]> git.proxmox.com Git - mirror_qemu.git/blob - target/tricore/op_helper.c
i386: Update new x86_apicid parsing rules with die_offset support
[mirror_qemu.git] / target / tricore / op_helper.c
1 /*
2 * Copyright (c) 2012-2014 Bastian Koppelmann C-Lab/University Paderborn
3 *
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2.1 of the License, or (at your option) any later version.
8 *
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
13 *
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
16 */
17 #include "qemu/osdep.h"
18 #include "cpu.h"
19 #include "qemu/host-utils.h"
20 #include "exec/helper-proto.h"
21 #include "exec/exec-all.h"
22 #include "exec/cpu_ldst.h"
23 #include <zlib.h> /* for crc32 */
24
25
26 /* Exception helpers */
27
28 static void QEMU_NORETURN
29 raise_exception_sync_internal(CPUTriCoreState *env, uint32_t class, int tin,
30 uintptr_t pc, uint32_t fcd_pc)
31 {
32 CPUState *cs = env_cpu(env);
33 /* in case we come from a helper-call we need to restore the PC */
34 cpu_restore_state(cs, pc, true);
35
36 /* Tin is loaded into d[15] */
37 env->gpr_d[15] = tin;
38
39 if (class == TRAPC_CTX_MNG && tin == TIN3_FCU) {
40 /* upper context cannot be saved, if the context list is empty */
41 } else {
42 helper_svucx(env);
43 }
44
45 /* The return address in a[11] is updated */
46 if (class == TRAPC_CTX_MNG && tin == TIN3_FCD) {
47 env->SYSCON |= MASK_SYSCON_FCD_SF;
48 /* when we run out of CSAs after saving a context a FCD trap is taken
49 and the return address is the start of the trap handler which used
50 the last CSA */
51 env->gpr_a[11] = fcd_pc;
52 } else if (class == TRAPC_SYSCALL) {
53 env->gpr_a[11] = env->PC + 4;
54 } else {
55 env->gpr_a[11] = env->PC;
56 }
57 /* The stack pointer in A[10] is set to the Interrupt Stack Pointer (ISP)
58 when the processor was not previously using the interrupt stack
59 (in case of PSW.IS = 0). The stack pointer bit is set for using the
60 interrupt stack: PSW.IS = 1. */
61 if ((env->PSW & MASK_PSW_IS) == 0) {
62 env->gpr_a[10] = env->ISP;
63 }
64 env->PSW |= MASK_PSW_IS;
65 /* The I/O mode is set to Supervisor mode, which means all permissions
66 are enabled: PSW.IO = 10 B .*/
67 env->PSW |= (2 << 10);
68
69 /*The current Protection Register Set is set to 0: PSW.PRS = 00 B .*/
70 env->PSW &= ~MASK_PSW_PRS;
71
72 /* The Call Depth Counter (CDC) is cleared, and the call depth limit is
73 set for 64: PSW.CDC = 0000000 B .*/
74 env->PSW &= ~MASK_PSW_CDC;
75
76 /* Call Depth Counter is enabled, PSW.CDE = 1. */
77 env->PSW |= MASK_PSW_CDE;
78
79 /* Write permission to global registers A[0], A[1], A[8], A[9] is
80 disabled: PSW.GW = 0. */
81 env->PSW &= ~MASK_PSW_GW;
82
83 /*The interrupt system is globally disabled: ICR.IE = 0. The ‘old’
84 ICR.IE and ICR.CCPN are saved */
85
86 /* PCXI.PIE = ICR.IE */
87 env->PCXI = ((env->PCXI & ~MASK_PCXI_PIE_1_3) +
88 ((env->ICR & MASK_ICR_IE_1_3) << 15));
89 /* PCXI.PCPN = ICR.CCPN */
90 env->PCXI = (env->PCXI & 0xffffff) +
91 ((env->ICR & MASK_ICR_CCPN) << 24);
92 /* Update PC using the trap vector table */
93 env->PC = env->BTV | (class << 5);
94
95 cpu_loop_exit(cs);
96 }
97
98 void helper_raise_exception_sync(CPUTriCoreState *env, uint32_t class,
99 uint32_t tin)
100 {
101 raise_exception_sync_internal(env, class, tin, 0, 0);
102 }
103
104 static void raise_exception_sync_helper(CPUTriCoreState *env, uint32_t class,
105 uint32_t tin, uintptr_t pc)
106 {
107 raise_exception_sync_internal(env, class, tin, pc, 0);
108 }
109
110 /* Addressing mode helper */
111
112 static uint16_t reverse16(uint16_t val)
113 {
114 uint8_t high = (uint8_t)(val >> 8);
115 uint8_t low = (uint8_t)(val & 0xff);
116
117 uint16_t rh, rl;
118
119 rl = (uint16_t)((high * 0x0202020202ULL & 0x010884422010ULL) % 1023);
120 rh = (uint16_t)((low * 0x0202020202ULL & 0x010884422010ULL) % 1023);
121
122 return (rh << 8) | rl;
123 }
124
125 uint32_t helper_br_update(uint32_t reg)
126 {
127 uint32_t index = reg & 0xffff;
128 uint32_t incr = reg >> 16;
129 uint32_t new_index = reverse16(reverse16(index) + reverse16(incr));
130 return reg - index + new_index;
131 }
132
133 uint32_t helper_circ_update(uint32_t reg, uint32_t off)
134 {
135 uint32_t index = reg & 0xffff;
136 uint32_t length = reg >> 16;
137 int32_t new_index = index + off;
138 if (new_index < 0) {
139 new_index += length;
140 } else {
141 new_index %= length;
142 }
143 return reg - index + new_index;
144 }
145
146 static uint32_t ssov32(CPUTriCoreState *env, int64_t arg)
147 {
148 uint32_t ret;
149 int64_t max_pos = INT32_MAX;
150 int64_t max_neg = INT32_MIN;
151 if (arg > max_pos) {
152 env->PSW_USB_V = (1 << 31);
153 env->PSW_USB_SV = (1 << 31);
154 ret = (target_ulong)max_pos;
155 } else {
156 if (arg < max_neg) {
157 env->PSW_USB_V = (1 << 31);
158 env->PSW_USB_SV = (1 << 31);
159 ret = (target_ulong)max_neg;
160 } else {
161 env->PSW_USB_V = 0;
162 ret = (target_ulong)arg;
163 }
164 }
165 env->PSW_USB_AV = arg ^ arg * 2u;
166 env->PSW_USB_SAV |= env->PSW_USB_AV;
167 return ret;
168 }
169
170 static uint32_t suov32_pos(CPUTriCoreState *env, uint64_t arg)
171 {
172 uint32_t ret;
173 uint64_t max_pos = UINT32_MAX;
174 if (arg > max_pos) {
175 env->PSW_USB_V = (1 << 31);
176 env->PSW_USB_SV = (1 << 31);
177 ret = (target_ulong)max_pos;
178 } else {
179 env->PSW_USB_V = 0;
180 ret = (target_ulong)arg;
181 }
182 env->PSW_USB_AV = arg ^ arg * 2u;
183 env->PSW_USB_SAV |= env->PSW_USB_AV;
184 return ret;
185 }
186
187 static uint32_t suov32_neg(CPUTriCoreState *env, int64_t arg)
188 {
189 uint32_t ret;
190
191 if (arg < 0) {
192 env->PSW_USB_V = (1 << 31);
193 env->PSW_USB_SV = (1 << 31);
194 ret = 0;
195 } else {
196 env->PSW_USB_V = 0;
197 ret = (target_ulong)arg;
198 }
199 env->PSW_USB_AV = arg ^ arg * 2u;
200 env->PSW_USB_SAV |= env->PSW_USB_AV;
201 return ret;
202 }
203
204 static uint32_t ssov16(CPUTriCoreState *env, int32_t hw0, int32_t hw1)
205 {
206 int32_t max_pos = INT16_MAX;
207 int32_t max_neg = INT16_MIN;
208 int32_t av0, av1;
209
210 env->PSW_USB_V = 0;
211 av0 = hw0 ^ hw0 * 2u;
212 if (hw0 > max_pos) {
213 env->PSW_USB_V = (1 << 31);
214 hw0 = max_pos;
215 } else if (hw0 < max_neg) {
216 env->PSW_USB_V = (1 << 31);
217 hw0 = max_neg;
218 }
219
220 av1 = hw1 ^ hw1 * 2u;
221 if (hw1 > max_pos) {
222 env->PSW_USB_V = (1 << 31);
223 hw1 = max_pos;
224 } else if (hw1 < max_neg) {
225 env->PSW_USB_V = (1 << 31);
226 hw1 = max_neg;
227 }
228
229 env->PSW_USB_SV |= env->PSW_USB_V;
230 env->PSW_USB_AV = (av0 | av1) << 16;
231 env->PSW_USB_SAV |= env->PSW_USB_AV;
232 return (hw0 & 0xffff) | (hw1 << 16);
233 }
234
235 static uint32_t suov16(CPUTriCoreState *env, int32_t hw0, int32_t hw1)
236 {
237 int32_t max_pos = UINT16_MAX;
238 int32_t av0, av1;
239
240 env->PSW_USB_V = 0;
241 av0 = hw0 ^ hw0 * 2u;
242 if (hw0 > max_pos) {
243 env->PSW_USB_V = (1 << 31);
244 hw0 = max_pos;
245 } else if (hw0 < 0) {
246 env->PSW_USB_V = (1 << 31);
247 hw0 = 0;
248 }
249
250 av1 = hw1 ^ hw1 * 2u;
251 if (hw1 > max_pos) {
252 env->PSW_USB_V = (1 << 31);
253 hw1 = max_pos;
254 } else if (hw1 < 0) {
255 env->PSW_USB_V = (1 << 31);
256 hw1 = 0;
257 }
258
259 env->PSW_USB_SV |= env->PSW_USB_V;
260 env->PSW_USB_AV = (av0 | av1) << 16;
261 env->PSW_USB_SAV |= env->PSW_USB_AV;
262 return (hw0 & 0xffff) | (hw1 << 16);
263 }
264
265 target_ulong helper_add_ssov(CPUTriCoreState *env, target_ulong r1,
266 target_ulong r2)
267 {
268 int64_t t1 = sextract64(r1, 0, 32);
269 int64_t t2 = sextract64(r2, 0, 32);
270 int64_t result = t1 + t2;
271 return ssov32(env, result);
272 }
273
274 uint64_t helper_add64_ssov(CPUTriCoreState *env, uint64_t r1, uint64_t r2)
275 {
276 uint64_t result;
277 int64_t ovf;
278
279 result = r1 + r2;
280 ovf = (result ^ r1) & ~(r1 ^ r2);
281 env->PSW_USB_AV = (result ^ result * 2u) >> 32;
282 env->PSW_USB_SAV |= env->PSW_USB_AV;
283 if (ovf < 0) {
284 env->PSW_USB_V = (1 << 31);
285 env->PSW_USB_SV = (1 << 31);
286 /* ext_ret > MAX_INT */
287 if ((int64_t)r1 >= 0) {
288 result = INT64_MAX;
289 /* ext_ret < MIN_INT */
290 } else {
291 result = INT64_MIN;
292 }
293 } else {
294 env->PSW_USB_V = 0;
295 }
296 return result;
297 }
298
299 target_ulong helper_add_h_ssov(CPUTriCoreState *env, target_ulong r1,
300 target_ulong r2)
301 {
302 int32_t ret_hw0, ret_hw1;
303
304 ret_hw0 = sextract32(r1, 0, 16) + sextract32(r2, 0, 16);
305 ret_hw1 = sextract32(r1, 16, 16) + sextract32(r2, 16, 16);
306 return ssov16(env, ret_hw0, ret_hw1);
307 }
308
309 uint32_t helper_addr_h_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l,
310 uint32_t r2_h)
311 {
312 int64_t mul_res0 = sextract64(r1, 0, 32);
313 int64_t mul_res1 = sextract64(r1, 32, 32);
314 int64_t r2_low = sextract64(r2_l, 0, 32);
315 int64_t r2_high = sextract64(r2_h, 0, 32);
316 int64_t result0, result1;
317 uint32_t ovf0, ovf1;
318 uint32_t avf0, avf1;
319
320 ovf0 = ovf1 = 0;
321
322 result0 = r2_low + mul_res0 + 0x8000;
323 result1 = r2_high + mul_res1 + 0x8000;
324
325 avf0 = result0 * 2u;
326 avf0 = result0 ^ avf0;
327 avf1 = result1 * 2u;
328 avf1 = result1 ^ avf1;
329
330 if (result0 > INT32_MAX) {
331 ovf0 = (1 << 31);
332 result0 = INT32_MAX;
333 } else if (result0 < INT32_MIN) {
334 ovf0 = (1 << 31);
335 result0 = INT32_MIN;
336 }
337
338 if (result1 > INT32_MAX) {
339 ovf1 = (1 << 31);
340 result1 = INT32_MAX;
341 } else if (result1 < INT32_MIN) {
342 ovf1 = (1 << 31);
343 result1 = INT32_MIN;
344 }
345
346 env->PSW_USB_V = ovf0 | ovf1;
347 env->PSW_USB_SV |= env->PSW_USB_V;
348
349 env->PSW_USB_AV = avf0 | avf1;
350 env->PSW_USB_SAV |= env->PSW_USB_AV;
351
352 return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL);
353 }
354
