]> git.proxmox.com Git - mirror_qemu.git/blob - target/xtensa/op_helper.c
slirp: Make RA build more flexible
[mirror_qemu.git] / target / xtensa / op_helper.c
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include "qemu/osdep.h"
29 #include "qemu/main-loop.h"
30 #include "cpu.h"
31 #include "exec/helper-proto.h"
32 #include "qemu/host-utils.h"
33 #include "exec/exec-all.h"
34 #include "exec/cpu_ldst.h"
35 #include "exec/address-spaces.h"
36 #include "qemu/timer.h"
37
38 void xtensa_cpu_do_unaligned_access(CPUState *cs,
39 vaddr addr, MMUAccessType access_type,
40 int mmu_idx, uintptr_t retaddr)
41 {
42 XtensaCPU *cpu = XTENSA_CPU(cs);
43 CPUXtensaState *env = &cpu->env;
44
45 if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
46 !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
47 cpu_restore_state(CPU(cpu), retaddr);
48 HELPER(exception_cause_vaddr)(env,
49 env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
50 }
51 }
52
53 void tlb_fill(CPUState *cs, target_ulong vaddr, MMUAccessType access_type,
54 int mmu_idx, uintptr_t retaddr)
55 {
56 XtensaCPU *cpu = XTENSA_CPU(cs);
57 CPUXtensaState *env = &cpu->env;
58 uint32_t paddr;
59 uint32_t page_size;
60 unsigned access;
61 int ret = xtensa_get_physical_addr(env, true, vaddr, access_type, mmu_idx,
62 &paddr, &page_size, &access);
63
64 qemu_log_mask(CPU_LOG_MMU, "%s(%08x, %d, %d) -> %08x, ret = %d\n",
65 __func__, vaddr, access_type, mmu_idx, paddr, ret);
66
67 if (ret == 0) {
68 tlb_set_page(cs,
69 vaddr & TARGET_PAGE_MASK,
70 paddr & TARGET_PAGE_MASK,
71 access, mmu_idx, page_size);
72 } else {
73 cpu_restore_state(cs, retaddr);
74 HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
75 }
76 }
77
78 void xtensa_cpu_do_unassigned_access(CPUState *cs, hwaddr addr,
79 bool is_write, bool is_exec, int opaque,
80 unsigned size)
81 {
82 XtensaCPU *cpu = XTENSA_CPU(cs);
83 CPUXtensaState *env = &cpu->env;
84
85 HELPER(exception_cause_vaddr)(env, env->pc,
86 is_exec ?
87 INSTR_PIF_ADDR_ERROR_CAUSE :
88 LOAD_STORE_PIF_ADDR_ERROR_CAUSE,
89 is_exec ? addr : cs->mem_io_vaddr);
90 }
91
92 static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
93 {
94 uint32_t paddr;
95 uint32_t page_size;
96 unsigned access;
97 int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
98 &paddr, &page_size, &access);
99 if (ret == 0) {
100 tb_invalidate_phys_addr(&address_space_memory, paddr);
101 }
102 }
103
104 void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
105 {
106 CPUState *cs = CPU(xtensa_env_get_cpu(env));
107
108 cs->exception_index = excp;
109 if (excp == EXCP_YIELD) {
110 env->yield_needed = 0;
111 }
112 if (excp == EXCP_DEBUG) {
113 env->exception_taken = 0;
114 }
115 cpu_loop_exit(cs);
116 }
117
118 void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
119 {
120 uint32_t vector;
121
122 env->pc = pc;
123 if (env->sregs[PS] & PS_EXCM) {
124 if (env->config->ndepc) {
125 env->sregs[DEPC] = pc;
126 } else {
127 env->sregs[EPC1] = pc;
128 }
129 vector = EXC_DOUBLE;
130 } else {
131 env->sregs[EPC1] = pc;
132 vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
133 }
134
135 env->sregs[EXCCAUSE] = cause;
136 env->sregs[PS] |= PS_EXCM;
137
138 HELPER(exception)(env, vector);
139 }
140
141 void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
142 uint32_t pc, uint32_t cause, uint32_t vaddr)
143 {
144 env->sregs[EXCVADDR] = vaddr;
145 HELPER(exception_cause)(env, pc, cause);
146 }
147
148 void debug_exception_env(CPUXtensaState *env, uint32_t cause)
149 {
150 if (xtensa_get_cintlevel(env) < env->config->debug_level) {
151 HELPER(debug_exception)(env, env->pc, cause);
152 }
153 }
154
155 void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
156 {
157 unsigned level = env->config->debug_level;
158
159 env->pc = pc;
160 env->sregs[DEBUGCAUSE] = cause;
161 env->sregs[EPC1 + level - 1] = pc;
162 env->sregs[EPS2 + level - 2] = env->sregs[PS];
163 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
164 (level << PS_INTLEVEL_SHIFT);
165 HELPER(exception)(env, EXC_DEBUG);
166 }
167
168 static void copy_window_from_phys(CPUXtensaState *env,
