_IS_VALID(tlb[i].tte)) {
174
175 if (is_demap_context) {
176 /* will remove non-global entries matching context value */
177 if (TTE_IS_GLOBAL(tlb[i].tte) ||
178 !tlb_compare_context(&tlb[i], context)) {
179 continue;
180 }
181 } else {
182 /* demap page
183 will remove any entry matching VA */
184 mask = 0xffffffffffffe000ULL;
185 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
186
187 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
188 continue;
189 }
190
191 /* entry should be global or matching context value */
192 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
193 !tlb_compare_context(&tlb[i], context)) {
194 continue;
195 }
196 }
197
198 replace_tlb_entry(&tlb[i], 0, 0, env1);
199 #ifdef DEBUG_MMU
200 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
201 dump_mmu(env1);
202 #endif
203 }
204 }
205 }
206
207 static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag,
208 uint64_t sun4v_tte)
209 {
210 uint64_t sun4u_tte;
211 if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) {
212 /* is already in the sun4u format */
213 return sun4v_tte;
214 }
215 sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT);
216 sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */
217 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT);
218 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT);
219 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT);
220 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005,
221 TTE_SIDEEFFECT_BIT);
222 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT);
223 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT);
224 return sun4u_tte;
225 }
226
227 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
228 uint64_t tlb_tag, uint64_t tlb_tte,
229 const char *strmmu, CPUSPARCState *env1,
230 uint64_t addr)
231 {
232 unsigned int i, replace_used;
233
234 tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte);
235 if (cpu_has_hypervisor(env1)) {
236 uint64_t new_vaddr = tlb_tag & ~0x1fffULL;
237 uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte);
238 uint32_t new_ctx = tlb_tag & 0x1fffU;
239 for (i = 0; i < 64; i++) {
240 uint32_t ctx = tlb[i].tag & 0x1fffU;
241 /* check if new mapping overlaps an existing one */
242 if (new_ctx == ctx) {
243 uint64_t vaddr = tlb[i].tag & ~0x1fffULL;
244 uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte);
245 if (new_vaddr == vaddr
246 || (new_vaddr < vaddr + size
247 && vaddr < new_vaddr + new_size)) {
248 DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr,
249 new_vaddr);
250 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
251 return;
252 }
253 }
254
255 }
256 }
257 /* Try replacing invalid entry */
258 for (i = 0; i < 64; i++) {
259 if (!TTE_IS_VALID(tlb[i].tte)) {
260 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
261 #ifdef DEBUG_MMU
262 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
263 dump_mmu(env1);
264 #endif
265 return;
266 }
267 }
268
269 /* All entries are valid, try replacing unlocked entry */
270
271 for (replace_used = 0; replace_used < 2; ++replace_used) {
272
273 /* Used entries are not replaced on first pass */
274
275 for (i = 0; i < 64; i++) {
276 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
277
278 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
279 #ifdef DEBUG_MMU
280 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
281 strmmu, (replace_used ? "used" : "unused"), i);
282 dump_mmu(env1);
283 #endif
284 return;
285 }
286 }
287
288 /* Now reset used bit and search for unused entries again */
289
290 for (i = 0; i < 64; i++) {
291 TTE_SET_UNUSED(tlb[i].tte);
292 }
293 }
294
295 #ifdef DEBUG_MMU
296 DPRINTF_MMU("%s lru replacement: no free entries available, "
297 "replacing the last one\n", strmmu);
298 #endif
299 /* corner case: the last entry is replaced anyway */
300 replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1);
301 }
302
303 #endif
304
305 #ifdef TARGET_SPARC64
306 /* returns true if access using this ASI is to have address translated by MMU
307 otherwise access is to raw physical address */
308 /* TODO: check sparc32 bits */
309 static inline int is_translating_asi(int asi)
310 {
311 /* Ultrasparc IIi translating asi
312 - note this list is defined by cpu implementation
313 */
314 switch (asi) {
315 case 0x04 ... 0x11:
316 case 0x16 ... 0x19:
317 case 0x1E ... 0x1F:
318 case 0x24 ... 0x2C:
319 case 0x70 ... 0x73:
320 case 0x78 ... 0x79:
321 case 0x80 ... 0xFF:
322 return 1;
323
324 default:
325 return 0;
326 }
327 }
328
329 static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
330 {
331 if (AM_CHECK(env1)) {
332 addr &= 0xffffffffULL;
333 }
334 return addr;
335 }
336
337 static inline target_ulong asi_address_mask(CPUSPARCState *env,
338 int asi, target_ulong addr)
339 {
340 if (is_translating_asi(asi)) {
341 addr = address_mask(env, addr);
342 }
343 return addr;
344 }
345
346 #ifndef CONFIG_USER_ONLY
347 static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra)
348 {
349 /* ASIs >= 0x80 are user mode.
350 * ASIs >= 0x30 are hyper mode (or super if hyper is not available).
351 * ASIs <= 0x2f are super mode.
352 */
353 if (asi < 0x80
354 && !cpu_hypervisor_mode(env)
355 && (!cpu_supervisor_mode(env)
356 || (asi >= 0x30 && cpu_has_hypervisor(env)))) {
357 cpu_raise_exception_ra(env, TT_PRIV_ACT, ra);
358 }
359 }
360 #endif /* !CONFIG_USER_ONLY */
361 #endif
362
363 static void do_check_align(CPUSPARCState *env, target_ulong addr,
364 uint32_t align, uintptr_t ra)
365 {
366 if (addr & align) {
367 cpu_raise_exception_ra(env, TT_UNALIGNED, ra);
368 }
369 }
370
371 void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align)
372 {
373 do_check_align(env, addr, align, GETPC());
374 }
375
376 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
377 defined(DEBUG_MXCC)
378 static void dump_mxcc(CPUSPARCState *env)
379 {
380 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
381 "\n",
382 env->mxccdata[0], env->mxccdata[1],
383 env->mxccdata[2], env->mxccdata[3]);
384 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
385 "\n"
386 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
387 "\n",
388 env->mxccregs[0], env->mxccregs[1],
389 env->mxccregs[2], env->mxccregs[3],
390 env->mxccregs[4], env->mxccregs[5],
391 env->mxccregs[6], env->mxccregs[7]);
392 }
393 #endif
394
395 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
396 && defined(DEBUG_ASI)
397 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
398 uint64_t r1)