355 uint32_t helper_addsur_h_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l,
356 uint32_t r2_h)
357 {
358 int64_t mul_res0 = sextract64(r1, 0, 32);
359 int64_t mul_res1 = sextract64(r1, 32, 32);
360 int64_t r2_low = sextract64(r2_l, 0, 32);
361 int64_t r2_high = sextract64(r2_h, 0, 32);
362 int64_t result0, result1;
363 uint32_t ovf0, ovf1;
364 uint32_t avf0, avf1;
365
366 ovf0 = ovf1 = 0;
367
368 result0 = r2_low - mul_res0 + 0x8000;
369 result1 = r2_high + mul_res1 + 0x8000;
370
371 avf0 = result0 * 2u;
372 avf0 = result0 ^ avf0;
373 avf1 = result1 * 2u;
374 avf1 = result1 ^ avf1;
375
376 if (result0 > INT32_MAX) {
377 ovf0 = (1 << 31);
378 result0 = INT32_MAX;
379 } else if (result0 < INT32_MIN) {
380 ovf0 = (1 << 31);
381 result0 = INT32_MIN;
382 }
383
384 if (result1 > INT32_MAX) {
385 ovf1 = (1 << 31);
386 result1 = INT32_MAX;
387 } else if (result1 < INT32_MIN) {
388 ovf1 = (1 << 31);
389 result1 = INT32_MIN;
390 }
391
392 env->PSW_USB_V = ovf0 | ovf1;
393 env->PSW_USB_SV |= env->PSW_USB_V;
394
395 env->PSW_USB_AV = avf0 | avf1;
396 env->PSW_USB_SAV |= env->PSW_USB_AV;
397
398 return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL);
399 }
400
401
402 target_ulong helper_add_suov(CPUTriCoreState *env, target_ulong r1,
403 target_ulong r2)
404 {
405 int64_t t1 = extract64(r1, 0, 32);
406 int64_t t2 = extract64(r2, 0, 32);
407 int64_t result = t1 + t2;
408 return suov32_pos(env, result);
409 }
410
411 target_ulong helper_add_h_suov(CPUTriCoreState *env, target_ulong r1,
412 target_ulong r2)
413 {
414 int32_t ret_hw0, ret_hw1;
415
416 ret_hw0 = extract32(r1, 0, 16) + extract32(r2, 0, 16);
417 ret_hw1 = extract32(r1, 16, 16) + extract32(r2, 16, 16);
418 return suov16(env, ret_hw0, ret_hw1);
419 }
420
421 target_ulong helper_sub_ssov(CPUTriCoreState *env, target_ulong r1,
422 target_ulong r2)
423 {
424 int64_t t1 = sextract64(r1, 0, 32);
425 int64_t t2 = sextract64(r2, 0, 32);
426 int64_t result = t1 - t2;
427 return ssov32(env, result);
428 }
429
430 uint64_t helper_sub64_ssov(CPUTriCoreState *env, uint64_t r1, uint64_t r2)
431 {
432 uint64_t result;
433 int64_t ovf;
434
435 result = r1 - r2;
436 ovf = (result ^ r1) & (r1 ^ r2);
437 env->PSW_USB_AV = (result ^ result * 2u) >> 32;
438 env->PSW_USB_SAV |= env->PSW_USB_AV;
439 if (ovf < 0) {
440 env->PSW_USB_V = (1 << 31);
441 env->PSW_USB_SV = (1 << 31);
442 /* ext_ret > MAX_INT */
443 if ((int64_t)r1 >= 0) {
444 result = INT64_MAX;
445 /* ext_ret < MIN_INT */
446 } else {
447 result = INT64_MIN;
448 }
449 } else {
450 env->PSW_USB_V = 0;
451 }
452 return result;
453 }
454
455 target_ulong helper_sub_h_ssov(CPUTriCoreState *env, target_ulong r1,
456 target_ulong r2)
457 {
458 int32_t ret_hw0, ret_hw1;
459
460 ret_hw0 = sextract32(r1, 0, 16) - sextract32(r2, 0, 16);
461 ret_hw1 = sextract32(r1, 16, 16) - sextract32(r2, 16, 16);
462 return ssov16(env, ret_hw0, ret_hw1);
463 }
464
465 uint32_t helper_subr_h_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l,
466 uint32_t r2_h)
467 {
468 int64_t mul_res0 = sextract64(r1, 0, 32);
469 int64_t mul_res1 = sextract64(r1, 32, 32);
470 int64_t r2_low = sextract64(r2_l, 0, 32);
471 int64_t r2_high = sextract64(r2_h, 0, 32);
472 int64_t result0, result1;
473 uint32_t ovf0, ovf1;
474 uint32_t avf0, avf1;
475
476 ovf0 = ovf1 = 0;
477
478 result0 = r2_low - mul_res0 + 0x8000;
479 result1 = r2_high - mul_res1 + 0x8000;
480
481 avf0 = result0 * 2u;
482 avf0 = result0 ^ avf0;
483 avf1 = result1 * 2u;
484 avf1 = result1 ^ avf1;
485
486 if (result0 > INT32_MAX) {
487 ovf0 = (1 << 31);
488 result0 = INT32_MAX;
489 } else if (result0 < INT32_MIN) {
490 ovf0 = (1 << 31);
491 result0 = INT32_MIN;
492 }
493
494 if (result1 > INT32_MAX) {
495 ovf1 = (1 << 31);
496 result1 = INT32_MAX;
497 } else if (result1 < INT32_MIN) {
498 ovf1 = (1 << 31);
499 result1 = INT32_MIN;
500 }
501
502 env->PSW_USB_V = ovf0 | ovf1;
503 env->PSW_USB_SV |= env->PSW_USB_V;
504
505 env->PSW_USB_AV = avf0 | avf1;
506 env->PSW_USB_SAV |= env->PSW_USB_AV;
507
508 return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL);
509 }
510
511 uint32_t helper_subadr_h_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l,
512 uint32_t r2_h)
513 {
514 int64_t mul_res0 = sextract64(r1, 0, 32);
515 int64_t mul_res1 = sextract64(r1, 32, 32);
516 int64_t r2_low = sextract64(r2_l, 0, 32);
517 int64_t r2_high = sextract64(r2_h, 0, 32);
518 int64_t result0, result1;
519 uint32_t ovf0, ovf1;
520 uint32_t avf0, avf1;
521
522 ovf0 = ovf1 = 0;
523
524 result0 = r2_low + mul_res0 + 0x8000;
525 result1 = r2_high - mul_res1 + 0x8000;
526
527 avf0 = result0 * 2u;
528 avf0 = result0 ^ avf0;
529 avf1 = result1 * 2u;
530 avf1 = result1 ^ avf1;
531
532 if (result0 > INT32_MAX) {
533 ovf0 = (1 << 31);
534 result0 = INT32_MAX;
535 } else if (result0 < INT32_MIN) {
536 ovf0 = (1 << 31);
537 result0 = INT32_MIN;
538 }
539
540 if (result1 > INT32_MAX) {
541 ovf1 = (1 << 31);
542 result1 = INT32_MAX;
543 } else if (result1 < INT32_MIN) {
544 ovf1 = (1 << 31);
545 result1 = INT32_MIN;
546 }
547
548 env->PSW_USB_V = ovf0 | ovf1;
549 env->PSW_USB_SV |= env->PSW_USB_V;
550
551 env->PSW_USB_AV = avf0 | avf1;
552 env->PSW_USB_SAV |= env->PSW_USB_AV;
553
554 return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL);
555 }
556
557 target_ulong helper_sub_suov(CPUTriCoreState *env, target_ulong r1,
558 target_ulong r2)
559 {
560 int64_t t1 = extract64(r1, 0, 32);
561 int64_t t2 = extract64(r2, 0, 32);
562 int64_t result = t1 - t2;
563 return suov32_neg(env, result);
564 }
565
566 target_ulong helper_sub_h_suov(CPUTriCoreState *env, target_ulong r1,
567 target_ulong r2)
568 {
569 int32_t ret_hw0, ret_hw1;
570
571 ret_hw0 = extract32(r1, 0, 16) - extract32(r2, 0, 16);
572 ret_hw1 = extract32(r1, 16, 16) - extract32(r2, 16, 16);
573 return suov16(env, ret_hw0, ret_hw1);
574 }
575
576 target_ulong helper_mul_ssov(CPUTriCoreState *env, target_ulong r1,
577 target_ulong r2)
578 {
579 int64_t t1 = sextract64(r1, 0, 32);
580 int64_t t2 = sextract64(r2, 0, 32);
581 int64_t result = t1 * t2;
582 return ssov32(env, result);
583 }
584
585 target_ulong helper_mul_suov(CPUTriCoreState *env, target_ulong r1,
586 target_ulong r2)
587 {
588 int64_t t1 = extract64(r1, 0, 32);
589 int64_t t2 = extract64(r2, 0, 32);
590 int64_t result = t1 * t2;
591
592 return suov32_pos(env, result);
593 }
594
595 target_ulong helper_sha_ssov(CPUTriCoreState *env, target_ulong r1,
596 target_ulong r2)
597 {
598 int64_t t1 = sextract64(r1, 0, 32);
599 int32_t t2 = sextract64(r2, 0, 6);
600 int64_t result;
601 if (t2 == 0) {
602 result = t1;
603 } else if (t2 > 0) {
604 result = t1 << t2;
605 } else {
606 result = t1 >> -t2;
607 }
608 return ssov32(env, result);
609 }
610
611 uint32_t helper_abs_ssov(CPUTriCoreState *env, target_ulong r1)
612 {
613 target_ulong result;
614 result = ((int32_t)r1 >= 0) ? r1 : (0 - r1);
615 return ssov32(env, result);
616 }
617
618 uint32_t helper_abs_h_ssov(CPUTriCoreState *env, target_ulong r1)
619 {
620 int32_t ret_h0, ret_h1;
621
622 ret_h0 = sextract32(r1, 0, 16);
623 ret_h0 = (ret_h0 >= 0) ? ret_h0 : (0 - ret_h0);
624
625 ret_h1 = sextract32(r1, 16, 16);
626 ret_h1 = (ret_h1 >= 0) ? ret_h1 : (0 - ret_h1);
627
628 return ssov16(env, ret_h0, ret_h1);
629 }
630
631 target_ulong helper_absdif_ssov(CPUTriCoreState *env, target_ulong r1,
632 target_ulong r2)
633 {
634 int64_t t1 = sextract64(r1, 0, 32);
635 int64_t t2 = sextract64(r2, 0, 32);
636 int64_t result;
637
638 if (t1 > t2) {
639 result = t1 - t2;
640 } else {
641 result = t2 - t1;
642 }
643 return ssov32(env, result);
644 }
645
646 uint32_t helper_absdif_h_ssov(CPUTriCoreState *env, target_ulong r1,
647 target_ulong r2)
648 {
649 int32_t t1, t2;
650 int32_t ret_h0, ret_h1;
651
652 t1 = sextract32(r1, 0, 16);
653 t2 = sextract32(r2, 0, 16);
654 if (t1 > t2) {
655 ret_h0 = t1 - t2;
656 } else {
657 ret_h0 = t2 - t1;
658 }
659
660 t1 = sextract32(r1, 16, 16);
661 t2 = sextract32(r2, 16, 16);
662 if (t1 > t2) {
663 ret_h1 = t1 - t2;
664 } else {
665 ret_h1 = t2 - t1;
666 }
667
668 return ssov16(env, ret_h0, ret_h1);
669 }
670
671 target_ulong helper_madd32_ssov(CPUTriCoreState *env, target_ulong r1,
672 target_ulong r2, target_ulong r3)
673 {
674 int64_t t1 = sextract64(r1, 0, 32);
675 int64_t t2 = sextract64(r2, 0, 32);
676 int64_t t3 = sextract64(r3, 0, 32);
677 int64_t result;
678
679 result = t2 + (t1 * t3);
680 return ssov32(env, result);
681 }
682
683 target_ulong helper_madd32_suov(CPUTriCoreState *env, target_ulong r1,
684 target_ulong r2, target_ulong r3)
685 {
686 uint64_t t1 = extract64(r1, 0, 32);
687 uint64_t t2 = extract64(r2, 0, 32);
688 uint64_t t3 = extract64(r3, 0, 32);
689 int64_t result;
690
691 result = t2 + (t1 * t3);
692 return suov32_pos(env, result);
693 }
694
695 uint64_t helper_madd64_ssov(CPUTriCoreState *env, target_ulong r1,
696 uint64_t r2, target_ulong r3)
697 {
698 uint64_t ret, ovf;
699 int64_t t1 = sextract64(r1, 0, 32);
700 int64_t t3 = sextract64(r3, 0, 32);
701 int64_t mul;
702
703 mul = t1 * t3;
704 ret = mul + r2;
705 ovf = (ret ^ mul) & ~(mul ^ r2);
706
707 t1 = ret >> 32;
708 env->PSW_USB_AV = t1 ^ t1 * 2u;
709 env->PSW_USB_SAV |= env->PSW_USB_AV;
710
711 if ((int64_t)ovf < 0) {
712 env->PSW_USB_V = (1 << 31);
713 env->PSW_USB_SV = (1 << 31);
714 /* ext_ret > MAX_INT */
715 if (mul >= 0) {
716 ret = INT64_MAX;
717 /* ext_ret < MIN_INT */
718 } else {
719 ret = INT64_MIN;
720 }
721 } else {
722 env->PSW_USB_V = 0;
723 }
724
725 return ret;
726 }
727
728 uint32_t
729 helper_madd32_q_add_ssov(CPUTriCoreState *env, uint64_t r1, uint64_t r2)
730 {
731 int64_t result;
732
733 result = (r1 + r2);
734