169 uint32_t window, uint32_t phys, uint32_t n)
170 {
171 assert(phys < env->config->nareg);
172 if (phys + n <= env->config->nareg) {
173 memcpy(env->regs + window, env->phys_regs + phys,
174 n * sizeof(uint32_t));
175 } else {
176 uint32_t n1 = env->config->nareg - phys;
177 memcpy(env->regs + window, env->phys_regs + phys,
178 n1 * sizeof(uint32_t));
179 memcpy(env->regs + window + n1, env->phys_regs,
180 (n - n1) * sizeof(uint32_t));
181 }
182 }
183
184 static void copy_phys_from_window(CPUXtensaState *env,
185 uint32_t phys, uint32_t window, uint32_t n)
186 {
187 assert(phys < env->config->nareg);
188 if (phys + n <= env->config->nareg) {
189 memcpy(env->phys_regs + phys, env->regs + window,
190 n * sizeof(uint32_t));
191 } else {
192 uint32_t n1 = env->config->nareg - phys;
193 memcpy(env->phys_regs + phys, env->regs + window,
194 n1 * sizeof(uint32_t));
195 memcpy(env->phys_regs, env->regs + window + n1,
196 (n - n1) * sizeof(uint32_t));
197 }
198 }
199
200
201 static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
202 {
203 return a & (env->config->nareg / 4 - 1);
204 }
205
206 static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
207 {
208 return 1 << windowbase_bound(a, env);
209 }
210
211 void xtensa_sync_window_from_phys(CPUXtensaState *env)
212 {
213 copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
214 }
215
216 void xtensa_sync_phys_from_window(CPUXtensaState *env)
217 {
218 copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
219 }
220
221 static void rotate_window_abs(CPUXtensaState *env, uint32_t position)
222 {
223 xtensa_sync_phys_from_window(env);
224 env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
225 xtensa_sync_window_from_phys(env);
226 }
227
228 static void rotate_window(CPUXtensaState *env, uint32_t delta)
229 {
230 rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
231 }
232
233 void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
234 {
235 rotate_window_abs(env, v);
236 }
237
238 void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
239 {
240 int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
241 if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
242 qemu_log_mask(LOG_GUEST_ERROR, "Illegal entry instruction(pc = %08x), PS = %08x\n",
243 pc, env->sregs[PS]);
244 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
245 } else {
246 uint32_t windowstart = xtensa_replicate_windowstart(env) >>
247 (env->sregs[WINDOW_BASE] + 1);
248
249 if (windowstart & ((1 << callinc) - 1)) {
250 HELPER(window_check)(env, pc, callinc);
251 }
252 env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3);
253 rotate_window(env, callinc);
254 env->sregs[WINDOW_START] |=
255 windowstart_bit(env->sregs[WINDOW_BASE], env);
256 }
257 }
258
259 void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
260 {
261 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
262 uint32_t windowstart = xtensa_replicate_windowstart(env) >>
263 (env->sregs[WINDOW_BASE] + 1);
264 uint32_t n = ctz32(windowstart) + 1;
265
266 assert(n <= w);
267
268 rotate_window(env, n);
269 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
270 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
271 env->sregs[EPC1] = env->pc = pc;
272
273 switch (ctz32(windowstart >> n)) {
274 case 0:
275 HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
276 break;
277 case 1:
278 HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
279 break;
280 default:
281 HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
282 break;
283 }
284 }
285
286 uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
287 {
288 int n = (env->regs[0] >> 30) & 0x3;
289 int m = 0;
290 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
291 uint32_t windowstart = env->sregs[WINDOW_START];
292 uint32_t ret_pc = 0;
293
294 if (windowstart & windowstart_bit(windowbase - 1, env)) {
295 m = 1;
296 } else if (windowstart & windowstart_bit(windowbase - 2, env)) {
297 m = 2;
298 } else if (windowstart & windowstart_bit(windowbase - 3, env)) {
299 m = 3;
300 }
301