399 {
400 switch (size) {
401 case 1:
402 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
403 addr, asi, r1 & 0xff);
404 break;
405 case 2:
406 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
407 addr, asi, r1 & 0xffff);
408 break;
409 case 4:
410 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
411 addr, asi, r1 & 0xffffffff);
412 break;
413 case 8:
414 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
415 addr, asi, r1);
416 break;
417 }
418 }
419 #endif
420
421 #ifndef CONFIG_USER_ONLY
422 #ifndef TARGET_SPARC64
423 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
424 bool is_write, bool is_exec, int is_asi,
425 unsigned size, uintptr_t retaddr)
426 {
427 SPARCCPU *cpu = SPARC_CPU(cs);
428 CPUSPARCState *env = &cpu->env;
429 int fault_type;
430
431 #ifdef DEBUG_UNASSIGNED
432 if (is_asi) {
433 printf("Unassigned mem %s access of %d byte%s to " HWADDR_FMT_plx
434 " asi 0x%02x from " TARGET_FMT_lx "\n",
435 is_exec ? "exec" : is_write ? "write" : "read", size,
436 size == 1 ? "" : "s", addr, is_asi, env->pc);
437 } else {
438 printf("Unassigned mem %s access of %d byte%s to " HWADDR_FMT_plx
439 " from " TARGET_FMT_lx "\n",
440 is_exec ? "exec" : is_write ? "write" : "read", size,
441 size == 1 ? "" : "s", addr, env->pc);
442 }
443 #endif
444 /* Don't overwrite translation and access faults */
445 fault_type = (env->mmuregs[3] & 0x1c) >> 2;
446 if ((fault_type > 4) || (fault_type == 0)) {
447 env->mmuregs[3] = 0; /* Fault status register */
448 if (is_asi) {
449 env->mmuregs[3] |= 1 << 16;
450 }
451 if (env->psrs) {
452 env->mmuregs[3] |= 1 << 5;
453 }
454 if (is_exec) {
455 env->mmuregs[3] |= 1 << 6;
456 }
457 if (is_write) {
458 env->mmuregs[3] |= 1 << 7;
459 }
460 env->mmuregs[3] |= (5 << 2) | 2;
461 /* SuperSPARC will never place instruction fault addresses in the FAR */
462 if (!is_exec) {
463 env->mmuregs[4] = addr; /* Fault address register */
464 }
465 }
466 /* overflow (same type fault was not read before another fault) */
467 if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
468 env->mmuregs[3] |= 1;
469 }
470
471 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
472 int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
473 cpu_raise_exception_ra(env, tt, retaddr);
474 }
475
476 /*
477 * flush neverland mappings created during no-fault mode,
478 * so the sequential MMU faults report proper fault types
479 */
480 if (env->mmuregs[0] & MMU_NF) {
481 tlb_flush(cs);
482 }
483 }
484 #else
485 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
486 bool is_write, bool is_exec, int is_asi,
487 unsigned size, uintptr_t retaddr)
488 {
489 SPARCCPU *cpu = SPARC_CPU(cs);
490 CPUSPARCState *env = &cpu->env;
491
492 #ifdef DEBUG_UNASSIGNED
493 printf("Unassigned mem access to " HWADDR_FMT_plx " from " TARGET_FMT_lx
494 "\n", addr, env->pc);
495 #endif
496
497 if (is_exec) { /* XXX has_hypervisor */
498 if (env->lsu & (IMMU_E)) {
499 cpu_raise_exception_ra(env, TT_CODE_ACCESS, retaddr);
500 } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
501 cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, retaddr);
502 }
503 } else {
504 if (env->lsu & (DMMU_E)) {
505 cpu_raise_exception_ra(env, TT_DATA_ACCESS, retaddr);
506 } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
507 cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, retaddr);
508 }
509 }
510 }
511 #endif
512 #endif
513
514 #ifndef TARGET_SPARC64
515 #ifndef CONFIG_USER_ONLY
516
517
518 /* Leon3 cache control */
519
520 static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
521 uint64_t val, int size)
522 {
523 DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
524 addr, val, size);
525
526 if (size != 4) {
527 DPRINTF_CACHE_CONTROL("32bits only\n");
528 return;
529 }
530
531 switch (addr) {
532 case 0x00: /* Cache control */
533
534 /* These values must always be read as zeros */
535 val &= ~CACHE_CTRL_FD;
536 val &= ~CACHE_CTRL_FI;
537 val &= ~CACHE_CTRL_IB;
538 val &= ~CACHE_CTRL_IP;
539 val &= ~CACHE_CTRL_DP;
540
541 env->cache_control = val;
542 break;
543 case 0x04: /* Instruction cache configuration */
544 case 0x08: /* Data cache configuration */
545 /* Read Only */
546 break;
547 default:
548 DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
549 break;
550 };
551 }
552
553 static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
554 int size)
555 {
556 uint64_t ret = 0;
557
558 if (size != 4) {
559 DPRINTF_CACHE_CONTROL("32bits only\n");
560 return 0;
561 }
562
563 switch (addr) {
564 case 0x00: /* Cache control */
565 ret = env->cache_control;
566 break;
567
568 /* Configuration registers are read and only always keep those
569 predefined values */
570
571 case 0x04: /* Instruction cache configuration */
572 ret = 0x10220000;
573 break;
574 case 0x08: /* Data cache configuration */
575 ret = 0x18220000;
576 break;
577 default:
578 DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
579 break;
580 };
581 DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
582 addr, ret, size);
583 return ret;
584 }
585
586 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
587 int asi, uint32_t memop)
588 {
589 int size = 1 << (memop & MO_SIZE);
590 int sign = memop & MO_SIGN;
591 CPUState *cs = env_cpu(env);
592 uint64_t ret = 0;
593 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
594 uint32_t last_addr = addr;
595 #endif
596
597 do_check_align(env, addr, size - 1, GETPC());
598 switch (asi) {
599 case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
600 /* case ASI_LEON_CACHEREGS: Leon3 cache control */
601 switch (addr) {
602 case 0x00: /* Leon3 Cache Control */
603 case 0x08: /* Leon3 Instruction Cache config */
604 case 0x0C: /* Leon3 Date Cache config */
605 if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
606 ret = leon3_cache_control_ld(env, addr, size);
607 }
608 break;
609 case 0x01c00a00: /* MXCC control register */
610 if (size == 8) {
611 ret = env->mxccregs[3];
612 } else {
613 qemu_log_mask(LOG_UNIMP,
614 "%08x: unimplemented access size: %d\n", addr,
615 size);
616 }
617 break;
618 case 0x01c00a04: /* MXCC control register */
619 if (size == 4) {
620 ret = env->mxccregs[3];
621 } else {
622 qemu_log_mask(LOG_UNIMP,
623 "%08x: unimplemented access size: %d\n", addr,
624 size);
625 }
626 break;
627 case 0x01c00c00: /* Module reset register */
628 if (size == 8) {
629 ret = env->mxccregs[5];
630 /* should we do something here? */
631 } else {
632 qemu_log_mask(LOG_UNIMP,