735 env->PSW_USB_AV = (result ^ result * 2u);
736 env->PSW_USB_SAV |= env->PSW_USB_AV;
737
738 /* we do the saturation by hand, since we produce an overflow on the host
739 if the mul before was (0x80000000 * 0x80000000) << 1). If this is the
740 case, we flip the saturated value. */
741 if (r2 == 0x8000000000000000LL) {
742 if (result > 0x7fffffffLL) {
743 env->PSW_USB_V = (1 << 31);
744 env->PSW_USB_SV = (1 << 31);
745 result = INT32_MIN;
746 } else if (result < -0x80000000LL) {
747 env->PSW_USB_V = (1 << 31);
748 env->PSW_USB_SV = (1 << 31);
749 result = INT32_MAX;
750 } else {
751 env->PSW_USB_V = 0;
752 }
753 } else {
754 if (result > 0x7fffffffLL) {
755 env->PSW_USB_V = (1 << 31);
756 env->PSW_USB_SV = (1 << 31);
757 result = INT32_MAX;
758 } else if (result < -0x80000000LL) {
759 env->PSW_USB_V = (1 << 31);
760 env->PSW_USB_SV = (1 << 31);
761 result = INT32_MIN;
762 } else {
763 env->PSW_USB_V = 0;
764 }
765 }
766 return (uint32_t)result;
767 }
768
769 uint64_t helper_madd64_q_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2,
770 uint32_t r3, uint32_t n)
771 {
772 int64_t t1 = (int64_t)r1;
773 int64_t t2 = sextract64(r2, 0, 32);
774 int64_t t3 = sextract64(r3, 0, 32);
775 int64_t result, mul;
776 int64_t ovf;
777
778 mul = (t2 * t3) << n;
779 result = mul + t1;
780
781 env->PSW_USB_AV = (result ^ result * 2u) >> 32;
782 env->PSW_USB_SAV |= env->PSW_USB_AV;
783
784 ovf = (result ^ mul) & ~(mul ^ t1);
785 /* we do the saturation by hand, since we produce an overflow on the host
786 if the mul was (0x80000000 * 0x80000000) << 1). If this is the
787 case, we flip the saturated value. */
788 if ((r2 == 0x80000000) && (r3 == 0x80000000) && (n == 1)) {
789 if (ovf >= 0) {
790 env->PSW_USB_V = (1 << 31);
791 env->PSW_USB_SV = (1 << 31);
792 /* ext_ret > MAX_INT */
793 if (mul < 0) {
794 result = INT64_MAX;
795 /* ext_ret < MIN_INT */
796 } else {
797 result = INT64_MIN;
798 }
799 } else {
800 env->PSW_USB_V = 0;
801 }
802 } else {
803 if (ovf < 0) {
804 env->PSW_USB_V = (1 << 31);
805 env->PSW_USB_SV = (1 << 31);
806 /* ext_ret > MAX_INT */
807 if (mul >= 0) {
808 result = INT64_MAX;
809 /* ext_ret < MIN_INT */
810 } else {
811 result = INT64_MIN;
812 }
813 } else {
814 env->PSW_USB_V = 0;
815 }
816 }
817 return (uint64_t)result;
818 }
819
820 uint32_t helper_maddr_q_ssov(CPUTriCoreState *env, uint32_t r1, uint32_t r2,
821 uint32_t r3, uint32_t n)
822 {
823 int64_t t1 = sextract64(r1, 0, 32);
824 int64_t t2 = sextract64(r2, 0, 32);
825 int64_t t3 = sextract64(r3, 0, 32);
826 int64_t mul, ret;
827
828 if ((t2 == -0x8000ll) && (t3 == -0x8000ll) && (n == 1)) {
829 mul = 0x7fffffff;
830 } else {
831 mul = (t2 * t3) << n;
832 }
833
834 ret = t1 + mul + 0x8000;
835
836 env->PSW_USB_AV = ret ^ ret * 2u;
837 env->PSW_USB_SAV |= env->PSW_USB_AV;
838
839 if (ret > 0x7fffffffll) {
840 env->PSW_USB_V = (1 << 31);
841 env->PSW_USB_SV |= env->PSW_USB_V;
842 ret = INT32_MAX;
843 } else if (ret < -0x80000000ll) {
844 env->PSW_USB_V = (1 << 31);
845 env->PSW_USB_SV |= env->PSW_USB_V;
846 ret = INT32_MIN;
847 } else {
848 env->PSW_USB_V = 0;
849 }
850 return ret & 0xffff0000ll;
851 }
852
853 uint64_t helper_madd64_suov(CPUTriCoreState *env, target_ulong r1,
854 uint64_t r2, target_ulong r3)
855 {
856 uint64_t ret, mul;
857 uint64_t t1 = extract64(r1, 0, 32);
858 uint64_t t3 = extract64(r3, 0, 32);
859
860 mul = t1 * t3;
861 ret = mul + r2;
862
863 t1 = ret >> 32;
864 env->PSW_USB_AV = t1 ^ t1 * 2u;
865 env->PSW_USB_SAV |= env->PSW_USB_AV;
866
867 if (ret < r2) {
868 env->PSW_USB_V = (1 << 31);
869 env->PSW_USB_SV = (1 << 31);
870 /* saturate */
871 ret = UINT64_MAX;
872 } else {
873 env->PSW_USB_V = 0;
874 }
875 return ret;
876 }
877
878 target_ulong helper_msub32_ssov(CPUTriCoreState *env, target_ulong r1,
879 target_ulong r2, target_ulong r3)
880 {
881 int64_t t1 = sextract64(r1, 0, 32);
882 int64_t t2 = sextract64(r2, 0, 32);
883 int64_t t3 = sextract64(r3, 0, 32);
884 int64_t result;
885
886 result = t2 - (t1 * t3);
887 return ssov32(env, result);
888 }
889
890 target_ulong helper_msub32_suov(CPUTriCoreState *env, target_ulong r1,
891 target_ulong r2, target_ulong r3)
892 {
893 uint64_t t1 = extract64(r1, 0, 32);
894 uint64_t t2 = extract64(r2, 0, 32);
895 uint64_t t3 = extract64(r3, 0, 32);
896 uint64_t result;
897 uint64_t mul;
898
899 mul = (t1 * t3);
900 result = t2 - mul;
901
902 env->PSW_USB_AV = result ^ result * 2u;
903 env->PSW_USB_SAV |= env->PSW_USB_AV;
904 /* we calculate ovf by hand here, because the multiplication can overflow on
905 the host, which would give false results if we compare to less than
906 zero */
907 if (mul > t2) {
908 env->PSW_USB_V = (1 << 31);
909 env->PSW_USB_SV = (1 << 31);
910 result = 0;
911 } else {
912 env->PSW_USB_V = 0;
913 }
914 return result;
915 }
916
917 uint64_t helper_msub64_ssov(CPUTriCoreState *env, target_ulong r1,
918 uint64_t r2, target_ulong r3)
919 {
920 uint64_t ret, ovf;
921 int64_t t1 = sextract64(r1, 0, 32);
922 int64_t t3 = sextract64(r3, 0, 32);
923 int64_t mul;
924
925 mul = t1 * t3;
926 ret = r2 - mul;
927 ovf = (ret ^ r2) & (mul ^ r2);
928
929 t1 = ret >> 32;
930 env->PSW_USB_AV = t1 ^ t1 * 2u;
931 env->PSW_USB_SAV |= env->PSW_USB_AV;
932
933 if ((int64_t)ovf < 0) {
934 env->PSW_USB_V = (1 << 31);
935 env->PSW_USB_SV = (1 << 31);
936 /* ext_ret > MAX_INT */
937 if (mul < 0) {
938 ret = INT64_MAX;
939 /* ext_ret < MIN_INT */
940 } else {
941 ret = INT64_MIN;
942 }
943 } else {
944 env->PSW_USB_V = 0;
945 }
946 return ret;
947 }
948
949 uint64_t helper_msub64_suov(CPUTriCoreState *env, target_ulong r1,
950 uint64_t r2, target_ulong r3)
951 {
952 uint64_t ret, mul;
953 uint64_t t1 = extract64(r1, 0, 32);
954 uint64_t t3 = extract64(r3, 0, 32);
955
956 mul = t1 * t3;
957 ret = r2 - mul;
958
959 t1 = ret >> 32;
960 env->PSW_USB_AV = t1 ^ t1 * 2u;
961 env->PSW_USB_SAV |= env->PSW_USB_AV;
962
963 if (ret > r2) {
964 env->PSW_USB_V = (1 << 31);
965 env->PSW_USB_SV = (1 << 31);
966 /* saturate */
967 ret = 0;
968 } else {
969 env->PSW_USB_V = 0;
970 }
971 return ret;
972 }
973
974 uint32_t
975 helper_msub32_q_sub_ssov(CPUTriCoreState *env, uint64_t r1, uint64_t r2)
976 {
977 int64_t result;
978 int64_t t1 = (int64_t)r1;
979 int64_t t2 = (int64_t)r2;
980
981 result = t1 - t2;
982
983 env->PSW_USB_AV = (result ^ result * 2u);
984 env->PSW_USB_SAV |= env->PSW_USB_AV;
985
986 /* we do the saturation by hand, since we produce an overflow on the host
987 if the mul before was (0x80000000 * 0x80000000) << 1). If this is the
988 case, we flip the saturated value. */
989 if (r2 == 0x8000000000000000LL) {
990 if (result > 0x7fffffffLL) {
991 env->PSW_USB_V = (1 << 31);
992 env->PSW_USB_SV = (1 << 31);
993 result = INT32_MIN;
994 } else if (result < -0x80000000LL) {
995 env->PSW_USB_V = (1 << 31);
996 env->PSW_USB_SV = (1 << 31);
997 result = INT32_MAX;
998 } else {
999 env->PSW_USB_V = 0;
1000 }
1001 } else {
1002 if (result > 0x7fffffffLL) {
1003 env->PSW_USB_V = (1 << 31);
1004 env->PSW_USB_SV = (1 << 31);
1005 result = INT32_MAX;
1006 } else if (result < -0x80000000LL) {
1007 env->PSW_USB_V = (1 << 31);
1008 env->PSW_USB_SV = (1 << 31);
1009 result = INT32_MIN;
1010 } else {
1011 env->PSW_USB_V = 0;
1012 }
1013 }
1014 return (uint32_t)result;
1015 }
1016
1017 uint64_t helper_msub64_q_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2,
1018 uint32_t r3, uint32_t n)
1019 {
1020 int64_t t1 = (int64_t)r1;
1021 int64_t t2 = sextract64(r2, 0, 32);
1022 int64_t t3 = sextract64(r3, 0, 32);
1023 int64_t result, mul;
1024 int64_t ovf;
1025
1026 mul = (t2 * t3) << n;
1027 result = t1 - mul;
1028
1029 env->PSW_USB_AV = (result ^ result * 2u) >> 32;
1030 env->PSW_USB_SAV |= env->PSW_USB_AV;
1031
1032 ovf = (result ^ t1) & (t1 ^ mul);
1033 /* we do the saturation by hand, since we produce an overflow on the host
1034 if the mul before was (0x80000000 * 0x80000000) << 1). If this is the
1035 case, we flip the saturated value. */
1036 if (mul == 0x8000000000000000LL) {
1037 if (ovf >= 0) {
1038 env->PSW_USB_V = (1 << 31);
1039 env->PSW_USB_SV = (1 << 31);
1040 /* ext_ret > MAX_INT */
1041 if (mul >= 0) {
1042 result = INT64_MAX;
1043 /* ext_ret < MIN_INT */
1044 } else {
1045 result = INT64_MIN;
1046 }
1047 } else {
1048 env->PSW_USB_V = 0;
1049 }
1050 } else {
1051 if (ovf < 0) {
1052 env->PSW_USB_V = (1 << 31);
1053 env->PSW_USB_SV = (1 << 31);
1054 /* ext_ret > MAX_INT */
1055 if (mul < 0) {
1056 result = INT64_MAX;
1057 /* ext_ret < MIN_INT */
1058 } else {
1059 result = INT64_MIN;
1060 }
1061 } else {
1062 env->PSW_USB_V = 0;
1063 }
1064 }
1065
1066 return (uint64_t)result;
1067 }
1068
1069 uint32_t helper_msubr_q_ssov(CPUTriCoreState *env, uint32_t r1, uint32_t r2,
1070 uint32_t r3, uint32_t n)
1071 {
1072 int64_t t1 = sextract64(r1, 0, 32);
1073 int64_t t2 = sextract64(r2, 0, 32);
1074 int64_t t3 = sextract64(r3, 0, 32);
1075 int64_t mul, ret;
1076
1077 if ((t2 == -0x8000ll) && (t3 == -0x8000ll) && (n == 1)) {
1078 mul = 0x7fffffff;
1079 } else {
1080 mul = (t2 * t3) << n;
1081 }
1082
1083 ret = t1 - mul + 0x8000;
1084
1085 env->PSW_USB_AV = ret ^ ret * 2u;
1086 env->PSW_USB_SAV |= env->PSW_USB_AV;
1087
1088 if (ret > 0x7fffffffll) {
1089 env->PSW_USB_V = (1 << 31);
1090 env->PSW_USB_SV |= env->PSW_USB_V;
1091 ret = INT32_MAX;
1092 } else if (ret < -0x80000000ll) {
1093 env->PSW_USB_V = (1 << 31);
1094 env->PSW_USB_SV |= env->PSW_USB_V;
1095 ret = INT32_MIN;
1096 } else {
1097 env->PSW_USB_V = 0;
1098 }
1099 return ret & 0xffff0000ll;
1100 }
1101
1102 uint32_t helper_abs_b(CPUTriCoreState *env, target_ulong arg)
1103 {
1104 int32_t b, i;
1105 int32_t ovf = 0;
1106 int32_t avf = 0;
1107 int32_t ret = 0;
