]> git.proxmox.com Git - mirror_qemu.git/blob - target/xtensa/helper.c
Merge remote-tracking branch 'remotes/mst/tags/for_upstream' into staging
[mirror_qemu.git] / target / xtensa / helper.c
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include "qemu/osdep.h"
29 #include "qemu/units.h"
30 #include "cpu.h"
31 #include "exec/exec-all.h"
32 #include "exec/gdbstub.h"
33 #include "qemu/host-utils.h"
34 #if !defined(CONFIG_USER_ONLY)
35 #include "hw/loader.h"
36 #endif
37
38 static struct XtensaConfigList *xtensa_cores;
39
40 static void xtensa_core_class_init(ObjectClass *oc, void *data)
41 {
42 CPUClass *cc = CPU_CLASS(oc);
43 XtensaCPUClass *xcc = XTENSA_CPU_CLASS(oc);
44 const XtensaConfig *config = data;
45
46 xcc->config = config;
47
48 /* Use num_core_regs to see only non-privileged registers in an unmodified
49 * gdb. Use num_regs to see all registers. gdb modification is required
50 * for that: reset bit 0 in the 'flags' field of the registers definitions
51 * in the gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
52 */
53 cc->gdb_num_core_regs = config->gdb_regmap.num_regs;
54 }
55
56 static void init_libisa(XtensaConfig *config)
57 {
58 unsigned i, j;
59 unsigned opcodes;
60
61 config->isa = xtensa_isa_init(config->isa_internal, NULL, NULL);
62 assert(xtensa_isa_maxlength(config->isa) <= MAX_INSN_LENGTH);
63 opcodes = xtensa_isa_num_opcodes(config->isa);
64 config->opcode_ops = g_new(XtensaOpcodeOps *, opcodes);
65
66 for (i = 0; i < opcodes; ++i) {
67 const char *opc_name = xtensa_opcode_name(config->isa, i);
68 XtensaOpcodeOps *ops = NULL;
69
70 assert(xtensa_opcode_num_operands(config->isa, i) <= MAX_OPCODE_ARGS);
71 if (!config->opcode_translators) {
72 ops = xtensa_find_opcode_ops(&xtensa_core_opcodes, opc_name);
73 } else {
74 for (j = 0; !ops && config->opcode_translators[j]; ++j) {
75 ops = xtensa_find_opcode_ops(config->opcode_translators[j],
76 opc_name);
77 }
78 }
79 #ifdef DEBUG
80 if (ops == NULL) {
81 fprintf(stderr,
82 "opcode translator not found for %s's opcode '%s'\n",
83 config->name, opc_name);
84 }
85 #endif
86 config->opcode_ops[i] = ops;
87 }
88 }
89
90 void xtensa_finalize_config(XtensaConfig *config)
91 {
92 if (config->isa_internal) {
93 init_libisa(config);
94 }
95
96 if (config->gdb_regmap.num_regs == 0 ||
97 config->gdb_regmap.num_core_regs == 0) {
98 unsigned i;
99 unsigned n_regs = 0;
100 unsigned n_core_regs = 0;
101
102 for (i = 0; config->gdb_regmap.reg[i].targno >= 0; ++i) {
103 if (config->gdb_regmap.reg[i].type != 6) {
104 ++n_regs;
105 if ((config->gdb_regmap.reg[i].flags & 0x1) == 0) {
106 ++n_core_regs;
107 }
108 }
109 }
110 if (config->gdb_regmap.num_regs == 0) {
111 config->gdb_regmap.num_regs = n_regs;
112 }
113 if (config->gdb_regmap.num_core_regs == 0) {
114 config->gdb_regmap.num_core_regs = n_core_regs;
115 }
116 }
117 }
118
119 void xtensa_register_core(XtensaConfigList *node)
120 {
121 TypeInfo type = {
122 .parent = TYPE_XTENSA_CPU,
123 .class_init = xtensa_core_class_init,
124 .class_data = (void *)node->config,
125 };
126
127 node->next = xtensa_cores;
128 xtensa_cores = node;
129 type.name = g_strdup_printf(XTENSA_CPU_TYPE_NAME("%s"), node->config->name);
130 type_register(&type);
131 g_free((gpointer)type.name);
132 }
133
134 static uint32_t check_hw_breakpoints(CPUXtensaState *env)