633 "%08x: unimplemented access size: %d\n", addr,
634 size);
635 }
636 break;
637 case 0x01c00f00: /* MBus port address register */
638 if (size == 8) {
639 ret = env->mxccregs[7];
640 } else {
641 qemu_log_mask(LOG_UNIMP,
642 "%08x: unimplemented access size: %d\n", addr,
643 size);
644 }
645 break;
646 default:
647 qemu_log_mask(LOG_UNIMP,
648 "%08x: unimplemented address, size: %d\n", addr,
649 size);
650 break;
651 }
652 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
653 "addr = %08x -> ret = %" PRIx64 ","
654 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
655 #ifdef DEBUG_MXCC
656 dump_mxcc(env);
657 #endif
658 break;
659 case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */
660 case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */
661 {
662 int mmulev;
663
664 mmulev = (addr >> 8) & 15;
665 if (mmulev > 4) {
666 ret = 0;
667 } else {
668 ret = mmu_probe(env, addr, mmulev);
669 }
670 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
671 addr, mmulev, ret);
672 }
673 break;
674 case ASI_M_MMUREGS: /* SuperSparc MMU regs */
675 case ASI_LEON_MMUREGS: /* LEON3 MMU regs */
676 {
677 int reg = (addr >> 8) & 0x1f;
678
679 ret = env->mmuregs[reg];
680 if (reg == 3) { /* Fault status cleared on read */
681 env->mmuregs[3] = 0;
682 } else if (reg == 0x13) { /* Fault status read */
683 ret = env->mmuregs[3];
684 } else if (reg == 0x14) { /* Fault address read */
685 ret = env->mmuregs[4];
686 }
687 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
688 }
689 break;
690 case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
691 case ASI_M_DIAGS: /* Turbosparc DTLB Diagnostic */
692 case ASI_M_IODIAG: /* Turbosparc IOTLB Diagnostic */
693 break;
694 case ASI_KERNELTXT: /* Supervisor code access */
695 switch (size) {
696 case 1:
697 ret = cpu_ldub_code(env, addr);
698 break;
699 case 2:
700 ret = cpu_lduw_code(env, addr);
701 break;
702 default:
703 case 4:
704 ret = cpu_ldl_code(env, addr);
705 break;
706 case 8:
707 ret = cpu_ldq_code(env, addr);
708 break;
709 }
710 break;
711 case ASI_M_TXTC_TAG: /* SparcStation 5 I-cache tag */
712 case ASI_M_TXTC_DATA: /* SparcStation 5 I-cache data */
713 case ASI_M_DATAC_TAG: /* SparcStation 5 D-cache tag */
714 case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */
715 break;
716 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
717 {
718 MemTxResult result;
719 hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
720
721 switch (size) {
722 case 1:
723 ret = address_space_ldub(cs->as, access_addr,
724 MEMTXATTRS_UNSPECIFIED, &result);
725 break;
726 case 2:
727 ret = address_space_lduw(cs->as, access_addr,
728 MEMTXATTRS_UNSPECIFIED, &result);
729 break;
730 default:
731 case 4:
732 ret = address_space_ldl(cs->as, access_addr,
733 MEMTXATTRS_UNSPECIFIED, &result);
734 break;
735 case 8:
736 ret = address_space_ldq(cs->as, access_addr,
737 MEMTXATTRS_UNSPECIFIED, &result);
738 break;
739 }
740
741 if (result != MEMTX_OK) {
742 sparc_raise_mmu_fault(cs, access_addr, false, false, false,
743 size, GETPC());
744 }
745 break;
746 }
747 case 0x30: /* Turbosparc secondary cache diagnostic */
748 case 0x31: /* Turbosparc RAM snoop */
749 case 0x32: /* Turbosparc page table descriptor diagnostic */
750 case 0x39: /* data cache diagnostic register */
751 ret = 0;
752 break;
753 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
754 {
755 int reg = (addr >> 8) & 3;
756
757 switch (reg) {
758 case 0: /* Breakpoint Value (Addr) */
759 ret = env->mmubpregs[reg];
760 break;
761 case 1: /* Breakpoint Mask */
762 ret = env->mmubpregs[reg];
763 break;
764 case 2: /* Breakpoint Control */
765 ret = env->mmubpregs[reg];
766 break;
767 case 3: /* Breakpoint Status */
768 ret = env->mmubpregs[reg];
769 env->mmubpregs[reg] = 0ULL;
770 break;
771 }
772 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
773 ret);
774 }
775 break;
776 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
777 ret = env->mmubpctrv;
778 break;
779 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
780 ret = env->mmubpctrc;
781 break;
782 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
783 ret = env->mmubpctrs;
784 break;
785 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
786 ret = env->mmubpaction;
787 break;
788 case ASI_USERTXT: /* User code access, XXX */
789 default:
790 sparc_raise_mmu_fault(cs, addr, false, false, asi, size, GETPC());
791 ret = 0;
792 break;
793
794 case ASI_USERDATA: /* User data access */
795 case ASI_KERNELDATA: /* Supervisor data access */
796 case ASI_P: /* Implicit primary context data access (v9 only?) */
797 case ASI_M_BYPASS: /* MMU passthrough */
798 case ASI_LEON_BYPASS: /* LEON MMU passthrough */
799 /* These are always handled inline. */
800 g_assert_not_reached();
801 }
802 if (sign) {
803 switch (size) {
804 case 1:
805 ret = (int8_t) ret;
806 break;
807 case 2:
808 ret = (int16_t) ret;
809 break;
810 case 4:
811 ret = (int32_t) ret;
812 break;
813 default:
814 break;
815 }
816 }
817 #ifdef DEBUG_ASI
818 dump_asi("read ", last_addr, asi, size, ret);
819 #endif
820 return ret;
821 }
822
823 void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val,
824 int asi, uint32_t memop)
825 {
826 int size = 1 << (memop & MO_SIZE);
827 CPUState *cs = env_cpu(env);
828
829 do_check_align(env, addr, size - 1, GETPC());
830 switch (asi) {
831 case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
832 /* case ASI_LEON_CACHEREGS: Leon3 cache control */
833 switch (addr) {
834 case 0x00: /* Leon3 Cache Control */
835 case 0x08: /* Leon3 Instruction Cache config */
836 case 0x0C: /* Leon3 Date Cache config */
837 if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
838 leon3_cache_control_st(env, addr, val, size);
839 }
840 break;
841
842 case 0x01c00000: /* MXCC stream data register 0 */
843 if (size == 8) {
844 env->mxccdata[0] = val;
845 } else {
846 qemu_log_mask(LOG_UNIMP,
847 "%08x: unimplemented access size: %d\n", addr,
848 size);
849 }
850 break;
851 case 0x01c00008: /* MXCC stream data register 1 */
852 if (size == 8) {
853 env->mxccdata[1] = val;
854 } else {
855 qemu_log_mask(LOG_UNIMP,
856 "%08x: unimplemented access size: %d\n", addr,
857 size);
858 }
859 break;
860 case 0x01c00010: /* MXCC stream data register 2 */
861 if (size == 8) {
862 env->mxccdata[2] = val;
863 } else {
864 qemu_log_mask(LOG_UNIMP,
865 "%08x: unimplemented access size: %d\n", addr,
866 size);
867 }
868 break;
869 case 0x01c00018: /* MXCC stream data register 3 */
870 if (size == 8) {