1108
1109 for (i = 0; i < 4; i++) {
1110 b = sextract32(arg, i * 8, 8);
1111 b = (b >= 0) ? b : (0 - b);
1112 ovf |= (b > 0x7F) || (b < -0x80);
1113 avf |= b ^ b * 2u;
1114 ret |= (b & 0xff) << (i * 8);
1115 }
1116
1117 env->PSW_USB_V = ovf << 31;
1118 env->PSW_USB_SV |= env->PSW_USB_V;
1119 env->PSW_USB_AV = avf << 24;
1120 env->PSW_USB_SAV |= env->PSW_USB_AV;
1121
1122 return ret;
1123 }
1124
1125 uint32_t helper_abs_h(CPUTriCoreState *env, target_ulong arg)
1126 {
1127 int32_t h, i;
1128 int32_t ovf = 0;
1129 int32_t avf = 0;
1130 int32_t ret = 0;
1131
1132 for (i = 0; i < 2; i++) {
1133 h = sextract32(arg, i * 16, 16);
1134 h = (h >= 0) ? h : (0 - h);
1135 ovf |= (h > 0x7FFF) || (h < -0x8000);
1136 avf |= h ^ h * 2u;
1137 ret |= (h & 0xffff) << (i * 16);
1138 }
1139
1140 env->PSW_USB_V = ovf << 31;
1141 env->PSW_USB_SV |= env->PSW_USB_V;
1142 env->PSW_USB_AV = avf << 16;
1143 env->PSW_USB_SAV |= env->PSW_USB_AV;
1144
1145 return ret;
1146 }
1147
1148 uint32_t helper_absdif_b(CPUTriCoreState *env, target_ulong r1, target_ulong r2)
1149 {
1150 int32_t b, i;
1151 int32_t extr_r2;
1152 int32_t ovf = 0;
1153 int32_t avf = 0;
1154 int32_t ret = 0;
1155
1156 for (i = 0; i < 4; i++) {
1157 extr_r2 = sextract32(r2, i * 8, 8);
1158 b = sextract32(r1, i * 8, 8);
1159 b = (b > extr_r2) ? (b - extr_r2) : (extr_r2 - b);
1160 ovf |= (b > 0x7F) || (b < -0x80);
1161 avf |= b ^ b * 2u;
1162 ret |= (b & 0xff) << (i * 8);
1163 }
1164
1165 env->PSW_USB_V = ovf << 31;
1166 env->PSW_USB_SV |= env->PSW_USB_V;
1167 env->PSW_USB_AV = avf << 24;
1168 env->PSW_USB_SAV |= env->PSW_USB_AV;
1169 return ret;
1170 }
1171
1172 uint32_t helper_absdif_h(CPUTriCoreState *env, target_ulong r1, target_ulong r2)
1173 {
1174 int32_t h, i;
1175 int32_t extr_r2;
1176 int32_t ovf = 0;
1177 int32_t avf = 0;
1178 int32_t ret = 0;
1179
1180 for (i = 0; i < 2; i++) {
1181 extr_r2 = sextract32(r2, i * 16, 16);
1182 h = sextract32(r1, i * 16, 16);
1183 h = (h > extr_r2) ? (h - extr_r2) : (extr_r2 - h);
1184 ovf |= (h > 0x7FFF) || (h < -0x8000);
1185 avf |= h ^ h * 2u;
1186 ret |= (h & 0xffff) << (i * 16);
1187 }
1188
1189 env->PSW_USB_V = ovf << 31;
1190 env->PSW_USB_SV |= env->PSW_USB_V;
1191 env->PSW_USB_AV = avf << 16;
1192 env->PSW_USB_SAV |= env->PSW_USB_AV;
1193
1194 return ret;
1195 }
1196
1197 uint32_t helper_addr_h(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l,
1198 uint32_t r2_h)
1199 {
1200 int64_t mul_res0 = sextract64(r1, 0, 32);
1201 int64_t mul_res1 = sextract64(r1, 32, 32);
1202 int64_t r2_low = sextract64(r2_l, 0, 32);
1203 int64_t r2_high = sextract64(r2_h, 0, 32);
1204 int64_t result0, result1;
1205 uint32_t ovf0, ovf1;
1206 uint32_t avf0, avf1;
1207
1208 ovf0 = ovf1 = 0;
1209
1210 result0 = r2_low + mul_res0 + 0x8000;
1211 result1 = r2_high + mul_res1 + 0x8000;
1212
1213 if ((result0 > INT32_MAX) || (result0 < INT32_MIN)) {
1214 ovf0 = (1 << 31);
1215 }
1216
1217 if ((result1 > INT32_MAX) || (result1 < INT32_MIN)) {
1218 ovf1 = (1 << 31);
1219 }
1220
1221 env->PSW_USB_V = ovf0 | ovf1;
1222 env->PSW_USB_SV |= env->PSW_USB_V;
1223
1224 avf0 = result0 * 2u;
1225 avf0 = result0 ^ avf0;
1226 avf1 = result1 * 2u;
1227 avf1 = result1 ^ avf1;
1228
1229 env->PSW_USB_AV = avf0 | avf1;
1230 env->PSW_USB_SAV |= env->PSW_USB_AV;
1231
1232 return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL);
1233 }
1234
1235 uint32_t helper_addsur_h(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l,
1236 uint32_t r2_h)
1237 {
1238 int64_t mul_res0 = sextract64(r1, 0, 32);
1239 int64_t mul_res1 = sextract64(r1, 32, 32);
1240 int64_t r2_low = sextract64(r2_l, 0, 32);
1241 int64_t r2_high = sextract64(r2_h, 0, 32);
1242 int64_t result0, result1;
1243 uint32_t ovf0, ovf1;
1244 uint32_t avf0, avf1;
1245
1246 ovf0 = ovf1 = 0;
1247
1248 result0 = r2_low - mul_res0 + 0x8000;
1249 result1 = r2_high + mul_res1 + 0x8000;
1250
1251 if ((result0 > INT32_MAX) || (result0 < INT32_MIN)) {
1252 ovf0 = (1 << 31);
1253 }
1254
1255 if ((result1 > INT32_MAX) || (result1 < INT32_MIN)) {
1256 ovf1 = (1 << 31);
1257 }
1258
1259 env->PSW_USB_V = ovf0 | ovf1;
1260 env->PSW_USB_SV |= env->PSW_USB_V;
1261
1262 avf0 = result0 * 2u;
1263 avf0 = result0 ^ avf0;
1264 avf1 = result1 * 2u;
1265 avf1 = result1 ^ avf1;
1266
1267 env->PSW_USB_AV = avf0 | avf1;
1268 env->PSW_USB_SAV |= env->PSW_USB_AV;
1269
1270 return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL);
1271 }
1272
1273 uint32_t helper_maddr_q(CPUTriCoreState *env, uint32_t r1, uint32_t r2,
1274 uint32_t r3, uint32_t n)
1275 {
1276 int64_t t1 = sextract64(r1, 0, 32);
1277 int64_t t2 = sextract64(r2, 0, 32);
1278 int64_t t3 = sextract64(r3, 0, 32);
1279 int64_t mul, ret;
1280
1281 if ((t2 == -0x8000ll) && (t3 == -0x8000ll) && (n == 1)) {
1282 mul = 0x7fffffff;
1283 } else {
1284 mul = (t2 * t3) << n;
1285 }
1286
1287 ret = t1 + mul + 0x8000;
1288
1289 if ((ret > 0x7fffffffll) || (ret < -0x80000000ll)) {
1290 env->PSW_USB_V = (1 << 31);
1291 env->PSW_USB_SV |= env->PSW_USB_V;
1292 } else {
1293 env->PSW_USB_V = 0;
1294 }
1295 env->PSW_USB_AV = ret ^ ret * 2u;
1296 env->PSW_USB_SAV |= env->PSW_USB_AV;
1297
1298 return ret & 0xffff0000ll;
1299 }
1300
1301 uint32_t helper_add_b(CPUTriCoreState *env, target_ulong r1, target_ulong r2)
1302 {
1303 int32_t b, i;
1304 int32_t extr_r1, extr_r2;
1305 int32_t ovf = 0;
1306 int32_t avf = 0;
1307 uint32_t ret = 0;
1308
1309 for (i = 0; i < 4; i++) {
1310 extr_r1 = sextract32(r1, i * 8, 8);
1311 extr_r2 = sextract32(r2, i * 8, 8);
1312
1313 b = extr_r1 + extr_r2;
1314 ovf |= ((b > 0x7f) || (b < -0x80));
1315 avf |= b ^ b * 2u;
1316 ret |= ((b & 0xff) << (i*8));
1317 }
1318
1319 env->PSW_USB_V = (ovf << 31);
1320 env->PSW_USB_SV |= env->PSW_USB_V;
1321 env->PSW_USB_AV = avf << 24;
1322 env->PSW_USB_SAV |= env->PSW_USB_AV;
1323
1324 return ret;
1325 }
1326
1327 uint32_t helper_add_h(CPUTriCoreState *env, target_ulong r1, target_ulong r2)
1328 {
1329 int32_t h, i;
1330 int32_t extr_r1, extr_r2;
1331 int32_t ovf = 0;
1332 int32_t avf = 0;
1333 int32_t ret = 0;
1334
1335 for (i = 0; i < 2; i++) {
1336 extr_r1 = sextract32(r1, i * 16, 16);
1337 extr_r2 = sextract32(r2, i * 16, 16);
1338 h = extr_r1 + extr_r2;
1339 ovf |= ((h > 0x7fff) || (h < -0x8000));
1340 avf |= h ^ h * 2u;
1341 ret |= (h & 0xffff) << (i * 16);
1342 }
1343
1344 env->PSW_USB_V = (ovf << 31);
1345 env->PSW_USB_SV |= env->PSW_USB_V;
1346 env->PSW_USB_AV = (avf << 16);
1347 env->PSW_USB_SAV |= env->PSW_USB_AV;
1348
1349 return ret;
1350 }
1351
1352 uint32_t helper_subr_h(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l,
1353 uint32_t r2_h)
1354 {
1355 int64_t mul_res0 = sextract64(r1, 0, 32);
1356 int64_t mul_res1 = sextract64(r1, 32, 32);
1357 int64_t r2_low = sextract64(r2_l, 0, 32);
1358 int64_t r2_high = sextract64(r2_h, 0, 32);
1359 int64_t result0, result1;
1360 uint32_t ovf0, ovf1;
1361 uint32_t avf0, avf1;
1362
1363 ovf0 = ovf1 = 0;
1364
1365 result0 = r2_low - mul_res0 + 0x8000;
1366 result1 = r2_high - mul_res1 + 0x8000;
1367
1368 if ((result0 > INT32_MAX) || (result0 < INT32_MIN)) {
1369 ovf0 = (1 << 31);
1370 }
1371
1372 if ((result1 > INT32_MAX) || (result1 < INT32_MIN)) {
1373 ovf1 = (1 << 31);
1374 }
1375
1376 env->PSW_USB_V = ovf0 | ovf1;
1377 env->PSW_USB_SV |= env->PSW_USB_V;
1378
1379 avf0 = result0 * 2u;
1380 avf0 = result0 ^ avf0;
1381 avf1 = result1 * 2u;
1382 avf1 = result1 ^ avf1;
1383
1384 env->PSW_USB_AV = avf0 | avf1;
1385 env->PSW_USB_SAV |= env->PSW_USB_AV;
1386
1387 return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL);
1388 }
1389
1390 uint32_t helper_subadr_h(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l,
1391 uint32_t r2_h)
1392 {
1393 int64_t mul_res0 = sextract64(r1, 0, 32);
1394 int64_t mul_res1 = sextract64(r1, 32, 32);
1395 int64_t r2_low = sextract64(r2_l, 0, 32);
1396 int64_t r2_high = sextract64(r2_h, 0, 32);
1397 int64_t result0, result1;
1398 uint32_t ovf0, ovf1;
1399 uint32_t avf0, avf1;
1400
1401 ovf0 = ovf1 = 0;
1402
1403 result0 = r2_low + mul_res0 + 0x8000;
1404 result1 = r2_high - mul_res1 + 0x8000;
1405
1406 if ((result0 > INT32_MAX) || (result0 < INT32_MIN)) {
1407 ovf0 = (1 << 31);
1408 }
1409
1410 if ((result1 > INT32_MAX) || (result1 < INT32_MIN)) {
1411 ovf1 = (1 << 31);
1412 }
1413
1414 env->PSW_USB_V = ovf0 | ovf1;
1415 env->PSW_USB_SV |= env->PSW_USB_V;
1416
1417 avf0 = result0 * 2u;
1418 avf0 = result0 ^ avf0;
1419 avf1 = result1 * 2u;
1420 avf1 = result1 ^ avf1;
1421
1422 env->PSW_USB_AV = avf0 | avf1;
1423 env->PSW_USB_SAV |= env->PSW_USB_AV;
1424
1425 return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL);
1426 }
1427
1428 uint32_t helper_msubr_q(CPUTriCoreState *env, uint32_t r1, uint32_t r2,
1429 uint32_t r3, uint32_t n)
1430 {
1431 int64_t t1 = sextract64(r1, 0, 32);
1432 int64_t t2 = sextract64(r2, 0, 32);
1433 int64_t t3 = sextract64(r3, 0, 32);
1434 int64_t mul, ret;
1435
1436 if ((t2 == -0x8000ll) && (t3 == -0x8000ll) && (n == 1)) {
1437 mul = 0x7fffffff;
1438 } else {
1439 mul = (t2 * t3) << n;
1440 }
1441
1442 ret = t1 - mul + 0x8000;
1443
1444 if ((ret > 0x7fffffffll) || (ret < -0x80000000ll)) {
1445 env->PSW_USB_V = (1 << 31);
1446 env->PSW_USB_SV |= env->PSW_USB_V;
1447 } else {
1448 env->PSW_USB_V = 0;
1449 }
1450 env->PSW_USB_AV = ret ^ ret * 2u;
1451 env->PSW_USB_SAV |= env->PSW_USB_AV;
1452
1453 return ret & 0xffff0000ll;
1454 }
1455
1456 uint32_t helper_sub_b(CPUTriCoreState *env, target_ulong r1, target_ulong r2)
1457 {
1458 int32_t b, i;
1459 int32_t extr_r1, extr_r2;
1460 int32_t ovf = 0;
1461 int32_t avf = 0;
1462 uint32_t ret = 0;
1463
1464 for (i = 0; i < 4; i++) {
1465 extr_r1 = sextract32(r1, i * 8, 8);