135 {
136 unsigned i;
137
138 for (i = 0; i < env->config->ndbreak; ++i) {
139 if (env->cpu_watchpoint[i] &&
140 env->cpu_watchpoint[i]->flags & BP_WATCHPOINT_HIT) {
141 return DEBUGCAUSE_DB | (i << DEBUGCAUSE_DBNUM_SHIFT);
142 }
143 }
144 return 0;
145 }
146
147 void xtensa_breakpoint_handler(CPUState *cs)
148 {
149 XtensaCPU *cpu = XTENSA_CPU(cs);
150 CPUXtensaState *env = &cpu->env;
151
152 if (cs->watchpoint_hit) {
153 if (cs->watchpoint_hit->flags & BP_CPU) {
154 uint32_t cause;
155
156 cs->watchpoint_hit = NULL;
157 cause = check_hw_breakpoints(env);
158 if (cause) {
159 debug_exception_env(env, cause);
160 }
161 cpu_loop_exit_noexc(cs);
162 }
163 }
164 }
165
166 void xtensa_cpu_list(FILE *f, fprintf_function cpu_fprintf)
167 {
168 XtensaConfigList *core = xtensa_cores;
169 cpu_fprintf(f, "Available CPUs:\n");
170 for (; core; core = core->next) {
171 cpu_fprintf(f, " %s\n", core->config->name);
172 }
173 }
174
175 hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
176 {
177 #ifndef CONFIG_USER_ONLY
178 XtensaCPU *cpu = XTENSA_CPU(cs);
179 uint32_t paddr;
180 uint32_t page_size;
181 unsigned access;
182
183 if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0,
184 &paddr, &page_size, &access) == 0) {
185 return paddr;
186 }
187 if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0,
188 &paddr, &page_size, &access) == 0) {
189 return paddr;
190 }
191 return ~0;
192 #else
193 return addr;
194 #endif
195 }
196
197 #ifndef CONFIG_USER_ONLY
198
199 static uint32_t relocated_vector(CPUXtensaState *env, uint32_t vector)
200 {
201 if (xtensa_option_enabled(env->config,
202 XTENSA_OPTION_RELOCATABLE_VECTOR)) {
203 return vector - env->config->vecbase + env->sregs[VECBASE];
204 } else {
205 return vector;
206 }
207 }
208
209 /*!
210 * Handle penging IRQ.
211 * For the high priority interrupt jump to the corresponding interrupt vector.
212 * For the level-1 interrupt convert it to either user, kernel or double
213 * exception with the 'level-1 interrupt' exception cause.
214 */
215 static void handle_interrupt(CPUXtensaState *env)
216 {
217 int level = env->pending_irq_level;
218
219 if (level > xtensa_get_cintlevel(env) &&
220 level <= env->config->nlevel &&
221 (env->config->level_mask[level] &
222 env->sregs[INTSET] &
223 env->sregs[INTENABLE])) {
224 CPUState *cs = CPU(xtensa_env_get_cpu(env));
225
226 if (level > 1) {
227 env->sregs[EPC1 + level - 1] = env->pc;
228 env->sregs[EPS2 + level - 2] = env->sregs[PS];
229 env->sregs[PS] =
230 (env->sregs[PS] & ~PS_INTLEVEL) | level | PS_EXCM;
231 env->pc = relocated_vector(env,
232 env->config->interrupt_vector[level]);
233 } else {
234 env->sregs[EXCCAUSE] = LEVEL1_INTERRUPT_CAUSE;
235
236 if (env->sregs[PS] & PS_EXCM) {
237 if (env->config->ndepc) {
238 env->sregs[DEPC] = env->pc;
239 } else {
240 env->sregs[EPC1] = env->pc;
241 }
242 cs->exception_index = EXC_DOUBLE;
243 } else {
244 env->sregs[EPC1] = env->pc;
245 cs->exception_index =
246 (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
247 }
248 env->sregs[PS] |= PS_EXCM;
249 }
250 env->exception_taken = 1;
251 }
252 }
253
254 /* Called from cpu_handle_interrupt with BQL held */
255 void xtensa_cpu_do_interrupt(CPUState *cs)
256 {
257 XtensaCPU *cpu = XTENSA_CPU(cs);
258 CPUXtensaState *env = &cpu->env;
259
260 if (cs->exception_index == EXC_IRQ) {