871 env->mxccdata[3] = val;
872 } else {
873 qemu_log_mask(LOG_UNIMP,
874 "%08x: unimplemented access size: %d\n", addr,
875 size);
876 }
877 break;
878 case 0x01c00100: /* MXCC stream source */
879 {
880 int i;
881
882 if (size == 8) {
883 env->mxccregs[0] = val;
884 } else {
885 qemu_log_mask(LOG_UNIMP,
886 "%08x: unimplemented access size: %d\n", addr,
887 size);
888 }
889
890 for (i = 0; i < 4; i++) {
891 MemTxResult result;
892 hwaddr access_addr = (env->mxccregs[0] & 0xffffffffULL) + 8 * i;
893
894 env->mxccdata[i] = address_space_ldq(cs->as,
895 access_addr,
896 MEMTXATTRS_UNSPECIFIED,
897 &result);
898 if (result != MEMTX_OK) {
899 /* TODO: investigate whether this is the right behaviour */
900 sparc_raise_mmu_fault(cs, access_addr, false, false,
901 false, size, GETPC());
902 }
903 }
904 break;
905 }
906 case 0x01c00200: /* MXCC stream destination */
907 {
908 int i;
909
910 if (size == 8) {
911 env->mxccregs[1] = val;
912 } else {
913 qemu_log_mask(LOG_UNIMP,
914 "%08x: unimplemented access size: %d\n", addr,
915 size);
916 }
917
918 for (i = 0; i < 4; i++) {
919 MemTxResult result;
920 hwaddr access_addr = (env->mxccregs[1] & 0xffffffffULL) + 8 * i;
921
922 address_space_stq(cs->as, access_addr, env->mxccdata[i],
923 MEMTXATTRS_UNSPECIFIED, &result);
924
925 if (result != MEMTX_OK) {
926 /* TODO: investigate whether this is the right behaviour */
927 sparc_raise_mmu_fault(cs, access_addr, true, false,
928 false, size, GETPC());
929 }
930 }
931 break;
932 }
933 case 0x01c00a00: /* MXCC control register */
934 if (size == 8) {
935 env->mxccregs[3] = val;
936 } else {
937 qemu_log_mask(LOG_UNIMP,
938 "%08x: unimplemented access size: %d\n", addr,
939 size);
940 }
941 break;
942 case 0x01c00a04: /* MXCC control register */
943 if (size == 4) {
944 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
945 | val;
946 } else {
947 qemu_log_mask(LOG_UNIMP,
948 "%08x: unimplemented access size: %d\n", addr,
949 size);
950 }
951 break;
952 case 0x01c00e00: /* MXCC error register */
953 /* writing a 1 bit clears the error */
954 if (size == 8) {
955 env->mxccregs[6] &= ~val;
956 } else {
957 qemu_log_mask(LOG_UNIMP,
958 "%08x: unimplemented access size: %d\n", addr,
959 size);
960 }
961 break;
962 case 0x01c00f00: /* MBus port address register */
963 if (size == 8) {
964 env->mxccregs[7] = val;
965 } else {
966 qemu_log_mask(LOG_UNIMP,
967 "%08x: unimplemented access size: %d\n", addr,
968 size);
969 }
970 break;
971 default:
972 qemu_log_mask(LOG_UNIMP,
973 "%08x: unimplemented address, size: %d\n", addr,
974 size);
975 break;
976 }
977 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
978 asi, size, addr, val);
979 #ifdef DEBUG_MXCC
980 dump_mxcc(env);
981 #endif
982 break;
983 case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */
984 case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */
985 {
986 int mmulev;
987
988 mmulev = (addr >> 8) & 15;
989 DPRINTF_MMU("mmu flush level %d\n", mmulev);
990 switch (mmulev) {
991 case 0: /* flush page */
992 tlb_flush_page(cs, addr & 0xfffff000);
993 break;
994 case 1: /* flush segment (256k) */
995 case 2: /* flush region (16M) */
996 case 3: /* flush context (4G) */
997 case 4: /* flush entire */
998 tlb_flush(cs);
999 break;
1000 default:
1001 break;
1002 }
1003 #ifdef DEBUG_MMU
1004 dump_mmu(env);
1005 #endif
1006 }
1007 break;
1008 case ASI_M_MMUREGS: /* write MMU regs */
1009 case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */
1010 {
1011 int reg = (addr >> 8) & 0x1f;
1012 uint32_t oldreg;
1013
1014 oldreg = env->mmuregs[reg];
1015 switch (reg) {
1016 case 0: /* Control Register */
1017 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1018 (val & 0x00ffffff);
1019 /* Mappings generated during no-fault mode
1020 are invalid in normal mode. */
1021 if ((oldreg ^ env->mmuregs[reg])
1022 & (MMU_NF | env->def.mmu_bm)) {
1023 tlb_flush(cs);
1024 }
1025 break;
1026 case 1: /* Context Table Pointer Register */
1027 env->mmuregs[reg] = val & env->def.mmu_ctpr_mask;
1028 break;
1029 case 2: /* Context Register */
1030 env->mmuregs[reg] = val & env->def.mmu_cxr_mask;
1031 if (oldreg != env->mmuregs[reg]) {
1032 /* we flush when the MMU context changes because
1033 QEMU has no MMU context support */
1034 tlb_flush(cs);
1035 }
1036 break;
1037 case 3: /* Synchronous Fault Status Register with Clear */
1038 case 4: /* Synchronous Fault Address Register */
1039 break;
1040 case 0x10: /* TLB Replacement Control Register */
1041 env->mmuregs[reg] = val & env->def.mmu_trcr_mask;
1042 break;
1043 case 0x13: /* Synchronous Fault Status Register with Read
1044 and Clear */
1045 env->mmuregs[3] = val & env->def.mmu_sfsr_mask;
1046 break;
1047 case 0x14: /* Synchronous Fault Address Register */
1048 env->mmuregs[4] = val;
1049 break;
1050 default:
1051 env->mmuregs[reg] = val;
1052 break;
1053 }
1054 if (oldreg != env->mmuregs[reg]) {
1055 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1056 reg, oldreg, env->mmuregs[reg]);
1057 }
1058 #ifdef DEBUG_MMU
1059 dump_mmu(env);
1060 #endif
1061 }
1062 break;
1063 case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
1064 case ASI_M_DIAGS: /* Turbosparc DTLB Diagnostic */
1065 case ASI_M_IODIAG: /* Turbosparc IOTLB Diagnostic */
1066 break;
1067 case ASI_M_TXTC_TAG: /* I-cache tag */
1068 case ASI_M_TXTC_DATA: /* I-cache data */
1069 case ASI_M_DATAC_TAG: /* D-cache tag */
1070 case ASI_M_DATAC_DATA: /* D-cache data */
1071 case ASI_M_FLUSH_PAGE: /* I/D-cache flush page */
1072 case ASI_M_FLUSH_SEG: /* I/D-cache flush segment */
1073 case ASI_M_FLUSH_REGION: /* I/D-cache flush region */
1074 case ASI_M_FLUSH_CTX: /* I/D-cache flush context */
1075 case ASI_M_FLUSH_USER: /* I/D-cache flush user */
1076 break;
1077 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1078 {
1079 MemTxResult result;
1080 hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
1081
1082 switch (size) {
1083 case 1:
1084 address_space_stb(cs->as, access_addr, val,
1085 MEMTXATTRS_UNSPECIFIED, &result);
1086 break;
1087 case 2:
1088 address_space_stw(cs->as, access_addr, val,
1089 MEMTXATTRS_UNSPECIFIED, &result);
1090 break;
1091 case 4:
1092 default:
1093 address_space_stl(cs->as, access_addr, val,
1094 MEMTXATTRS_UNSPECIFIED, &result);
1095 break;
1096 case 8:
1097 address_space_stq(cs->as, access_addr, val,
1098 MEMTXATTRS_UNSPECIFIED, &result);
1099 break;
1100 }
1101 if (result != MEMTX_OK) {
1102 sparc_raise_mmu_fault(cs, access_addr, true, false, false,