1466 extr_r2 = sextract32(r2, i * 8, 8);
1467
1468 b = extr_r1 - extr_r2;
1469 ovf |= ((b > 0x7f) || (b < -0x80));
1470 avf |= b ^ b * 2u;
1471 ret |= ((b & 0xff) << (i*8));
1472 }
1473
1474 env->PSW_USB_V = (ovf << 31);
1475 env->PSW_USB_SV |= env->PSW_USB_V;
1476 env->PSW_USB_AV = avf << 24;
1477 env->PSW_USB_SAV |= env->PSW_USB_AV;
1478
1479 return ret;
1480 }
1481
1482 uint32_t helper_sub_h(CPUTriCoreState *env, target_ulong r1, target_ulong r2)
1483 {
1484 int32_t h, i;
1485 int32_t extr_r1, extr_r2;
1486 int32_t ovf = 0;
1487 int32_t avf = 0;
1488 int32_t ret = 0;
1489
1490 for (i = 0; i < 2; i++) {
1491 extr_r1 = sextract32(r1, i * 16, 16);
1492 extr_r2 = sextract32(r2, i * 16, 16);
1493 h = extr_r1 - extr_r2;
1494 ovf |= ((h > 0x7fff) || (h < -0x8000));
1495 avf |= h ^ h * 2u;
1496 ret |= (h & 0xffff) << (i * 16);
1497 }
1498
1499 env->PSW_USB_V = (ovf << 31);
1500 env->PSW_USB_SV |= env->PSW_USB_V;
1501 env->PSW_USB_AV = avf << 16;
1502 env->PSW_USB_SAV |= env->PSW_USB_AV;
1503
1504 return ret;
1505 }
1506
1507 uint32_t helper_eq_b(target_ulong r1, target_ulong r2)
1508 {
1509 int32_t ret;
1510 int32_t i, msk;
1511
1512 ret = 0;
1513 msk = 0xff;
1514 for (i = 0; i < 4; i++) {
1515 if ((r1 & msk) == (r2 & msk)) {
1516 ret |= msk;
1517 }
1518 msk = msk << 8;
1519 }
1520
1521 return ret;
1522 }
1523
1524 uint32_t helper_eq_h(target_ulong r1, target_ulong r2)
1525 {
1526 int32_t ret = 0;
1527
1528 if ((r1 & 0xffff) == (r2 & 0xffff)) {
1529 ret = 0xffff;
1530 }
1531
1532 if ((r1 & 0xffff0000) == (r2 & 0xffff0000)) {
1533 ret |= 0xffff0000;
1534 }
1535
1536 return ret;
1537 }
1538
1539 uint32_t helper_eqany_b(target_ulong r1, target_ulong r2)
1540 {
1541 int32_t i;
1542 uint32_t ret = 0;
1543
1544 for (i = 0; i < 4; i++) {
1545 ret |= (sextract32(r1, i * 8, 8) == sextract32(r2, i * 8, 8));
1546 }
1547
1548 return ret;
1549 }
1550
1551 uint32_t helper_eqany_h(target_ulong r1, target_ulong r2)
1552 {
1553 uint32_t ret;
1554
1555 ret = (sextract32(r1, 0, 16) == sextract32(r2, 0, 16));
1556 ret |= (sextract32(r1, 16, 16) == sextract32(r2, 16, 16));
1557
1558 return ret;
1559 }
1560
1561 uint32_t helper_lt_b(target_ulong r1, target_ulong r2)
1562 {
1563 int32_t i;
1564 uint32_t ret = 0;
1565
1566 for (i = 0; i < 4; i++) {
1567 if (sextract32(r1, i * 8, 8) < sextract32(r2, i * 8, 8)) {
1568 ret |= (0xff << (i * 8));
1569 }
1570 }
1571
1572 return ret;
1573 }
1574
1575 uint32_t helper_lt_bu(target_ulong r1, target_ulong r2)
1576 {
1577 int32_t i;
1578 uint32_t ret = 0;
1579
1580 for (i = 0; i < 4; i++) {
1581 if (extract32(r1, i * 8, 8) < extract32(r2, i * 8, 8)) {
1582 ret |= (0xff << (i * 8));
1583 }
1584 }
1585
1586 return ret;
1587 }
1588
1589 uint32_t helper_lt_h(target_ulong r1, target_ulong r2)
1590 {
1591 uint32_t ret = 0;
1592
1593 if (sextract32(r1, 0, 16) < sextract32(r2, 0, 16)) {
1594 ret |= 0xffff;
1595 }
1596
1597 if (sextract32(r1, 16, 16) < sextract32(r2, 16, 16)) {
1598 ret |= 0xffff0000;
1599 }
1600
1601 return ret;
1602 }
1603
1604 uint32_t helper_lt_hu(target_ulong r1, target_ulong r2)
1605 {
1606 uint32_t ret = 0;
1607
1608 if (extract32(r1, 0, 16) < extract32(r2, 0, 16)) {
1609 ret |= 0xffff;
1610 }
1611
1612 if (extract32(r1, 16, 16) < extract32(r2, 16, 16)) {
1613 ret |= 0xffff0000;
1614 }
1615
1616 return ret;
1617 }
1618
1619 #define EXTREMA_H_B(name, op) \
1620 uint32_t helper_##name ##_b(target_ulong r1, target_ulong r2) \
1621 { \
1622 int32_t i, extr_r1, extr_r2; \
1623 uint32_t ret = 0; \
1624 \
1625 for (i = 0; i < 4; i++) { \
1626 extr_r1 = sextract32(r1, i * 8, 8); \
1627 extr_r2 = sextract32(r2, i * 8, 8); \
1628 extr_r1 = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \
1629 ret |= (extr_r1 & 0xff) << (i * 8); \
1630 } \
1631 return ret; \
1632 } \
1633 \
1634 uint32_t helper_##name ##_bu(target_ulong r1, target_ulong r2)\
1635 { \
1636 int32_t i; \
1637 uint32_t extr_r1, extr_r2; \
1638 uint32_t ret = 0; \
1639 \
1640 for (i = 0; i < 4; i++) { \
1641 extr_r1 = extract32(r1, i * 8, 8); \
1642 extr_r2 = extract32(r2, i * 8, 8); \
1643 extr_r1 = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \
1644 ret |= (extr_r1 & 0xff) << (i * 8); \
1645 } \
1646 return ret; \
1647 } \
1648 \
1649 uint32_t helper_##name ##_h(target_ulong r1, target_ulong r2) \
1650 { \
1651 int32_t extr_r1, extr_r2; \
1652 uint32_t ret = 0; \
1653 \
1654 extr_r1 = sextract32(r1, 0, 16); \
1655 extr_r2 = sextract32(r2, 0, 16); \
1656 ret = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \
1657 ret = ret & 0xffff; \
1658 \
1659 extr_r1 = sextract32(r1, 16, 16); \
1660 extr_r2 = sextract32(r2, 16, 16); \
1661 extr_r1 = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \
1662 ret |= extr_r1 << 16; \
1663 \
1664 return ret; \
1665 } \
1666 \
1667 uint32_t helper_##name ##_hu(target_ulong r1, target_ulong r2)\
1668 { \
1669 uint32_t extr_r1, extr_r2; \
1670 uint32_t ret = 0; \
1671 \
1672 extr_r1 = extract32(r1, 0, 16); \
1673 extr_r2 = extract32(r2, 0, 16); \
1674 ret = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \
1675 ret = ret & 0xffff; \
1676 \
1677 extr_r1 = extract32(r1, 16, 16); \
1678 extr_r2 = extract32(r2, 16, 16); \
1679 extr_r1 = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \
1680 ret |= extr_r1 << (16); \
1681 \
1682 return ret; \
1683 } \
1684 \
1685 uint64_t helper_ix##name(uint64_t r1, uint32_t r2) \
1686 { \
1687 int64_t r2l, r2h, r1hl; \
1688 uint64_t ret = 0; \
1689 \
1690 ret = ((r1 + 2) & 0xffff); \
1691 r2l = sextract64(r2, 0, 16); \
1692 r2h = sextract64(r2, 16, 16); \
1693 r1hl = sextract64(r1, 32, 16); \
1694 \
1695 if ((r2l op ## = r2h) && (r2l op r1hl)) { \
1696 ret |= (r2l & 0xffff) << 32; \
1697 ret |= extract64(r1, 0, 16) << 16; \
1698 } else if ((r2h op r2l) && (r2h op r1hl)) { \
1699 ret |= extract64(r2, 16, 16) << 32; \
1700 ret |= extract64(r1 + 1, 0, 16) << 16; \
1701 } else { \
1702 ret |= r1 & 0xffffffff0000ull; \
1703 } \
1704 return ret; \
1705 } \
1706 \
1707 uint64_t helper_ix##name ##_u(uint64_t r1, uint32_t r2) \
1708 { \
1709 int64_t r2l, r2h, r1hl; \
1710 uint64_t ret = 0; \
1711 \
1712 ret = ((r1 + 2) & 0xffff); \
1713 r2l = extract64(r2, 0, 16); \
1714 r2h = extract64(r2, 16, 16); \
1715 r1hl = extract64(r1, 32, 16); \
1716 \
1717 if ((r2l op ## = r2h) && (r2l op r1hl)) { \
1718 ret |= (r2l & 0xffff) << 32; \
1719 ret |= extract64(r1, 0, 16) << 16; \
1720 } else if ((r2h op r2l) && (r2h op r1hl)) { \
1721 ret |= extract64(r2, 16, 16) << 32; \
1722 ret |= extract64(r1 + 1, 0, 16) << 16; \
1723 } else { \
1724 ret |= r1 & 0xffffffff0000ull; \
1725 } \
1726 return ret; \
1727 }
1728
1729 EXTREMA_H_B(max, >)
1730 EXTREMA_H_B(min, <)
1731
1732 #undef EXTREMA_H_B
1733
1734 uint32_t helper_clo_h(target_ulong r1)
1735 {
1736 uint32_t ret_hw0 = extract32(r1, 0, 16);
1737 uint32_t ret_hw1 = extract32(r1, 16, 16);
1738
1739 ret_hw0 = clo32(ret_hw0 << 16);
1740 ret_hw1 = clo32(ret_hw1 << 16);
1741
1742 if (ret_hw0 > 16) {
1743 ret_hw0 = 16;
1744 }
1745 if (ret_hw1 > 16) {
1746 ret_hw1 = 16;
1747 }
1748
1749 return ret_hw0 | (ret_hw1 << 16);
1750 }
1751
1752 uint32_t helper_clz_h(target_ulong r1)
1753 {
1754 uint32_t ret_hw0 = extract32(r1, 0, 16);
1755 uint32_t ret_hw1 = extract32(r1, 16, 16);
1756
1757 ret_hw0 = clz32(ret_hw0 << 16);
1758 ret_hw1 = clz32(ret_hw1 << 16);
1759
1760 if (ret_hw0 > 16) {
1761 ret_hw0 = 16;
1762 }
1763 if (ret_hw1 > 16) {
1764 ret_hw1 = 16;
1765 }
1766
1767 return ret_hw0 | (ret_hw1 << 16);
1768 }
1769
1770 uint32_t helper_cls_h(target_ulong r1)
1771 {
1772 uint32_t ret_hw0 = extract32(r1, 0, 16);
1773 uint32_t ret_hw1 = extract32(r1, 16, 16);
1774
1775 ret_hw0 = clrsb32(ret_hw0 << 16);
1776 ret_hw1 = clrsb32(ret_hw1 << 16);
1777
1778 if (ret_hw0 > 15) {
1779 ret_hw0 = 15;
1780 }
1781 if (ret_hw1 > 15) {
1782 ret_hw1 = 15;
1783 }
1784
1785 return ret_hw0 | (ret_hw1 << 16);
1786 }
1787
1788 uint32_t helper_sh(target_ulong r1, target_ulong r2)
1789 {
1790 int32_t shift_count = sextract32(r2, 0, 6);
1791
1792 if (shift_count == -32) {
1793 return 0;
1794 } else if (shift_count < 0) {
1795 return r1 >> -shift_count;
1796 } else {
1797 return r1 << shift_count;
1798 }
1799 }
1800
1801 uint32_t helper_sh_h(target_ulong r1, target_ulong r2)
1802 {
1803 int32_t ret_hw0, ret_hw1;
1804 int32_t shift_count;
1805
1806 shift_count = sextract32(r2, 0, 5);
1807
1808 if (shift_count == -16) {
1809 return 0;
1810 } else if (shift_count < 0) {
1811 ret_hw0 = extract32(r1, 0, 16) >> -shift_count;
1812 ret_hw1 = extract32(r1, 16, 16) >> -shift_count;
1813 return (ret_hw0 & 0xffff) | (ret_hw1 << 16);
1814 } else {
1815 ret_hw0 = extract32(r1, 0, 16) << shift_count;
1816 ret_hw1 = extract32(r1, 16, 16) << shift_count;
1817 return (ret_hw0 & 0xffff) | (ret_hw1 << 16);
1818 }
1819 }
1820
1821 uint32_t helper_sha(CPUTriCoreState *env, target_ulong r1, target_ulong r2)
1822 {
1823 int32_t shift_count;
1824 int64_t result, t1;
1825 uint32_t ret;
1826
1827 shift_count = sextract32(r2, 0, 6);
1828 t1 = sextract32(r1, 0, 32);
1829
1830 if (shift_count == 0) {
1831 env->PSW_USB_C = env->PSW_USB_V = 0;
1832 ret = r1;
1833 } else if (shift_count == -32) {
1834 env->PSW_USB_C = r1;
1835 env->PSW_USB_V = 0;
1836 ret = t1 >> 31;
1837 } else if (shift_count > 0) {
1838 result = t1 << shift_count;
1839 /* calc carry */
1840 env->PSW_USB_C = ((result & 0xffffffff00000000ULL) != 0);
1841 /* calc v */
1842 env->PSW_USB_V = (((result > 0x7fffffffLL) ||
1843 (result < -0x80000000LL)) << 31);
1844 /* calc sv */
1845 env->PSW_USB_SV |= env->PSW_USB_V;
1846 ret = (uint32_t)result;
1847 } else {
1848 env->PSW_USB_V = 0;
1849 env->PSW_USB_C = (r1 & ((1 << -shift_count) - 1));