261 qemu_log_mask(CPU_LOG_INT,
262 "%s(EXC_IRQ) level = %d, cintlevel = %d, "
263 "pc = %08x, a0 = %08x, ps = %08x, "
264 "intset = %08x, intenable = %08x, "
265 "ccount = %08x\n",
266 __func__, env->pending_irq_level, xtensa_get_cintlevel(env),
267 env->pc, env->regs[0], env->sregs[PS],
268 env->sregs[INTSET], env->sregs[INTENABLE],
269 env->sregs[CCOUNT]);
270 handle_interrupt(env);
271 }
272
273 switch (cs->exception_index) {
274 case EXC_WINDOW_OVERFLOW4:
275 case EXC_WINDOW_UNDERFLOW4:
276 case EXC_WINDOW_OVERFLOW8:
277 case EXC_WINDOW_UNDERFLOW8:
278 case EXC_WINDOW_OVERFLOW12:
279 case EXC_WINDOW_UNDERFLOW12:
280 case EXC_KERNEL:
281 case EXC_USER:
282 case EXC_DOUBLE:
283 case EXC_DEBUG:
284 qemu_log_mask(CPU_LOG_INT, "%s(%d) "
285 "pc = %08x, a0 = %08x, ps = %08x, ccount = %08x\n",
286 __func__, cs->exception_index,
287 env->pc, env->regs[0], env->sregs[PS], env->sregs[CCOUNT]);
288 if (env->config->exception_vector[cs->exception_index]) {
289 env->pc = relocated_vector(env,
290 env->config->exception_vector[cs->exception_index]);
291 env->exception_taken = 1;
292 } else {
293 qemu_log_mask(CPU_LOG_INT, "%s(pc = %08x) bad exception_index: %d\n",
294 __func__, env->pc, cs->exception_index);
295 }
296 break;
297
298 case EXC_IRQ:
299 break;
300
301 default:
302 qemu_log("%s(pc = %08x) unknown exception_index: %d\n",
303 __func__, env->pc, cs->exception_index);
304 break;
305 }
306 check_interrupts(env);
307 }
308 #else
309 void xtensa_cpu_do_interrupt(CPUState *cs)
310 {
311 }
312 #endif
313
314 bool xtensa_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
315 {
316 if (interrupt_request & CPU_INTERRUPT_HARD) {
317 cs->exception_index = EXC_IRQ;
318 xtensa_cpu_do_interrupt(cs);
319 return true;
320 }
321 return false;
322 }
323
324 #ifdef CONFIG_USER_ONLY
325
326 int xtensa_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size, int rw,
327 int mmu_idx)
328 {
329 XtensaCPU *cpu = XTENSA_CPU(cs);
330 CPUXtensaState *env = &cpu->env;
331
332 qemu_log_mask(CPU_LOG_INT,
333 "%s: rw = %d, address = 0x%08" VADDR_PRIx ", size = %d\n",
334 __func__, rw, address, size);
335 env->sregs[EXCVADDR] = address;
336 env->sregs[EXCCAUSE] = rw ? STORE_PROHIBITED_CAUSE : LOAD_PROHIBITED_CAUSE;
337 cs->exception_index = EXC_USER;
338 return 1;
339 }
340
341 #else
342
343 static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
344 const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
345 {
346 unsigned wi, ei;
347
348 for (wi = 0; wi < tlb->nways; ++wi) {
349 for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
350 entry[wi][ei].asid = 0;
351 entry[wi][ei].variable = true;
352 }
353 }
354 }
355
356 static void reset_tlb_mmu_ways56(CPUXtensaState *env,
357 const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
358 {
359 if (!tlb->varway56) {
360 static const xtensa_tlb_entry way5[] = {
361 {
362 .vaddr = 0xd0000000,
363 .paddr = 0,
364 .asid = 1,
365 .attr = 7,
366 .variable = false,
367 }, {
368 .vaddr = 0xd8000000,
369 .paddr = 0,
370 .asid = 1,
371 .attr = 3,
372 .variable = false,
373 }
374 };
375 static const xtensa_tlb_entry way6[] = {
376 {
377 .vaddr = 0xe0000000,
378 .paddr = 0xf0000000,
379 .asid = 1,
380 .attr = 7,
381 .variable = false,
382 }, {
383 .vaddr = 0xf0000000,
384 .paddr = 0xf0000000,
385 .asid = 1,
386 .attr = 3,