1103 size, GETPC());
1104 }
1105 }
1106 break;
1107 case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
1108 case 0x31: /* store buffer data, Ross RT620 I-cache flush or
1109 Turbosparc snoop RAM */
1110 case 0x32: /* store buffer control or Turbosparc page table
1111 descriptor diagnostic */
1112 case 0x36: /* I-cache flash clear */
1113 case 0x37: /* D-cache flash clear */
1114 break;
1115 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1116 {
1117 int reg = (addr >> 8) & 3;
1118
1119 switch (reg) {
1120 case 0: /* Breakpoint Value (Addr) */
1121 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1122 break;
1123 case 1: /* Breakpoint Mask */
1124 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1125 break;
1126 case 2: /* Breakpoint Control */
1127 env->mmubpregs[reg] = (val & 0x7fULL);
1128 break;
1129 case 3: /* Breakpoint Status */
1130 env->mmubpregs[reg] = (val & 0xfULL);
1131 break;
1132 }
1133 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1134 env->mmuregs[reg]);
1135 }
1136 break;
1137 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1138 env->mmubpctrv = val & 0xffffffff;
1139 break;
1140 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1141 env->mmubpctrc = val & 0x3;
1142 break;
1143 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1144 env->mmubpctrs = val & 0x3;
1145 break;
1146 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1147 env->mmubpaction = val & 0x1fff;
1148 break;
1149 case ASI_USERTXT: /* User code access, XXX */
1150 case ASI_KERNELTXT: /* Supervisor code access, XXX */
1151 default:
1152 sparc_raise_mmu_fault(cs, addr, true, false, asi, size, GETPC());
1153 break;
1154
1155 case ASI_USERDATA: /* User data access */
1156 case ASI_KERNELDATA: /* Supervisor data access */
1157 case ASI_P:
1158 case ASI_M_BYPASS: /* MMU passthrough */
1159 case ASI_LEON_BYPASS: /* LEON MMU passthrough */
1160 case ASI_M_BCOPY: /* Block copy, sta access */
1161 case ASI_M_BFILL: /* Block fill, stda access */
1162 /* These are always handled inline. */
1163 g_assert_not_reached();
1164 }
1165 #ifdef DEBUG_ASI
1166 dump_asi("write", addr, asi, size, val);
1167 #endif
1168 }
1169
1170 #endif /* CONFIG_USER_ONLY */
1171 #else /* TARGET_SPARC64 */
1172
1173 #ifdef CONFIG_USER_ONLY
1174 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1175 int asi, uint32_t memop)
1176 {
1177 int size = 1 << (memop & MO_SIZE);
1178 int sign = memop & MO_SIGN;
1179 uint64_t ret = 0;
1180
1181 if (asi < 0x80) {
1182 cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1183 }
1184 do_check_align(env, addr, size - 1, GETPC());
1185 addr = asi_address_mask(env, asi, addr);
1186
1187 switch (asi) {
1188 case ASI_PNF: /* Primary no-fault */
1189 case ASI_PNFL: /* Primary no-fault LE */
1190 case ASI_SNF: /* Secondary no-fault */
1191 case ASI_SNFL: /* Secondary no-fault LE */
1192 if (page_check_range(addr, size, PAGE_READ) == -1) {
1193 ret = 0;
1194 break;
1195 }
1196 switch (size) {
1197 case 1:
1198 ret = cpu_ldub_data(env, addr);
1199 break;
1200 case 2:
1201 ret = cpu_lduw_data(env, addr);
1202 break;
1203 case 4:
1204 ret = cpu_ldl_data(env, addr);
1205 break;
1206 case 8:
1207 ret = cpu_ldq_data(env, addr);
1208 break;
1209 default:
1210 g_assert_not_reached();
1211 }
1212 break;
1213 break;
1214
1215 case ASI_P: /* Primary */
1216 case ASI_PL: /* Primary LE */
1217 case ASI_S: /* Secondary */
1218 case ASI_SL: /* Secondary LE */
1219 /* These are always handled inline. */
1220 g_assert_not_reached();
1221
1222 default:
1223 cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1224 }
1225
1226 /* Convert from little endian */
1227 switch (asi) {
1228 case ASI_PNFL: /* Primary no-fault LE */
1229 case ASI_SNFL: /* Secondary no-fault LE */
1230 switch (size) {
1231 case 2:
1232 ret = bswap16(ret);
1233 break;
1234 case 4:
1235 ret = bswap32(ret);
1236 break;
1237 case 8:
1238 ret = bswap64(ret);
1239 break;
1240 }
1241 }
1242
1243 /* Convert to signed number */
1244 if (sign) {
1245 switch (size) {
1246 case 1:
1247 ret = (int8_t) ret;
1248 break;
1249 case 2:
1250 ret = (int16_t) ret;
1251 break;
1252 case 4:
1253 ret = (int32_t) ret;
1254 break;
1255 }
1256 }
1257 #ifdef DEBUG_ASI
1258 dump_asi("read", addr, asi, size, ret);
1259 #endif
1260 return ret;
1261 }
1262
1263 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1264 int asi, uint32_t memop)
1265 {
1266 int size = 1 << (memop & MO_SIZE);
1267 #ifdef DEBUG_ASI
1268 dump_asi("write", addr, asi, size, val);
1269 #endif
1270 if (asi < 0x80) {
1271 cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1272 }
1273 do_check_align(env, addr, size - 1, GETPC());
1274
1275 switch (asi) {
1276 case ASI_P: /* Primary */
1277 case ASI_PL: /* Primary LE */
1278 case ASI_S: /* Secondary */
1279 case ASI_SL: /* Secondary LE */
1280 /* These are always handled inline. */
1281 g_assert_not_reached();
1282
1283 case ASI_PNF: /* Primary no-fault, RO */
1284 case ASI_SNF: /* Secondary no-fault, RO */
1285 case ASI_PNFL: /* Primary no-fault LE, RO */
1286 case ASI_SNFL: /* Secondary no-fault LE, RO */
1287 default:
1288 cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1289 }
1290 }
1291
1292 #else /* CONFIG_USER_ONLY */
1293
1294 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1295 int asi, uint32_t memop)
1296 {
1297 int size = 1 << (memop & MO_SIZE);
1298 int sign = memop & MO_SIGN;
1299 CPUState *cs = env_cpu(env);
1300 uint64_t ret = 0;
1301 #if defined(DEBUG_ASI)
1302 target_ulong last_addr = addr;
1303 #endif
1304
1305 asi &= 0xff;
1306
1307 do_check_asi(env, asi, GETPC());
1308 do_check_align(env, addr, size - 1, GETPC());
1309 addr = asi_address_mask(env, asi, addr);
1310
1311 switch (asi) {
1312 case ASI_PNF:
1313 case ASI_PNFL:
1314 case ASI_SNF:
1315 case ASI_SNFL:
1316 {
1317 MemOpIdx oi;
1318 int idx = (env->pstate & PS_PRIV
1319 ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX)
1320 : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX));
1321
1322 if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) {
1323 #ifdef DEBUG_ASI
1324 dump_asi("read ", last_addr, asi, size, ret);
1325 #endif
1326 /* exception_index is set in get_physical_address_data. */
1327 cpu_raise_exception_ra(env, cs->exception_index, GETPC());
1328 }
1329 oi = make_memop_idx(memop, idx);
1330 switch (size) {
1331 case 1:
1332 ret = cpu_ldb_mmu(env, addr, oi, GETPC());
1333 break;
1334 case 2:
1335 if (asi & 8) {
1336 ret = cpu_ldw_le_mmu(env, addr, oi, GETPC());