302 if (n == 0 || (m != 0 && m != n) ||
303 ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
304 qemu_log_mask(LOG_GUEST_ERROR, "Illegal retw instruction(pc = %08x), "
305 "PS = %08x, m = %d, n = %d\n",
306 pc, env->sregs[PS], m, n);
307 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
308 } else {
309 int owb = windowbase;
310
311 ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);
312
313 rotate_window(env, -n);
314 if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
315 env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
316 } else {
317 /* window underflow */
318 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
319 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
320 env->sregs[EPC1] = env->pc = pc;
321
322 if (n == 1) {
323 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
324 } else if (n == 2) {
325 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
326 } else if (n == 3) {
327 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
328 }
329 }
330 }
331 return ret_pc;
332 }
333
334 void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
335 {
336 rotate_window(env, imm4);
337 }
338
339 void HELPER(restore_owb)(CPUXtensaState *env)
340 {
341 rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
342 }
343
344 void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
345 {
346 if ((env->sregs[WINDOW_START] &
347 (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
348 windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
349 windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
350 HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
351 }
352 }
353
354 void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
355 {
356 if (env->sregs[LBEG] != v) {
357 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
358 env->sregs[LBEG] = v;
359 }
360 }
361
362 void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
363 {
364 if (env->sregs[LEND] != v) {
365 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
366 env->sregs[LEND] = v;
367 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
368 }
369 }
370
371 void HELPER(dump_state)(CPUXtensaState *env)
372 {
373 XtensaCPU *cpu = xtensa_env_get_cpu(env);
374
375 cpu_dump_state(CPU(cpu), stderr, fprintf, 0);
376 }
377
378 void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
379 {
380 CPUState *cpu;
381
382 env->pc = pc;
383 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
384 (intlevel << PS_INTLEVEL_SHIFT);
385
386 qemu_mutex_lock_iothread();
387 check_interrupts(env);
388 qemu_mutex_unlock_iothread();
389
390 if (env->pending_irq_level) {
391 cpu_loop_exit(CPU(xtensa_env_get_cpu(env)));
392 return;
393 }
394
395 cpu = CPU(xtensa_env_get_cpu(env));
396 cpu->halted = 1;
397 HELPER(exception)(env, EXCP_HLT);
398 }
399
400 void HELPER(update_ccount)(CPUXtensaState *env)
401 {
402 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
403
404 env->ccount_time = now;
405 env->sregs[CCOUNT] = env->ccount_base +
406 (uint32_t)((now - env->time_base) *
407 env->config->clock_freq_khz / 1000000);
408 }
409
410 void HELPER(wsr_ccount)(CPUXtensaState *env, uint32_t v)
411 {
412 int i;
413
414 HELPER(update_ccount)(env);
415 env->ccount_base += v - env->sregs[CCOUNT];
416 for (i = 0; i < env->config->nccompare; ++i) {
417 HELPER(update_ccompare)(env, i);
418 }
419 }
420
421 void HELPER(update_ccompare)(CPUXtensaState *env, uint32_t i)
422 {
423 uint64_t dcc;
424
425 HELPER(update_ccount)(env);
426 dcc = (uint64_t)(env->sregs[CCOMPARE + i] - env->sregs[CCOUNT] - 1) + 1;
427 timer_mod(env->ccompare[i].timer,
428 env->ccount_time + (dcc * 1000000) / env->config->clock_freq_khz);
429 env->yield_needed = 1;
430 }
431
432 void HELPER(check_interrupts)(CPUXtensaState *env)
433 {
434 qemu_mutex_lock_iothread();
435 check_interrupts(env);
436 qemu_mutex_unlock_iothread();
437 }
438
439 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
440 {
441 get_page_addr_code(env, vaddr);
442 }
443
444 /*!
445 * Check vaddr accessibility/cache attributes and raise an exception if
446 * specified by the ATOMCTL SR.