387 .variable = false,
388 }
389 };
390 memcpy(entry[5], way5, sizeof(way5));
391 memcpy(entry[6], way6, sizeof(way6));
392 } else {
393 uint32_t ei;
394 for (ei = 0; ei < 8; ++ei) {
395 entry[6][ei].vaddr = ei << 29;
396 entry[6][ei].paddr = ei << 29;
397 entry[6][ei].asid = 1;
398 entry[6][ei].attr = 3;
399 }
400 }
401 }
402
403 static void reset_tlb_region_way0(CPUXtensaState *env,
404 xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
405 {
406 unsigned ei;
407
408 for (ei = 0; ei < 8; ++ei) {
409 entry[0][ei].vaddr = ei << 29;
410 entry[0][ei].paddr = ei << 29;
411 entry[0][ei].asid = 1;
412 entry[0][ei].attr = 2;
413 entry[0][ei].variable = true;
414 }
415 }
416
417 void reset_mmu(CPUXtensaState *env)
418 {
419 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
420 env->sregs[RASID] = 0x04030201;
421 env->sregs[ITLBCFG] = 0;
422 env->sregs[DTLBCFG] = 0;
423 env->autorefill_idx = 0;
424 reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
425 reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
426 reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
427 reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
428 } else {
429 reset_tlb_region_way0(env, env->itlb);
430 reset_tlb_region_way0(env, env->dtlb);
431 }
432 }
433
434 static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
435 {
436 unsigned i;
437 for (i = 0; i < 4; ++i) {
438 if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
439 return i;
440 }
441 }
442 return 0xff;
443 }
444
445 /*!
446 * Lookup xtensa TLB for the given virtual address.
447 * See ISA, 4.6.2.2
448 *
449 * \param pwi: [out] way index
450 * \param pei: [out] entry index
451 * \param pring: [out] access ring
452 * \return 0 if ok, exception cause code otherwise
453 */
454 int xtensa_tlb_lookup(const CPUXtensaState *env, uint32_t addr, bool dtlb,
455 uint32_t *pwi, uint32_t *pei, uint8_t *pring)
456 {
457 const xtensa_tlb *tlb = dtlb ?
458 &env->config->dtlb : &env->config->itlb;
459 const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
460 env->dtlb : env->itlb;
461
462 int nhits = 0;
463 unsigned wi;
464
465 for (wi = 0; wi < tlb->nways; ++wi) {
466 uint32_t vpn;
467 uint32_t ei;
468 split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
469 if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
470 unsigned ring = get_ring(env, entry[wi][ei].asid);
471 if (ring < 4) {
472 if (++nhits > 1) {
473 return dtlb ?
474 LOAD_STORE_TLB_MULTI_HIT_CAUSE :
475 INST_TLB_MULTI_HIT_CAUSE;
476 }
477 *pwi = wi;
478 *pei = ei;
479 *pring = ring;
480 }
481 }
482 }
483 return nhits ? 0 :
484 (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
485 }
486
487 /*!
488 * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
489 * See ISA, 4.6.5.10
490 */
491 static unsigned mmu_attr_to_access(uint32_t attr)
492 {
493 unsigned access = 0;
494
495 if (attr < 12) {
496 access |= PAGE_READ;
497 if (attr & 0x1) {
498 access |= PAGE_EXEC;
499 }
500 if (attr & 0x2) {
501 access |= PAGE_WRITE;
502 }
503
504 switch (attr & 0xc) {
505 case 0:
506 access |= PAGE_CACHE_BYPASS;
507 break;
508
509 case 4:
510 access |= PAGE_CACHE_WB;
511 break;
512
513 case 8:
514 access |= PAGE_CACHE_WT;
515 break;
516 }
517 } else if (attr == 13) {
518 access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
519 }
520 return access;
521 }
522
523 /*!