1337 } else {
1338 ret = cpu_ldw_be_mmu(env, addr, oi, GETPC());
1339 }
1340 break;
1341 case 4:
1342 if (asi & 8) {
1343 ret = cpu_ldl_le_mmu(env, addr, oi, GETPC());
1344 } else {
1345 ret = cpu_ldl_be_mmu(env, addr, oi, GETPC());
1346 }
1347 break;
1348 case 8:
1349 if (asi & 8) {
1350 ret = cpu_ldq_le_mmu(env, addr, oi, GETPC());
1351 } else {
1352 ret = cpu_ldq_be_mmu(env, addr, oi, GETPC());
1353 }
1354 break;
1355 default:
1356 g_assert_not_reached();
1357 }
1358 }
1359 break;
1360
1361 case ASI_AIUP: /* As if user primary */
1362 case ASI_AIUS: /* As if user secondary */
1363 case ASI_AIUPL: /* As if user primary LE */
1364 case ASI_AIUSL: /* As if user secondary LE */
1365 case ASI_P: /* Primary */
1366 case ASI_S: /* Secondary */
1367 case ASI_PL: /* Primary LE */
1368 case ASI_SL: /* Secondary LE */
1369 case ASI_REAL: /* Bypass */
1370 case ASI_REAL_IO: /* Bypass, non-cacheable */
1371 case ASI_REAL_L: /* Bypass LE */
1372 case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1373 case ASI_N: /* Nucleus */
1374 case ASI_NL: /* Nucleus Little Endian (LE) */
1375 case ASI_NUCLEUS_QUAD_LDD: /* Nucleus quad LDD 128 bit atomic */
1376 case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1377 case ASI_TWINX_AIUP: /* As if user primary, twinx */
1378 case ASI_TWINX_AIUS: /* As if user secondary, twinx */
1379 case ASI_TWINX_REAL: /* Real address, twinx */
1380 case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1381 case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1382 case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1383 case ASI_TWINX_N: /* Nucleus, twinx */
1384 case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1385 /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1386 case ASI_TWINX_P: /* Primary, twinx */
1387 case ASI_TWINX_PL: /* Primary, twinx, LE */
1388 case ASI_TWINX_S: /* Secondary, twinx */
1389 case ASI_TWINX_SL: /* Secondary, twinx, LE */
1390 /* These are always handled inline. */
1391 g_assert_not_reached();
1392
1393 case ASI_UPA_CONFIG: /* UPA config */
1394 /* XXX */
1395 break;
1396 case ASI_LSU_CONTROL: /* LSU */
1397 ret = env->lsu;
1398 break;
1399 case ASI_IMMU: /* I-MMU regs */
1400 {
1401 int reg = (addr >> 3) & 0xf;
1402 switch (reg) {
1403 case 0:
1404 /* 0x00 I-TSB Tag Target register */
1405 ret = ultrasparc_tag_target(env->immu.tag_access);
1406 break;
1407 case 3: /* SFSR */
1408 ret = env->immu.sfsr;
1409 break;
1410 case 5: /* TSB access */
1411 ret = env->immu.tsb;
1412 break;
1413 case 6:
1414 /* 0x30 I-TSB Tag Access register */
1415 ret = env->immu.tag_access;
1416 break;
1417 default:
1418 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1419 ret = 0;
1420 }
1421 break;
1422 }
1423 case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */
1424 {
1425 /* env->immuregs[5] holds I-MMU TSB register value
1426 env->immuregs[6] holds I-MMU Tag Access register value */
1427 ret = ultrasparc_tsb_pointer(env, &env->immu, 0);
1428 break;
1429 }
1430 case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */
1431 {
1432 /* env->immuregs[5] holds I-MMU TSB register value
1433 env->immuregs[6] holds I-MMU Tag Access register value */
1434 ret = ultrasparc_tsb_pointer(env, &env->immu, 1);
1435 break;
1436 }
1437 case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1438 {
1439 int reg = (addr >> 3) & 0x3f;
1440
1441 ret = env->itlb[reg].tte;
1442 break;
1443 }
1444 case ASI_ITLB_TAG_READ: /* I-MMU tag read */
1445 {
1446 int reg = (addr >> 3) & 0x3f;
1447
1448 ret = env->itlb[reg].tag;
1449 break;
1450 }
1451 case ASI_DMMU: /* D-MMU regs */
1452 {
1453 int reg = (addr >> 3) & 0xf;
1454 switch (reg) {
1455 case 0:
1456 /* 0x00 D-TSB Tag Target register */
1457 ret = ultrasparc_tag_target(env->dmmu.tag_access);
1458 break;
1459 case 1: /* 0x08 Primary Context */
1460 ret = env->dmmu.mmu_primary_context;
1461 break;
1462 case 2: /* 0x10 Secondary Context */
1463 ret = env->dmmu.mmu_secondary_context;
1464 break;
1465 case 3: /* SFSR */
1466 ret = env->dmmu.sfsr;
1467 break;
1468 case 4: /* 0x20 SFAR */
1469 ret = env->dmmu.sfar;
1470 break;
1471 case 5: /* 0x28 TSB access */
1472 ret = env->dmmu.tsb;
1473 break;
1474 case 6: /* 0x30 D-TSB Tag Access register */
1475 ret = env->dmmu.tag_access;
1476 break;
1477 case 7:
1478 ret = env->dmmu.virtual_watchpoint;
1479 break;
1480 case 8:
1481 ret = env->dmmu.physical_watchpoint;
1482 break;
1483 default:
1484 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1485 ret = 0;
1486 }
1487 break;
1488 }
1489 case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */
1490 {
1491 /* env->dmmuregs[5] holds D-MMU TSB register value
1492 env->dmmuregs[6] holds D-MMU Tag Access register value */
1493 ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0);
1494 break;
1495 }
1496 case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */
1497 {
1498 /* env->dmmuregs[5] holds D-MMU TSB register value
1499 env->dmmuregs[6] holds D-MMU Tag Access register value */
1500 ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1);
1501 break;
1502 }
1503 case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1504 {
1505 int reg = (addr >> 3) & 0x3f;
1506
1507 ret = env->dtlb[reg].tte;
1508 break;
1509 }
1510 case ASI_DTLB_TAG_READ: /* D-MMU tag read */
1511 {
1512 int reg = (addr >> 3) & 0x3f;
1513
1514 ret = env->dtlb[reg].tag;
1515 break;
1516 }
1517 case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1518 break;
1519 case ASI_INTR_RECEIVE: /* Interrupt data receive */
1520 ret = env->ivec_status;
1521 break;
1522 case ASI_INTR_R: /* Incoming interrupt vector, RO */
1523 {
1524 int reg = (addr >> 4) & 0x3;
1525 if (reg < 3) {
1526 ret = env->ivec_data[reg];
1527 }
1528 break;
1529 }
1530 case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1531 if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1532 /* Hyperprivileged access only */
1533 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1534 }
1535 /* fall through */
1536 case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1537 {
1538 unsigned int i = (addr >> 3) & 0x7;
1539 ret = env->scratch[i];
1540 break;
1541 }
1542 case ASI_MMU: /* UA2005 Context ID registers */
1543 switch ((addr >> 3) & 0x3) {
1544 case 1:
1545 ret = env->dmmu.mmu_primary_context;
1546 break;
1547 case 2:
1548 ret = env->dmmu.mmu_secondary_context;
1549 break;
1550 default:
1551 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1552 }
1553 break;
1554 case ASI_DCACHE_DATA: /* D-cache data */