1850 ret = t1 >> -shift_count;
1851 }
1852
1853 env->PSW_USB_AV = ret ^ ret * 2u;
1854 env->PSW_USB_SAV |= env->PSW_USB_AV;
1855
1856 return ret;
1857 }
1858
1859 uint32_t helper_sha_h(target_ulong r1, target_ulong r2)
1860 {
1861 int32_t shift_count;
1862 int32_t ret_hw0, ret_hw1;
1863
1864 shift_count = sextract32(r2, 0, 5);
1865
1866 if (shift_count == 0) {
1867 return r1;
1868 } else if (shift_count < 0) {
1869 ret_hw0 = sextract32(r1, 0, 16) >> -shift_count;
1870 ret_hw1 = sextract32(r1, 16, 16) >> -shift_count;
1871 return (ret_hw0 & 0xffff) | (ret_hw1 << 16);
1872 } else {
1873 ret_hw0 = sextract32(r1, 0, 16) << shift_count;
1874 ret_hw1 = sextract32(r1, 16, 16) << shift_count;
1875 return (ret_hw0 & 0xffff) | (ret_hw1 << 16);
1876 }
1877 }
1878
1879 uint32_t helper_bmerge(target_ulong r1, target_ulong r2)
1880 {
1881 uint32_t i, ret;
1882
1883 ret = 0;
1884 for (i = 0; i < 16; i++) {
1885 ret |= (r1 & 1) << (2 * i + 1);
1886 ret |= (r2 & 1) << (2 * i);
1887 r1 = r1 >> 1;
1888 r2 = r2 >> 1;
1889 }
1890 return ret;
1891 }
1892
1893 uint64_t helper_bsplit(uint32_t r1)
1894 {
1895 int32_t i;
1896 uint64_t ret;
1897
1898 ret = 0;
1899 for (i = 0; i < 32; i = i + 2) {
1900 /* even */
1901 ret |= (r1 & 1) << (i/2);
1902 r1 = r1 >> 1;
1903 /* odd */
1904 ret |= (uint64_t)(r1 & 1) << (i/2 + 32);
1905 r1 = r1 >> 1;
1906 }
1907 return ret;
1908 }
1909
1910 uint32_t helper_parity(target_ulong r1)
1911 {
1912 uint32_t ret;
1913 uint32_t nOnes, i;
1914
1915 ret = 0;
1916 nOnes = 0;
1917 for (i = 0; i < 8; i++) {
1918 ret ^= (r1 & 1);
1919 r1 = r1 >> 1;
1920 }
1921 /* second byte */
1922 nOnes = 0;
1923 for (i = 0; i < 8; i++) {
1924 nOnes ^= (r1 & 1);
1925 r1 = r1 >> 1;
1926 }
1927 ret |= nOnes << 8;
1928 /* third byte */
1929 nOnes = 0;
1930 for (i = 0; i < 8; i++) {
1931 nOnes ^= (r1 & 1);
1932 r1 = r1 >> 1;
1933 }
1934 ret |= nOnes << 16;
1935 /* fourth byte */
1936 nOnes = 0;
1937 for (i = 0; i < 8; i++) {
1938 nOnes ^= (r1 & 1);
1939 r1 = r1 >> 1;
1940 }
1941 ret |= nOnes << 24;
1942
1943 return ret;
1944 }
1945
1946 uint32_t helper_pack(uint32_t carry, uint32_t r1_low, uint32_t r1_high,
1947 target_ulong r2)
1948 {
1949 uint32_t ret;
1950 int32_t fp_exp, fp_frac, temp_exp, fp_exp_frac;
1951 int32_t int_exp = r1_high;
1952 int32_t int_mant = r1_low;
1953 uint32_t flag_rnd = (int_mant & (1 << 7)) && (
1954 (int_mant & (1 << 8)) ||
1955 (int_mant & 0x7f) ||
1956 (carry != 0));
1957 if (((int_mant & (1<<31)) == 0) && (int_exp == 255)) {
1958 fp_exp = 255;
1959 fp_frac = extract32(int_mant, 8, 23);
1960 } else if ((int_mant & (1<<31)) && (int_exp >= 127)) {
1961 fp_exp = 255;
1962 fp_frac = 0;
1963 } else if ((int_mant & (1<<31)) && (int_exp <= -128)) {
1964 fp_exp = 0;
1965 fp_frac = 0;
1966 } else if (int_mant == 0) {
1967 fp_exp = 0;
1968 fp_frac = 0;
1969 } else {
1970 if (((int_mant & (1 << 31)) == 0)) {
1971 temp_exp = 0;
1972 } else {
1973 temp_exp = int_exp + 128;
1974 }
1975 fp_exp_frac = (((temp_exp & 0xff) << 23) |
1976 extract32(int_mant, 8, 23))
1977 + flag_rnd;
1978 fp_exp = extract32(fp_exp_frac, 23, 8);
1979 fp_frac = extract32(fp_exp_frac, 0, 23);
1980 }
1981 ret = r2 & (1 << 31);
1982 ret = ret + (fp_exp << 23);
1983 ret = ret + (fp_frac & 0x7fffff);
1984
1985 return ret;
1986 }
1987
1988 uint64_t helper_unpack(target_ulong arg1)
1989 {
1990 int32_t fp_exp = extract32(arg1, 23, 8);
1991 int32_t fp_frac = extract32(arg1, 0, 23);
1992 uint64_t ret;
1993 int32_t int_exp, int_mant;
1994
1995 if (fp_exp == 255) {
1996 int_exp = 255;
1997 int_mant = (fp_frac << 7);
1998 } else if ((fp_exp == 0) && (fp_frac == 0)) {
1999 int_exp = -127;
2000 int_mant = 0;
2001 } else if ((fp_exp == 0) && (fp_frac != 0)) {
2002 int_exp = -126;
2003 int_mant = (fp_frac << 7);
2004 } else {
2005 int_exp = fp_exp - 127;
2006 int_mant = (fp_frac << 7);
2007 int_mant |= (1 << 30);
2008 }
2009 ret = int_exp;
2010 ret = ret << 32;
2011 ret |= int_mant;
2012
2013 return ret;
2014 }
2015
2016 uint64_t helper_dvinit_b_13(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
2017 {
2018 uint64_t ret;
2019 int32_t abs_sig_dividend, abs_divisor;
2020
2021 ret = sextract32(r1, 0, 32);
2022 ret = ret << 24;
2023 if (!((r1 & 0x80000000) == (r2 & 0x80000000))) {
2024 ret |= 0xffffff;
2025 }
2026
2027 abs_sig_dividend = abs((int32_t)r1) >> 8;
2028 abs_divisor = abs((int32_t)r2);
2029 /* calc overflow
2030 ofv if (a/b >= 255) <=> (a/255 >= b) */
2031 env->PSW_USB_V = (abs_sig_dividend >= abs_divisor) << 31;
2032 env->PSW_USB_V = env->PSW_USB_V << 31;
2033 env->PSW_USB_SV |= env->PSW_USB_V;
2034 env->PSW_USB_AV = 0;
2035
2036 return ret;
2037 }
2038
2039 uint64_t helper_dvinit_b_131(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
2040 {
2041 uint64_t ret = sextract32(r1, 0, 32);
2042
2043 ret = ret << 24;
2044 if (!((r1 & 0x80000000) == (r2 & 0x80000000))) {
2045 ret |= 0xffffff;
2046 }
2047 /* calc overflow */
2048 env->PSW_USB_V = ((r2 == 0) || ((r2 == 0xffffffff) && (r1 == 0xffffff80)));
2049 env->PSW_USB_V = env->PSW_USB_V << 31;
2050 env->PSW_USB_SV |= env->PSW_USB_V;
2051 env->PSW_USB_AV = 0;
2052
2053 return ret;
2054 }
2055
2056 uint64_t helper_dvinit_h_13(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
2057 {
2058 uint64_t ret;
2059 int32_t abs_sig_dividend, abs_divisor;
2060
2061 ret = sextract32(r1, 0, 32);
2062 ret = ret << 16;
2063 if (!((r1 & 0x80000000) == (r2 & 0x80000000))) {
2064 ret |= 0xffff;
2065 }
2066
2067 abs_sig_dividend = abs((int32_t)r1) >> 16;
2068 abs_divisor = abs((int32_t)r2);
2069 /* calc overflow
2070 ofv if (a/b >= 0xffff) <=> (a/0xffff >= b) */
2071 env->PSW_USB_V = (abs_sig_dividend >= abs_divisor) << 31;
2072 env->PSW_USB_V = env->PSW_USB_V << 31;
2073 env->PSW_USB_SV |= env->PSW_USB_V;
2074 env->PSW_USB_AV = 0;
2075
2076 return ret;
2077 }
2078
2079 uint64_t helper_dvinit_h_131(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
2080 {
2081 uint64_t ret = sextract32(r1, 0, 32);
2082
2083 ret = ret << 16;
2084 if (!((r1 & 0x80000000) == (r2 & 0x80000000))) {
2085 ret |= 0xffff;
2086 }
2087 /* calc overflow */
2088 env->PSW_USB_V = ((r2 == 0) || ((r2 == 0xffffffff) && (r1 == 0xffff8000)));
2089 env->PSW_USB_V = env->PSW_USB_V << 31;
2090 env->PSW_USB_SV |= env->PSW_USB_V;
2091 env->PSW_USB_AV = 0;
2092
2093 return ret;
2094 }
2095
2096 uint64_t helper_dvadj(uint64_t r1, uint32_t r2)
2097 {
2098 int32_t x_sign = (r1 >> 63);
2099 int32_t q_sign = x_sign ^ (r2 >> 31);
2100 int32_t eq_pos = x_sign & ((r1 >> 32) == r2);
2101 int32_t eq_neg = x_sign & ((r1 >> 32) == -r2);
2102 uint32_t quotient;
2103 uint64_t remainder;
2104
2105 if ((q_sign & ~eq_neg) | eq_pos) {
2106 quotient = (r1 + 1) & 0xffffffff;
2107 } else {
2108 quotient = r1 & 0xffffffff;
2109 }
2110
2111 if (eq_pos | eq_neg) {
2112 remainder = 0;
2113 } else {
2114 remainder = (r1 & 0xffffffff00000000ull);
2115 }
2116 return remainder | quotient;
2117 }
2118
2119 uint64_t helper_dvstep(uint64_t r1, uint32_t r2)
2120 {
2121 int32_t dividend_sign = extract64(r1, 63, 1);
2122 int32_t divisor_sign = extract32(r2, 31, 1);
2123 int32_t quotient_sign = (dividend_sign != divisor_sign);
2124 int32_t addend, dividend_quotient, remainder;
2125 int32_t i, temp;
2126
2127 if (quotient_sign) {
2128 addend = r2;
2129 } else {
2130 addend = -r2;
2131 }
2132 dividend_quotient = (int32_t)r1;
2133 remainder = (int32_t)(r1 >> 32);
2134
2135 for (i = 0; i < 8; i++) {
2136 remainder = (remainder << 1) | extract32(dividend_quotient, 31, 1);
2137 dividend_quotient <<= 1;
2138 temp = remainder + addend;
2139 if ((temp < 0) == dividend_sign) {
2140 remainder = temp;
2141 }
2142 if (((temp < 0) == dividend_sign)) {
2143 dividend_quotient = dividend_quotient | !quotient_sign;
2144 } else {
2145 dividend_quotient = dividend_quotient | quotient_sign;
2146 }
2147 }
2148 return ((uint64_t)remainder << 32) | (uint32_t)dividend_quotient;
2149 }
2150
2151 uint64_t helper_dvstep_u(uint64_t r1, uint32_t r2)
2152 {
2153 int32_t dividend_quotient = extract64(r1, 0, 32);
2154 int64_t remainder = extract64(r1, 32, 32);
2155 int32_t i;
2156 int64_t temp;
2157 for (i = 0; i < 8; i++) {
2158 remainder = (remainder << 1) | extract32(dividend_quotient, 31, 1);
2159 dividend_quotient <<= 1;
2160 temp = (remainder & 0xffffffff) - r2;
2161 if (temp >= 0) {
2162 remainder = temp;
2163 }
2164 dividend_quotient = dividend_quotient | !(temp < 0);
2165 }
2166 return ((uint64_t)remainder << 32) | (uint32_t)dividend_quotient;
2167 }
2168
2169 uint64_t helper_divide(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
2170 {
2171 int32_t quotient, remainder;
2172 int32_t dividend = (int32_t)r1;
2173 int32_t divisor = (int32_t)r2;
2174
2175 if (divisor == 0) {
2176 if (dividend >= 0) {
2177 quotient = 0x7fffffff;
2178 remainder = 0;
2179 } else {
2180 quotient = 0x80000000;
2181 remainder = 0;
2182 }
2183 env->PSW_USB_V = (1 << 31);
2184 } else if ((divisor == 0xffffffff) && (dividend == 0x80000000)) {
2185 quotient = 0x7fffffff;
2186 remainder = 0;
2187 env->PSW_USB_V = (1 << 31);
2188 } else {
2189 remainder = dividend % divisor;
2190 quotient = (dividend - remainder)/divisor;
2191 env->PSW_USB_V = 0;
2192 }
2193 env->PSW_USB_SV |= env->PSW_USB_V;
2194 env->PSW_USB_AV = 0;
2195 return ((uint64_t)remainder << 32) | (uint32_t)quotient;
2196 }
2197
2198 uint64_t helper_divide_u(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
2199 {
2200 uint32_t quotient, remainder;
2201 uint32_t dividend = r1;
2202 uint32_t divisor = r2;
2203
2204 if (divisor == 0) {
2205 quotient = 0xffffffff;
2206 remainder = 0;
2207 env->PSW_USB_V = (1 << 31);
2208 } else {
2209 remainder = dividend % divisor;
2210 quotient = (dividend - remainder)/divisor;