524 * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
525 * See ISA, 4.6.3.3
526 */
527 static unsigned region_attr_to_access(uint32_t attr)
528 {
529 static const unsigned access[16] = {
530 [0] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_WT,
531 [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
532 [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
533 [3] = PAGE_EXEC | PAGE_CACHE_WB,
534 [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
535 [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
536 [14] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE,
537 };
538
539 return access[attr & 0xf];
540 }
541
542 /*!
543 * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
544 * See ISA, A.2.14 The Cache Attribute Register
545 */
546 static unsigned cacheattr_attr_to_access(uint32_t attr)
547 {
548 static const unsigned access[16] = {
549 [0] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_WT,
550 [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
551 [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
552 [3] = PAGE_EXEC | PAGE_CACHE_WB,
553 [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
554 [14] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE,
555 };
556
557 return access[attr & 0xf];
558 }
559
560 static bool is_access_granted(unsigned access, int is_write)
561 {
562 switch (is_write) {
563 case 0:
564 return access & PAGE_READ;
565
566 case 1:
567 return access & PAGE_WRITE;
568
569 case 2:
570 return access & PAGE_EXEC;
571
572 default:
573 return 0;
574 }
575 }
576
577 static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
578
579 static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
580 uint32_t vaddr, int is_write, int mmu_idx,
581 uint32_t *paddr, uint32_t *page_size, unsigned *access,
582 bool may_lookup_pt)
583 {
584 bool dtlb = is_write != 2;
585 uint32_t wi;
586 uint32_t ei;
587 uint8_t ring;
588 uint32_t vpn;
589 uint32_t pte;
590 const xtensa_tlb_entry *entry = NULL;
591 xtensa_tlb_entry tmp_entry;
592 int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
593
594 if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
595 may_lookup_pt && get_pte(env, vaddr, &pte) == 0) {
596 ring = (pte >> 4) & 0x3;
597 wi = 0;
598 split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
599
600 if (update_tlb) {
601 wi = ++env->autorefill_idx & 0x3;
602 xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
603 env->sregs[EXCVADDR] = vaddr;
604 qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n",
605 __func__, vaddr, vpn, pte);
606 } else {
607 xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
608 entry = &tmp_entry;
609 }
610 ret = 0;
611 }
612 if (ret != 0) {
613 return ret;
614 }
615
616 if (entry == NULL) {
617 entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
618 }
619
620 if (ring < mmu_idx) {
621 return dtlb ?
622 LOAD_STORE_PRIVILEGE_CAUSE :
623 INST_FETCH_PRIVILEGE_CAUSE;
624 }
625
626 *access = mmu_attr_to_access(entry->attr) &
627 ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
628 if (!is_access_granted(*access, is_write)) {
629 return dtlb ?
630 (is_write ?
631 STORE_PROHIBITED_CAUSE :
632 LOAD_PROHIBITED_CAUSE) :
633 INST_FETCH_PROHIBITED_CAUSE;
634 }
635
636 *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
637 *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
638
639 return 0;
640 }
641
642 static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
643 {
644 CPUState *cs = CPU(xtensa_env_get_cpu(env));
645 uint32_t paddr;
646 uint32_t page_size;
647 unsigned access;
648 uint32_t pt_vaddr =
649 (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
650 int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
651 &paddr, &page_size, &access, false);
652
653 qemu_log_mask(CPU_LOG_MMU, "%s: trying autorefill(%08x) -> %08x\n",
654 __func__, vaddr, ret ? ~0 : paddr);
655
656 if (ret == 0) {
657 *pte = ldl_phys(cs->as, paddr);
658 }
659 return ret;
660 }
661
662 static int get_physical_addr_region(CPUXtensaState *env,
663 uint32_t vaddr, int is_write, int mmu_idx,
664 uint32_t *paddr, uint32_t *page_size, unsigned *access)
665 {
666 bool dtlb = is_write != 2;
667 uint32_t wi = 0;
668 uint32_t ei = (vaddr >> 29) & 0x7;
669 const xtensa_tlb_entry *entry =
670 xtensa_tlb_get_entry(env, dtlb, wi, ei);
671
672 *access = region_attr_to_access(entry->attr);
673 if (!is_access_granted(*access, is_write)) {
674 return dtlb ?
675 (is_write ?