1555 case ASI_DCACHE_TAG: /* D-cache tag access */
1556 case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1557 case ASI_AFSR: /* E-cache asynchronous fault status */
1558 case ASI_AFAR: /* E-cache asynchronous fault address */
1559 case ASI_EC_TAG_DATA: /* E-cache tag data */
1560 case ASI_IC_INSTR: /* I-cache instruction access */
1561 case ASI_IC_TAG: /* I-cache tag access */
1562 case ASI_IC_PRE_DECODE: /* I-cache predecode */
1563 case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1564 case ASI_EC_W: /* E-cache tag */
1565 case ASI_EC_R: /* E-cache tag */
1566 break;
1567 case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */
1568 case ASI_ITLB_DATA_IN: /* I-MMU data in, WO */
1569 case ASI_IMMU_DEMAP: /* I-MMU demap, WO */
1570 case ASI_DTLB_DATA_IN: /* D-MMU data in, WO */
1571 case ASI_DMMU_DEMAP: /* D-MMU demap, WO */
1572 case ASI_INTR_W: /* Interrupt vector, WO */
1573 default:
1574 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1575 ret = 0;
1576 break;
1577 }
1578
1579 /* Convert to signed number */
1580 if (sign) {
1581 switch (size) {
1582 case 1:
1583 ret = (int8_t) ret;
1584 break;
1585 case 2:
1586 ret = (int16_t) ret;
1587 break;
1588 case 4:
1589 ret = (int32_t) ret;
1590 break;
1591 default:
1592 break;
1593 }
1594 }
1595 #ifdef DEBUG_ASI
1596 dump_asi("read ", last_addr, asi, size, ret);
1597 #endif
1598 return ret;
1599 }
1600
1601 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1602 int asi, uint32_t memop)
1603 {
1604 int size = 1 << (memop & MO_SIZE);
1605 CPUState *cs = env_cpu(env);
1606
1607 #ifdef DEBUG_ASI
1608 dump_asi("write", addr, asi, size, val);
1609 #endif
1610
1611 asi &= 0xff;
1612
1613 do_check_asi(env, asi, GETPC());
1614 do_check_align(env, addr, size - 1, GETPC());
1615 addr = asi_address_mask(env, asi, addr);
1616
1617 switch (asi) {
1618 case ASI_AIUP: /* As if user primary */
1619 case ASI_AIUS: /* As if user secondary */
1620 case ASI_AIUPL: /* As if user primary LE */
1621 case ASI_AIUSL: /* As if user secondary LE */
1622 case ASI_P: /* Primary */
1623 case ASI_S: /* Secondary */
1624 case ASI_PL: /* Primary LE */
1625 case ASI_SL: /* Secondary LE */
1626 case ASI_REAL: /* Bypass */
1627 case ASI_REAL_IO: /* Bypass, non-cacheable */
1628 case ASI_REAL_L: /* Bypass LE */
1629 case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1630 case ASI_N: /* Nucleus */
1631 case ASI_NL: /* Nucleus Little Endian (LE) */
1632 case ASI_NUCLEUS_QUAD_LDD: /* Nucleus quad LDD 128 bit atomic */
1633 case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1634 case ASI_TWINX_AIUP: /* As if user primary, twinx */
1635 case ASI_TWINX_AIUS: /* As if user secondary, twinx */
1636 case ASI_TWINX_REAL: /* Real address, twinx */
1637 case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1638 case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1639 case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1640 case ASI_TWINX_N: /* Nucleus, twinx */
1641 case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1642 /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1643 case ASI_TWINX_P: /* Primary, twinx */
1644 case ASI_TWINX_PL: /* Primary, twinx, LE */
1645 case ASI_TWINX_S: /* Secondary, twinx */
1646 case ASI_TWINX_SL: /* Secondary, twinx, LE */
1647 /* These are always handled inline. */
1648 g_assert_not_reached();
1649 /* these ASIs have different functions on UltraSPARC-IIIi
1650 * and UA2005 CPUs. Use the explicit numbers to avoid confusion
1651 */
1652 case 0x31:
1653 case 0x32:
1654 case 0x39:
1655 case 0x3a:
1656 if (cpu_has_hypervisor(env)) {
1657 /* UA2005
1658 * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0
1659 * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1
1660 * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0
1661 * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1
1662 */
1663 int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1664 env->dmmu.sun4v_tsb_pointers[idx] = val;
1665 } else {
1666 helper_raise_exception(env, TT_ILL_INSN);
1667 }
1668 break;
1669 case 0x33:
1670 case 0x3b:
1671 if (cpu_has_hypervisor(env)) {
1672 /* UA2005
1673 * ASI_DMMU_CTX_ZERO_CONFIG
1674 * ASI_DMMU_CTX_NONZERO_CONFIG
1675 */
1676 env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1677 } else {
1678 helper_raise_exception(env, TT_ILL_INSN);
1679 }
1680 break;
1681 case 0x35:
1682 case 0x36:
1683 case 0x3d:
1684 case 0x3e:
1685 if (cpu_has_hypervisor(env)) {
1686 /* UA2005
1687 * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0
1688 * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1
1689 * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0
1690 * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1
1691 */
1692 int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1693 env->immu.sun4v_tsb_pointers[idx] = val;
1694 } else {
1695 helper_raise_exception(env, TT_ILL_INSN);
1696 }
1697 break;
1698 case 0x37:
1699 case 0x3f:
1700 if (cpu_has_hypervisor(env)) {
1701 /* UA2005
1702 * ASI_IMMU_CTX_ZERO_CONFIG
1703 * ASI_IMMU_CTX_NONZERO_CONFIG
1704 */
1705 env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1706 } else {
1707 helper_raise_exception(env, TT_ILL_INSN);
1708 }
1709 break;
1710 case ASI_UPA_CONFIG: /* UPA config */
1711 /* XXX */
1712 return;
1713 case ASI_LSU_CONTROL: /* LSU */
1714 env->lsu = val & (DMMU_E | IMMU_E);
1715 return;
1716 case ASI_IMMU: /* I-MMU regs */
1717 {
1718 int reg = (addr >> 3) & 0xf;
1719 uint64_t oldreg;
1720
1721 oldreg = env->immu.mmuregs[reg];
1722 switch (reg) {
1723 case 0: /* RO */
1724 return;
1725 case 1: /* Not in I-MMU */
1726 case 2:
1727 return;
1728 case 3: /* SFSR */
1729 if ((val & 1) == 0) {
1730 val = 0; /* Clear SFSR */
1731 }
1732 env->immu.sfsr = val;
1733 break;
1734 case 4: /* RO */
1735 return;
1736 case 5: /* TSB access */
1737 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1738 PRIx64 "\n", env->immu.tsb, val);
1739 env->immu.tsb = val;
1740 break;
1741 case 6: /* Tag access */
1742 env->immu.tag_access = val;
1743 break;
1744 case 7:
1745 case 8:
1746 return;
1747 default:
1748 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1749 break;
1750 }
1751
1752 if (oldreg != env->immu.mmuregs[reg]) {
1753 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1754 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1755 }
1756 #ifdef DEBUG_MMU
1757 dump_mmu(env);
1758 #endif
1759 return;
1760 }
1761 case ASI_ITLB_DATA_IN: /* I-MMU data in */