2211 env->PSW_USB_V = 0;
2212 }
2213 env->PSW_USB_SV |= env->PSW_USB_V;
2214 env->PSW_USB_AV = 0;
2215 return ((uint64_t)remainder << 32) | quotient;
2216 }
2217
2218 uint64_t helper_mul_h(uint32_t arg00, uint32_t arg01,
2219 uint32_t arg10, uint32_t arg11, uint32_t n)
2220 {
2221 uint32_t result0, result1;
2222
2223 int32_t sc1 = ((arg00 & 0xffff) == 0x8000) &&
2224 ((arg10 & 0xffff) == 0x8000) && (n == 1);
2225 int32_t sc0 = ((arg01 & 0xffff) == 0x8000) &&
2226 ((arg11 & 0xffff) == 0x8000) && (n == 1);
2227 if (sc1) {
2228 result1 = 0x7fffffff;
2229 } else {
2230 result1 = (((uint32_t)(arg00 * arg10)) << n);
2231 }
2232 if (sc0) {
2233 result0 = 0x7fffffff;
2234 } else {
2235 result0 = (((uint32_t)(arg01 * arg11)) << n);
2236 }
2237 return (((uint64_t)result1 << 32)) | result0;
2238 }
2239
2240 uint64_t helper_mulm_h(uint32_t arg00, uint32_t arg01,
2241 uint32_t arg10, uint32_t arg11, uint32_t n)
2242 {
2243 uint64_t ret;
2244 int64_t result0, result1;
2245
2246 int32_t sc1 = ((arg00 & 0xffff) == 0x8000) &&
2247 ((arg10 & 0xffff) == 0x8000) && (n == 1);
2248 int32_t sc0 = ((arg01 & 0xffff) == 0x8000) &&
2249 ((arg11 & 0xffff) == 0x8000) && (n == 1);
2250
2251 if (sc1) {
2252 result1 = 0x7fffffff;
2253 } else {
2254 result1 = (((int32_t)arg00 * (int32_t)arg10) << n);
2255 }
2256 if (sc0) {
2257 result0 = 0x7fffffff;
2258 } else {
2259 result0 = (((int32_t)arg01 * (int32_t)arg11) << n);
2260 }
2261 ret = (result1 + result0);
2262 ret = ret << 16;
2263 return ret;
2264 }
2265 uint32_t helper_mulr_h(uint32_t arg00, uint32_t arg01,
2266 uint32_t arg10, uint32_t arg11, uint32_t n)
2267 {
2268 uint32_t result0, result1;
2269
2270 int32_t sc1 = ((arg00 & 0xffff) == 0x8000) &&
2271 ((arg10 & 0xffff) == 0x8000) && (n == 1);
2272 int32_t sc0 = ((arg01 & 0xffff) == 0x8000) &&
2273 ((arg11 & 0xffff) == 0x8000) && (n == 1);
2274
2275 if (sc1) {
2276 result1 = 0x7fffffff;
2277 } else {
2278 result1 = ((arg00 * arg10) << n) + 0x8000;
2279 }
2280 if (sc0) {
2281 result0 = 0x7fffffff;
2282 } else {
2283 result0 = ((arg01 * arg11) << n) + 0x8000;
2284 }
2285 return (result1 & 0xffff0000) | (result0 >> 16);
2286 }
2287
2288 uint32_t helper_crc32(uint32_t arg0, uint32_t arg1)
2289 {
2290 uint8_t buf[4];
2291 stl_be_p(buf, arg0);
2292
2293 return crc32(arg1, buf, 4);
2294 }
2295
2296 /* context save area (CSA) related helpers */
2297
2298 static int cdc_increment(target_ulong *psw)
2299 {
2300 if ((*psw & MASK_PSW_CDC) == 0x7f) {
2301 return 0;
2302 }
2303
2304 (*psw)++;
2305 /* check for overflow */
2306 int lo = clo32((*psw & MASK_PSW_CDC) << (32 - 7));
2307 int mask = (1u << (7 - lo)) - 1;
2308 int count = *psw & mask;
2309 if (count == 0) {
2310 (*psw)--;
2311 return 1;
2312 }
2313 return 0;
2314 }
2315
2316 static int cdc_decrement(target_ulong *psw)
2317 {
2318 if ((*psw & MASK_PSW_CDC) == 0x7f) {
2319 return 0;
2320 }
2321 /* check for underflow */
2322 int lo = clo32((*psw & MASK_PSW_CDC) << (32 - 7));
2323 int mask = (1u << (7 - lo)) - 1;
2324 int count = *psw & mask;
2325 if (count == 0) {
2326 return 1;
2327 }
2328 (*psw)--;
2329 return 0;
2330 }
2331
2332 static bool cdc_zero(target_ulong *psw)
2333 {
2334 int cdc = *psw & MASK_PSW_CDC;
2335 /* Returns TRUE if PSW.CDC.COUNT == 0 or if PSW.CDC ==
2336 7'b1111111, otherwise returns FALSE. */
2337 if (cdc == 0x7f) {
2338 return true;
2339 }
2340 /* find CDC.COUNT */
2341 int lo = clo32((*psw & MASK_PSW_CDC) << (32 - 7));
2342 int mask = (1u << (7 - lo)) - 1;
2343 int count = *psw & mask;
2344 return count == 0;
2345 }
2346
2347 static void save_context_upper(CPUTriCoreState *env, int ea)
2348 {
2349 cpu_stl_data(env, ea, env->PCXI);
2350 cpu_stl_data(env, ea+4, psw_read(env));
2351 cpu_stl_data(env, ea+8, env->gpr_a[10]);
2352 cpu_stl_data(env, ea+12, env->gpr_a[11]);
2353 cpu_stl_data(env, ea+16, env->gpr_d[8]);
2354 cpu_stl_data(env, ea+20, env->gpr_d[9]);
2355 cpu_stl_data(env, ea+24, env->gpr_d[10]);
2356 cpu_stl_data(env, ea+28, env->gpr_d[11]);
2357 cpu_stl_data(env, ea+32, env->gpr_a[12]);
2358 cpu_stl_data(env, ea+36, env->gpr_a[13]);
2359 cpu_stl_data(env, ea+40, env->gpr_a[14]);
2360 cpu_stl_data(env, ea+44, env->gpr_a[15]);
2361 cpu_stl_data(env, ea+48, env->gpr_d[12]);
2362 cpu_stl_data(env, ea+52, env->gpr_d[13]);
2363 cpu_stl_data(env, ea+56, env->gpr_d[14]);
2364 cpu_stl_data(env, ea+60, env->gpr_d[15]);
2365 }
2366
2367 static void save_context_lower(CPUTriCoreState *env, int ea)
2368 {
2369 cpu_stl_data(env, ea, env->PCXI);
2370 cpu_stl_data(env, ea+4, env->gpr_a[11]);
2371 cpu_stl_data(env, ea+8, env->gpr_a[2]);
2372 cpu_stl_data(env, ea+12, env->gpr_a[3]);
2373 cpu_stl_data(env, ea+16, env->gpr_d[0]);
2374 cpu_stl_data(env, ea+20, env->gpr_d[1]);
2375 cpu_stl_data(env, ea+24, env->gpr_d[2]);
2376 cpu_stl_data(env, ea+28, env->gpr_d[3]);
2377 cpu_stl_data(env, ea+32, env->gpr_a[4]);
2378 cpu_stl_data(env, ea+36, env->gpr_a[5]);
2379 cpu_stl_data(env, ea+40, env->gpr_a[6]);
2380 cpu_stl_data(env, ea+44, env->gpr_a[7]);
2381 cpu_stl_data(env, ea+48, env->gpr_d[4]);
2382 cpu_stl_data(env, ea+52, env->gpr_d[5]);
2383 cpu_stl_data(env, ea+56, env->gpr_d[6]);
2384 cpu_stl_data(env, ea+60, env->gpr_d[7]);
2385 }
2386
2387 static void restore_context_upper(CPUTriCoreState *env, int ea,
2388 target_ulong *new_PCXI, target_ulong *new_PSW)
2389 {
2390 *new_PCXI = cpu_ldl_data(env, ea);
2391 *new_PSW = cpu_ldl_data(env, ea+4);
2392 env->gpr_a[10] = cpu_ldl_data(env, ea+8);
2393 env->gpr_a[11] = cpu_ldl_data(env, ea+12);
2394 env->gpr_d[8] = cpu_ldl_data(env, ea+16);
2395 env->gpr_d[9] = cpu_ldl_data(env, ea+20);
2396 env->gpr_d[10] = cpu_ldl_data(env, ea+24);
2397 env->gpr_d[11] = cpu_ldl_data(env, ea+28);
2398 env->gpr_a[12] = cpu_ldl_data(env, ea+32);
2399 env->gpr_a[13] = cpu_ldl_data(env, ea+36);
2400 env->gpr_a[14] = cpu_ldl_data(env, ea+40);
2401 env->gpr_a[15] = cpu_ldl_data(env, ea+44);
2402 env->gpr_d[12] = cpu_ldl_data(env, ea+48);
2403 env->gpr_d[13] = cpu_ldl_data(env, ea+52);
2404 env->gpr_d[14] = cpu_ldl_data(env, ea+56);
2405 env->gpr_d[15] = cpu_ldl_data(env, ea+60);
2406 }
2407
2408 static void restore_context_lower(CPUTriCoreState *env, int ea,
2409 target_ulong *ra, target_ulong *pcxi)
2410 {
2411 *pcxi = cpu_ldl_data(env, ea);
2412 *ra = cpu_ldl_data(env, ea+4);
2413 env->gpr_a[2] = cpu_ldl_data(env, ea+8);
2414 env->gpr_a[3] = cpu_ldl_data(env, ea+12);
2415 env->gpr_d[0] = cpu_ldl_data(env, ea+16);
2416 env->gpr_d[1] = cpu_ldl_data(env, ea+20);
2417 env->gpr_d[2] = cpu_ldl_data(env, ea+24);
2418 env->gpr_d[3] = cpu_ldl_data(env, ea+28);
2419 env->gpr_a[4] = cpu_ldl_data(env, ea+32);
2420 env->gpr_a[5] = cpu_ldl_data(env, ea+36);
2421 env->gpr_a[6] = cpu_ldl_data(env, ea+40);
2422 env->gpr_a[7] = cpu_ldl_data(env, ea+44);
2423 env->gpr_d[4] = cpu_ldl_data(env, ea+48);
2424 env->gpr_d[5] = cpu_ldl_data(env, ea+52);
2425 env->gpr_d[6] = cpu_ldl_data(env, ea+56);
2426 env->gpr_d[7] = cpu_ldl_data(env, ea+60);
2427 }
2428
2429 void helper_call(CPUTriCoreState *env, uint32_t next_pc)
2430 {
2431 target_ulong tmp_FCX;
2432 target_ulong ea;
2433 target_ulong new_FCX;
2434 target_ulong psw;
2435
2436 psw = psw_read(env);
2437 /* if (FCX == 0) trap(FCU); */
2438 if (env->FCX == 0) {
2439 /* FCU trap */
2440 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCU, GETPC());
2441 }
2442 /* if (PSW.CDE) then if (cdc_increment()) then trap(CDO); */
2443 if (psw & MASK_PSW_CDE) {
2444 if (cdc_increment(&psw)) {
2445 /* CDO trap */
2446 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CDO, GETPC());
2447 }
2448 }
2449 /* PSW.CDE = 1;*/
2450 psw |= MASK_PSW_CDE;
2451 /* tmp_FCX = FCX; */
2452 tmp_FCX = env->FCX;
2453 /* EA = {FCX.FCXS, 6'b0, FCX.FCXO, 6'b0}; */
2454 ea = ((env->FCX & MASK_FCX_FCXS) << 12) +
2455 ((env->FCX & MASK_FCX_FCXO) << 6);
2456 /* new_FCX = M(EA, word); */
2457 new_FCX = cpu_ldl_data(env, ea);
2458 /* M(EA, 16 * word) = {PCXI, PSW, A[10], A[11], D[8], D[9], D[10], D[11],
2459 A[12], A[13], A[14], A[15], D[12], D[13], D[14],
2460 D[15]}; */
2461 save_context_upper(env, ea);
2462
2463 /* PCXI.PCPN = ICR.CCPN; */
2464 env->PCXI = (env->PCXI & 0xffffff) +
2465 ((env->ICR & MASK_ICR_CCPN) << 24);
2466 /* PCXI.PIE = ICR.IE; */
2467 env->PCXI = ((env->PCXI & ~MASK_PCXI_PIE_1_3) +
2468 ((env->ICR & MASK_ICR_IE_1_3) << 15));
2469 /* PCXI.UL = 1; */
2470 env->PCXI |= MASK_PCXI_UL;
2471
2472 /* PCXI[19: 0] = FCX[19: 0]; */
2473 env->PCXI = (env->PCXI & 0xfff00000) + (env->FCX & 0xfffff);
2474 /* FCX[19: 0] = new_FCX[19: 0]; */
2475 env->FCX = (env->FCX & 0xfff00000) + (new_FCX & 0xfffff);
2476 /* A[11] = next_pc[31: 0]; */
2477 env->gpr_a[11] = next_pc;
2478
2479 /* if (tmp_FCX == LCX) trap(FCD);*/
2480 if (tmp_FCX == env->LCX) {
2481 /* FCD trap */
2482 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCD, GETPC());
2483 }
2484 psw_write(env, psw);
2485 }
2486
2487 void helper_ret(CPUTriCoreState *env)
2488 {
2489 target_ulong ea;
2490 target_ulong new_PCXI;
2491 target_ulong new_PSW, psw;
2492
2493 psw = psw_read(env);
2494 /* if (PSW.CDE) then if (cdc_decrement()) then trap(CDU);*/
2495 if (psw & MASK_PSW_CDE) {
2496 if (cdc_decrement(&psw)) {
2497 /* CDU trap */
2498 psw_write(env, psw);
2499 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CDU, GETPC());
2500 }
2501 }
2502 /* if (PCXI[19: 0] == 0) then trap(CSU); */
2503 if ((env->PCXI & 0xfffff) == 0) {
2504 /* CSU trap */
2505 psw_write(env, psw);
2506 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CSU, GETPC());
2507 }
2508 /* if (PCXI.UL == 0) then trap(CTYP); */
2509 if ((env->PCXI & MASK_PCXI_UL) == 0) {
2510 /* CTYP trap */
2511 cdc_increment(&psw); /* restore to the start of helper */