676 STORE_PROHIBITED_CAUSE :
677 LOAD_PROHIBITED_CAUSE) :
678 INST_FETCH_PROHIBITED_CAUSE;
679 }
680
681 *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
682 *page_size = ~REGION_PAGE_MASK + 1;
683
684 return 0;
685 }
686
687 /*!
688 * Convert virtual address to physical addr.
689 * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
690 *
691 * \return 0 if ok, exception cause code otherwise
692 */
693 int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
694 uint32_t vaddr, int is_write, int mmu_idx,
695 uint32_t *paddr, uint32_t *page_size, unsigned *access)
696 {
697 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
698 return get_physical_addr_mmu(env, update_tlb,
699 vaddr, is_write, mmu_idx, paddr, page_size, access, true);
700 } else if (xtensa_option_bits_enabled(env->config,
701 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
702 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
703 return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
704 paddr, page_size, access);
705 } else {
706 *paddr = vaddr;
707 *page_size = TARGET_PAGE_SIZE;
708 *access = cacheattr_attr_to_access(
709 env->sregs[CACHEATTR] >> ((vaddr & 0xe0000000) >> 27));
710 return 0;
711 }
712 }
713
714 static void dump_tlb(FILE *f, fprintf_function cpu_fprintf,
715 CPUXtensaState *env, bool dtlb)
716 {
717 unsigned wi, ei;
718 const xtensa_tlb *conf =
719 dtlb ? &env->config->dtlb : &env->config->itlb;
720 unsigned (*attr_to_access)(uint32_t) =
721 xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
722 mmu_attr_to_access : region_attr_to_access;
723
724 for (wi = 0; wi < conf->nways; ++wi) {
725 uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
726 const char *sz_text;
727 bool print_header = true;
728
729 if (sz >= 0x100000) {
730 sz /= MiB;
731 sz_text = "MB";
732 } else {
733 sz /= KiB;
734 sz_text = "KB";
735 }
736
737 for (ei = 0; ei < conf->way_size[wi]; ++ei) {
738 const xtensa_tlb_entry *entry =
739 xtensa_tlb_get_entry(env, dtlb, wi, ei);
740
741 if (entry->asid) {
742 static const char * const cache_text[8] = {
743 [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
744 [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
745 [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
746 [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
747 };
748 unsigned access = attr_to_access(entry->attr);
749 unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
750 PAGE_CACHE_SHIFT;
751
752 if (print_header) {
753 print_header = false;
754 cpu_fprintf(f, "Way %u (%d %s)\n", wi, sz, sz_text);
755 cpu_fprintf(f,
756 "\tVaddr Paddr ASID Attr RWX Cache\n"
757 "\t---------- ---------- ---- ---- --- -------\n");
758 }
759 cpu_fprintf(f,
760 "\t0x%08x 0x%08x 0x%02x 0x%02x %c%c%c %-7s\n",
761 entry->vaddr,
762 entry->paddr,
763 entry->asid,
764 entry->attr,
765 (access & PAGE_READ) ? 'R' : '-',
766 (access & PAGE_WRITE) ? 'W' : '-',
767 (access & PAGE_EXEC) ? 'X' : '-',
768 cache_text[cache_idx] ? cache_text[cache_idx] :
769 "Invalid");
770 }
771 }
772 }
773 }
774
775 void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUXtensaState *env)
776 {
777 if (xtensa_option_bits_enabled(env->config,
778 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
779 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
780 XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
781
782 cpu_fprintf(f, "ITLB:\n");
783 dump_tlb(f, cpu_fprintf, env, false);
784 cpu_fprintf(f, "\nDTLB:\n");
785 dump_tlb(f, cpu_fprintf, env, true);
786 } else {
787 cpu_fprintf(f, "No TLB for this CPU core\n");
788 }
789 }
790
791 void xtensa_runstall(CPUXtensaState *env, bool runstall)
792 {
793 CPUState *cpu = CPU(xtensa_env_get_cpu(env));
794
795 env->runstall = runstall;
796 cpu->halted = runstall;
797 if (runstall) {
798 cpu_interrupt(cpu, CPU_INTERRUPT_HALT);
799 } else {
800 cpu_reset_interrupt(cpu, CPU_INTERRUPT_HALT);
801 }
802 }
803 #endif