1762 /* ignore real translation entries */
1763 if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1764 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access,
1765 val, "immu", env, addr);
1766 }
1767 return;
1768 case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1769 {
1770 /* TODO: auto demap */
1771
1772 unsigned int i = (addr >> 3) & 0x3f;
1773
1774 /* ignore real translation entries */
1775 if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1776 replace_tlb_entry(&env->itlb[i], env->immu.tag_access,
1777 sun4v_tte_to_sun4u(env, addr, val), env);
1778 }
1779 #ifdef DEBUG_MMU
1780 DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1781 dump_mmu(env);
1782 #endif
1783 return;
1784 }
1785 case ASI_IMMU_DEMAP: /* I-MMU demap */
1786 demap_tlb(env->itlb, addr, "immu", env);
1787 return;
1788 case ASI_DMMU: /* D-MMU regs */
1789 {
1790 int reg = (addr >> 3) & 0xf;
1791 uint64_t oldreg;
1792
1793 oldreg = env->dmmu.mmuregs[reg];
1794 switch (reg) {
1795 case 0: /* RO */
1796 case 4:
1797 return;
1798 case 3: /* SFSR */
1799 if ((val & 1) == 0) {
1800 val = 0; /* Clear SFSR, Fault address */
1801 env->dmmu.sfar = 0;
1802 }
1803 env->dmmu.sfsr = val;
1804 break;
1805 case 1: /* Primary context */
1806 env->dmmu.mmu_primary_context = val;
1807 /* can be optimized to only flush MMU_USER_IDX
1808 and MMU_KERNEL_IDX entries */
1809 tlb_flush(cs);
1810 break;
1811 case 2: /* Secondary context */
1812 env->dmmu.mmu_secondary_context = val;
1813 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1814 and MMU_KERNEL_SECONDARY_IDX entries */
1815 tlb_flush(cs);
1816 break;
1817 case 5: /* TSB access */
1818 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1819 PRIx64 "\n", env->dmmu.tsb, val);
1820 env->dmmu.tsb = val;
1821 break;
1822 case 6: /* Tag access */
1823 env->dmmu.tag_access = val;
1824 break;
1825 case 7: /* Virtual Watchpoint */
1826 env->dmmu.virtual_watchpoint = val;
1827 break;
1828 case 8: /* Physical Watchpoint */
1829 env->dmmu.physical_watchpoint = val;
1830 break;
1831 default:
1832 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1833 break;
1834 }
1835
1836 if (oldreg != env->dmmu.mmuregs[reg]) {
1837 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1838 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1839 }
1840 #ifdef DEBUG_MMU
1841 dump_mmu(env);
1842 #endif
1843 return;
1844 }
1845 case ASI_DTLB_DATA_IN: /* D-MMU data in */
1846 /* ignore real translation entries */
1847 if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1848 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access,
1849 val, "dmmu", env, addr);
1850 }
1851 return;
1852 case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1853 {
1854 unsigned int i = (addr >> 3) & 0x3f;
1855
1856 /* ignore real translation entries */
1857 if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1858 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access,
1859 sun4v_tte_to_sun4u(env, addr, val), env);
1860 }
1861 #ifdef DEBUG_MMU
1862 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1863 dump_mmu(env);
1864 #endif
1865 return;
1866 }
1867 case ASI_DMMU_DEMAP: /* D-MMU demap */
1868 demap_tlb(env->dtlb, addr, "dmmu", env);
1869 return;
1870 case ASI_INTR_RECEIVE: /* Interrupt data receive */
1871 env->ivec_status = val & 0x20;
1872 return;
1873 case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1874 if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1875 /* Hyperprivileged access only */
1876 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1877 }
1878 /* fall through */
1879 case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1880 {
1881 unsigned int i = (addr >> 3) & 0x7;
1882 env->scratch[i] = val;
1883 return;
1884 }
1885 case ASI_MMU: /* UA2005 Context ID registers */
1886 {
1887 switch ((addr >> 3) & 0x3) {
1888 case 1:
1889 env->dmmu.mmu_primary_context = val;
1890 env->immu.mmu_primary_context = val;
1891 tlb_flush_by_mmuidx(cs,
1892 (1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX));
1893 break;
1894 case 2:
1895 env->dmmu.mmu_secondary_context = val;
1896 env->immu.mmu_secondary_context = val;
1897 tlb_flush_by_mmuidx(cs,
1898 (1 << MMU_USER_SECONDARY_IDX) |
1899 (1 << MMU_KERNEL_SECONDARY_IDX));
1900 break;
1901 default:
1902 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1903 }
1904 }
1905 return;
1906 case ASI_QUEUE: /* UA2005 CPU mondo queue */
1907 case ASI_DCACHE_DATA: /* D-cache data */
1908 case ASI_DCACHE_TAG: /* D-cache tag access */
1909 case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1910 case ASI_AFSR: /* E-cache asynchronous fault status */
1911 case ASI_AFAR: /* E-cache asynchronous fault address */
1912 case ASI_EC_TAG_DATA: /* E-cache tag data */
1913 case ASI_IC_INSTR: /* I-cache instruction access */
1914 case ASI_IC_TAG: /* I-cache tag access */
1915 case ASI_IC_PRE_DECODE: /* I-cache predecode */
1916 case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1917 case ASI_EC_W: /* E-cache tag */
1918 case ASI_EC_R: /* E-cache tag */
1919 return;
1920 case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */
1921 case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */
1922 case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */
1923 case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */
1924 case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */
1925 case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */
1926 case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */
1927 case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1928 case ASI_INTR_R: /* Incoming interrupt vector, RO */
1929 case ASI_PNF: /* Primary no-fault, RO */
1930 case ASI_SNF: /* Secondary no-fault, RO */
1931 case ASI_PNFL: /* Primary no-fault LE, RO */
1932 case ASI_SNFL: /* Secondary no-fault LE, RO */
1933 default:
1934 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1935 return;
1936 }
1937 }
1938 #endif /* CONFIG_USER_ONLY */
1939 #endif /* TARGET_SPARC64 */
1940
1941 #if !defined(CONFIG_USER_ONLY)
1942
1943 void sparc_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1944 vaddr addr, unsigned size,
1945 MMUAccessType access_type,
1946 int mmu_idx, MemTxAttrs attrs,
1947 MemTxResult response, uintptr_t retaddr)
1948 {
1949 bool is_write = access_type == MMU_DATA_STORE;
1950 bool is_exec = access_type == MMU_INST_FETCH;
1951 bool is_asi = false;
1952
1953 sparc_raise_mmu_fault(cs, physaddr, is_write, is_exec,
1954 is_asi, size, retaddr);
1955 }
1956 #endif