2512 psw_write(env, psw);
2513 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CTYP, GETPC());
2514 }
2515 /* PC = {A11 [31: 1], 1’b0}; */
2516 env->PC = env->gpr_a[11] & 0xfffffffe;
2517
2518 /* EA = {PCXI.PCXS, 6'b0, PCXI.PCXO, 6'b0}; */
2519 ea = ((env->PCXI & MASK_PCXI_PCXS) << 12) +
2520 ((env->PCXI & MASK_PCXI_PCXO) << 6);
2521 /* {new_PCXI, new_PSW, A[10], A[11], D[8], D[9], D[10], D[11], A[12],
2522 A[13], A[14], A[15], D[12], D[13], D[14], D[15]} = M(EA, 16 * word); */
2523 restore_context_upper(env, ea, &new_PCXI, &new_PSW);
2524 /* M(EA, word) = FCX; */
2525 cpu_stl_data(env, ea, env->FCX);
2526 /* FCX[19: 0] = PCXI[19: 0]; */
2527 env->FCX = (env->FCX & 0xfff00000) + (env->PCXI & 0x000fffff);
2528 /* PCXI = new_PCXI; */
2529 env->PCXI = new_PCXI;
2530
2531 if (tricore_feature(env, TRICORE_FEATURE_13)) {
2532 /* PSW = new_PSW */
2533 psw_write(env, new_PSW);
2534 } else {
2535 /* PSW = {new_PSW[31:26], PSW[25:24], new_PSW[23:0]}; */
2536 psw_write(env, (new_PSW & ~(0x3000000)) + (psw & (0x3000000)));
2537 }
2538 }
2539
2540 void helper_bisr(CPUTriCoreState *env, uint32_t const9)
2541 {
2542 target_ulong tmp_FCX;
2543 target_ulong ea;
2544 target_ulong new_FCX;
2545
2546 if (env->FCX == 0) {
2547 /* FCU trap */
2548 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCU, GETPC());
2549 }
2550
2551 tmp_FCX = env->FCX;
2552 ea = ((env->FCX & 0xf0000) << 12) + ((env->FCX & 0xffff) << 6);
2553
2554 /* new_FCX = M(EA, word); */
2555 new_FCX = cpu_ldl_data(env, ea);
2556 /* M(EA, 16 * word) = {PCXI, A[11], A[2], A[3], D[0], D[1], D[2], D[3], A[4]
2557 , A[5], A[6], A[7], D[4], D[5], D[6], D[7]}; */
2558 save_context_lower(env, ea);
2559
2560
2561 /* PCXI.PCPN = ICR.CCPN */
2562 env->PCXI = (env->PCXI & 0xffffff) +
2563 ((env->ICR & MASK_ICR_CCPN) << 24);
2564 /* PCXI.PIE = ICR.IE */
2565 env->PCXI = ((env->PCXI & ~MASK_PCXI_PIE_1_3) +
2566 ((env->ICR & MASK_ICR_IE_1_3) << 15));
2567 /* PCXI.UL = 0 */
2568 env->PCXI &= ~(MASK_PCXI_UL);
2569 /* PCXI[19: 0] = FCX[19: 0] */
2570 env->PCXI = (env->PCXI & 0xfff00000) + (env->FCX & 0xfffff);
2571 /* FXC[19: 0] = new_FCX[19: 0] */
2572 env->FCX = (env->FCX & 0xfff00000) + (new_FCX & 0xfffff);
2573 /* ICR.IE = 1 */
2574 env->ICR |= MASK_ICR_IE_1_3;
2575
2576 env->ICR |= const9; /* ICR.CCPN = const9[7: 0];*/
2577
2578 if (tmp_FCX == env->LCX) {
2579 /* FCD trap */
2580 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCD, GETPC());
2581 }
2582 }
2583
2584 void helper_rfe(CPUTriCoreState *env)
2585 {
2586 target_ulong ea;
2587 target_ulong new_PCXI;
2588 target_ulong new_PSW;
2589 /* if (PCXI[19: 0] == 0) then trap(CSU); */
2590 if ((env->PCXI & 0xfffff) == 0) {
2591 /* raise csu trap */
2592 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CSU, GETPC());
2593 }
2594 /* if (PCXI.UL == 0) then trap(CTYP); */
2595 if ((env->PCXI & MASK_PCXI_UL) == 0) {
2596 /* raise CTYP trap */
2597 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CTYP, GETPC());
2598 }
2599 /* if (!cdc_zero() AND PSW.CDE) then trap(NEST); */
2600 if (!cdc_zero(&(env->PSW)) && (env->PSW & MASK_PSW_CDE)) {
2601 /* raise NEST trap */
2602 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_NEST, GETPC());
2603 }
2604 env->PC = env->gpr_a[11] & ~0x1;
2605 /* ICR.IE = PCXI.PIE; */
2606 env->ICR = (env->ICR & ~MASK_ICR_IE_1_3)
2607 + ((env->PCXI & MASK_PCXI_PIE_1_3) >> 15);
2608 /* ICR.CCPN = PCXI.PCPN; */
2609 env->ICR = (env->ICR & ~MASK_ICR_CCPN) +
2610 ((env->PCXI & MASK_PCXI_PCPN) >> 24);
2611 /*EA = {PCXI.PCXS, 6'b0, PCXI.PCXO, 6'b0};*/
2612 ea = ((env->PCXI & MASK_PCXI_PCXS) << 12) +
2613 ((env->PCXI & MASK_PCXI_PCXO) << 6);
2614 /*{new_PCXI, PSW, A[10], A[11], D[8], D[9], D[10], D[11], A[12],
2615 A[13], A[14], A[15], D[12], D[13], D[14], D[15]} = M(EA, 16 * word); */
2616 restore_context_upper(env, ea, &new_PCXI, &new_PSW);
2617 /* M(EA, word) = FCX;*/
2618 cpu_stl_data(env, ea, env->FCX);
2619 /* FCX[19: 0] = PCXI[19: 0]; */
2620 env->FCX = (env->FCX & 0xfff00000) + (env->PCXI & 0x000fffff);
2621 /* PCXI = new_PCXI; */
2622 env->PCXI = new_PCXI;
2623 /* write psw */
2624 psw_write(env, new_PSW);
2625 }
2626
2627 void helper_rfm(CPUTriCoreState *env)
2628 {
2629 env->PC = (env->gpr_a[11] & ~0x1);
2630 /* ICR.IE = PCXI.PIE; */
2631 env->ICR = (env->ICR & ~MASK_ICR_IE_1_3)
2632 | ((env->PCXI & MASK_PCXI_PIE_1_3) >> 15);
2633 /* ICR.CCPN = PCXI.PCPN; */
2634 env->ICR = (env->ICR & ~MASK_ICR_CCPN) |
2635 ((env->PCXI & MASK_PCXI_PCPN) >> 24);
2636 /* {PCXI, PSW, A[10], A[11]} = M(DCX, 4 * word); */
2637 env->PCXI = cpu_ldl_data(env, env->DCX);
2638 psw_write(env, cpu_ldl_data(env, env->DCX+4));
2639 env->gpr_a[10] = cpu_ldl_data(env, env->DCX+8);
2640 env->gpr_a[11] = cpu_ldl_data(env, env->DCX+12);
2641
2642 if (tricore_feature(env, TRICORE_FEATURE_131)) {
2643 env->DBGTCR = 0;
2644 }
2645 }
2646
2647 void helper_ldlcx(CPUTriCoreState *env, uint32_t ea)
2648 {
2649 uint32_t dummy;
2650 /* insn doesn't load PCXI and RA */
2651 restore_context_lower(env, ea, &dummy, &dummy);
2652 }
2653
2654 void helper_lducx(CPUTriCoreState *env, uint32_t ea)
2655 {
2656 uint32_t dummy;
2657 /* insn doesn't load PCXI and PSW */
2658 restore_context_upper(env, ea, &dummy, &dummy);
2659 }
2660
2661 void helper_stlcx(CPUTriCoreState *env, uint32_t ea)
2662 {
2663 save_context_lower(env, ea);
2664 }
2665
2666 void helper_stucx(CPUTriCoreState *env, uint32_t ea)
2667 {
2668 save_context_upper(env, ea);
2669 }
2670
2671 void helper_svlcx(CPUTriCoreState *env)
2672 {
2673 target_ulong tmp_FCX;
2674 target_ulong ea;
2675 target_ulong new_FCX;
2676
2677 if (env->FCX == 0) {
2678 /* FCU trap */
2679 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCU, GETPC());
2680 }
2681 /* tmp_FCX = FCX; */
2682 tmp_FCX = env->FCX;
2683 /* EA = {FCX.FCXS, 6'b0, FCX.FCXO, 6'b0}; */
2684 ea = ((env->FCX & MASK_FCX_FCXS) << 12) +
2685 ((env->FCX & MASK_FCX_FCXO) << 6);
2686 /* new_FCX = M(EA, word); */
2687 new_FCX = cpu_ldl_data(env, ea);
2688 /* M(EA, 16 * word) = {PCXI, PSW, A[10], A[11], D[8], D[9], D[10], D[11],
2689 A[12], A[13], A[14], A[15], D[12], D[13], D[14],
2690 D[15]}; */
2691 save_context_lower(env, ea);
2692
2693 /* PCXI.PCPN = ICR.CCPN; */
2694 env->PCXI = (env->PCXI & 0xffffff) +
2695 ((env->ICR & MASK_ICR_CCPN) << 24);
2696 /* PCXI.PIE = ICR.IE; */
2697 env->PCXI = ((env->PCXI & ~MASK_PCXI_PIE_1_3) +
2698 ((env->ICR & MASK_ICR_IE_1_3) << 15));
2699 /* PCXI.UL = 0; */
2700 env->PCXI &= ~MASK_PCXI_UL;
2701
2702 /* PCXI[19: 0] = FCX[19: 0]; */
2703 env->PCXI = (env->PCXI & 0xfff00000) + (env->FCX & 0xfffff);
2704 /* FCX[19: 0] = new_FCX[19: 0]; */
2705 env->FCX = (env->FCX & 0xfff00000) + (new_FCX & 0xfffff);
2706
2707 /* if (tmp_FCX == LCX) trap(FCD);*/
2708 if (tmp_FCX == env->LCX) {
2709 /* FCD trap */
2710 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCD, GETPC());
2711 }
2712 }
2713
2714 void helper_svucx(CPUTriCoreState *env)
2715 {
2716 target_ulong tmp_FCX;
2717 target_ulong ea;
2718 target_ulong new_FCX;
2719
2720 if (env->FCX == 0) {
2721 /* FCU trap */
2722 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCU, GETPC());
2723 }
2724 /* tmp_FCX = FCX; */
2725 tmp_FCX = env->FCX;
2726 /* EA = {FCX.FCXS, 6'b0, FCX.FCXO, 6'b0}; */
2727 ea = ((env->FCX & MASK_FCX_FCXS) << 12) +
2728 ((env->FCX & MASK_FCX_FCXO) << 6);
2729 /* new_FCX = M(EA, word); */
2730 new_FCX = cpu_ldl_data(env, ea);
2731 /* M(EA, 16 * word) = {PCXI, PSW, A[10], A[11], D[8], D[9], D[10], D[11],
2732 A[12], A[13], A[14], A[15], D[12], D[13], D[14],
2733 D[15]}; */
2734 save_context_upper(env, ea);
2735
2736 /* PCXI.PCPN = ICR.CCPN; */
2737 env->PCXI = (env->PCXI & 0xffffff) +
2738 ((env->ICR & MASK_ICR_CCPN) << 24);
2739 /* PCXI.PIE = ICR.IE; */
2740 env->PCXI = ((env->PCXI & ~MASK_PCXI_PIE_1_3) +
2741 ((env->ICR & MASK_ICR_IE_1_3) << 15));
2742 /* PCXI.UL = 1; */
2743 env->PCXI |= MASK_PCXI_UL;
2744
2745 /* PCXI[19: 0] = FCX[19: 0]; */
2746 env->PCXI = (env->PCXI & 0xfff00000) + (env->FCX & 0xfffff);
2747 /* FCX[19: 0] = new_FCX[19: 0]; */
2748 env->FCX = (env->FCX & 0xfff00000) + (new_FCX & 0xfffff);
2749
2750 /* if (tmp_FCX == LCX) trap(FCD);*/
2751 if (tmp_FCX == env->LCX) {
2752 /* FCD trap */
2753 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCD, GETPC());
2754 }
2755 }
2756
2757 void helper_rslcx(CPUTriCoreState *env)
2758 {
2759 target_ulong ea;
2760 target_ulong new_PCXI;
2761 /* if (PCXI[19: 0] == 0) then trap(CSU); */
2762 if ((env->PCXI & 0xfffff) == 0) {
2763 /* CSU trap */
2764 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CSU, GETPC());
2765 }
2766 /* if (PCXI.UL == 1) then trap(CTYP); */
2767 if ((env->PCXI & MASK_PCXI_UL) != 0) {
2768 /* CTYP trap */
2769 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CTYP, GETPC());
2770 }
2771 /* EA = {PCXI.PCXS, 6'b0, PCXI.PCXO, 6'b0}; */
2772 ea = ((env->PCXI & MASK_PCXI_PCXS) << 12) +
2773 ((env->PCXI & MASK_PCXI_PCXO) << 6);
2774 /* {new_PCXI, A[11], A[10], A[11], D[8], D[9], D[10], D[11], A[12],
2775 A[13], A[14], A[15], D[12], D[13], D[14], D[15]} = M(EA, 16 * word); */
2776 restore_context_lower(env, ea, &env->gpr_a[11], &new_PCXI);
2777 /* M(EA, word) = FCX; */
2778 cpu_stl_data(env, ea, env->FCX);
2779 /* M(EA, word) = FCX; */
2780 cpu_stl_data(env, ea, env->FCX);
2781 /* FCX[19: 0] = PCXI[19: 0]; */
2782 env->FCX = (env->FCX & 0xfff00000) + (env->PCXI & 0x000fffff);
2783 /* PCXI = new_PCXI; */
2784 env->PCXI = new_PCXI;
2785 }
2786
2787 void helper_psw_write(CPUTriCoreState *env, uint32_t arg)
2788 {
2789 psw_write(env, arg);
2790 }
2791
2792 uint32_t helper_psw_read(CPUTriCoreState *env)
2793 {
2794 return psw_read(env);
2795 }