447 *
448 * Note: local memory exclusion is not implemented
449 */
450 void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr)
451 {
452 uint32_t paddr, page_size, access;
453 uint32_t atomctl = env->sregs[ATOMCTL];
454 int rc = xtensa_get_physical_addr(env, true, vaddr, 1,
455 xtensa_get_cring(env), &paddr, &page_size, &access);
456
457 /*
458 * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
459 * see opcode description in the ISA
460 */
461 if (rc == 0 &&
462 (access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) {
463 rc = STORE_PROHIBITED_CAUSE;
464 }
465
466 if (rc) {
467 HELPER(exception_cause_vaddr)(env, pc, rc, vaddr);
468 }
469
470 /*
471 * When data cache is not configured use ATOMCTL bypass field.
472 * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
473 * under the Conditional Store Option.
474 */
475 if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
476 access = PAGE_CACHE_BYPASS;
477 }
478
479 switch (access & PAGE_CACHE_MASK) {
480 case PAGE_CACHE_WB:
481 atomctl >>= 2;
482 /* fall through */
483 case PAGE_CACHE_WT:
484 atomctl >>= 2;
485 /* fall through */
486 case PAGE_CACHE_BYPASS:
487 if ((atomctl & 0x3) == 0) {
488 HELPER(exception_cause_vaddr)(env, pc,
489 LOAD_STORE_ERROR_CAUSE, vaddr);
490 }
491 break;
492
493 case PAGE_CACHE_ISOLATE:
494 HELPER(exception_cause_vaddr)(env, pc,
495 LOAD_STORE_ERROR_CAUSE, vaddr);
496 break;
497
498 default:
499 break;
500 }
501 }
502
503 void HELPER(wsr_memctl)(CPUXtensaState *env, uint32_t v)
504 {
505 if (xtensa_option_enabled(env->config, XTENSA_OPTION_ICACHE)) {
506 if (extract32(v, MEMCTL_IUSEWAYS_SHIFT, MEMCTL_IUSEWAYS_LEN) >
507 env->config->icache_ways) {
508 deposit32(v, MEMCTL_IUSEWAYS_SHIFT, MEMCTL_IUSEWAYS_LEN,
509 env->config->icache_ways);
510 }
511 }
512 if (xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
513 if (extract32(v, MEMCTL_DUSEWAYS_SHIFT, MEMCTL_DUSEWAYS_LEN) >
514 env->config->dcache_ways) {
515 deposit32(v, MEMCTL_DUSEWAYS_SHIFT, MEMCTL_DUSEWAYS_LEN,
516 env->config->dcache_ways);
517 }
518 if (extract32(v, MEMCTL_DALLOCWAYS_SHIFT, MEMCTL_DALLOCWAYS_LEN) >
519 env->config->dcache_ways) {
520 deposit32(v, MEMCTL_DALLOCWAYS_SHIFT, MEMCTL_DALLOCWAYS_LEN,
521 env->config->dcache_ways);
522 }
523 }
524 env->sregs[MEMCTL] = v & env->config->memctl_mask;
525 }
526
527 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
528 {
529 XtensaCPU *cpu = xtensa_env_get_cpu(env);
530
531 v = (v & 0xffffff00) | 0x1;
532 if (v != env->sregs[RASID]) {
533 env->sregs[RASID] = v;
534 tlb_flush(CPU(cpu));
535 }
536 }
537
538 static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
539 {
540 uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
541
542 switch (way) {
543 case 4:
544 return (tlbcfg >> 16) & 0x3;
545
546 case 5:
547 return (tlbcfg >> 20) & 0x1;
548
549 case 6:
550 return (tlbcfg >> 24) & 0x1;
551
552 default:
553 return 0;
554 }
555 }
556
557 /*!
558 * Get bit mask for the virtual address bits translated by the TLB way
559 */
560 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
561 {
562 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
563 bool varway56 = dtlb ?
564 env->config->dtlb.varway56 :
565 env->config->itlb.varway56;
566
567 switch (way) {
568 case 4:
569 return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
570
571 case 5:
572 if (varway56) {
573 return 0xf8000000 << get_page_size(env, dtlb, way);
574 } else {
575 return 0xf8000000;
576 }
577
578 case 6:
579 if (varway56) {
580 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
581 } else {
582 return 0xf0000000;
583 }
584
585 default:
586 return 0xfffff000;
587 }
588 } else {
589 return REGION_PAGE_MASK;
590 }
591 }
592
593 /*!
594 * Get bit mask for the 'VPN without index' field.
595 * See ISA, 4.6.5.6, data format for RxTLB0
596 */
597 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
598 {
599 if (way < 4) {
600 bool is32 = (dtlb ?
601 env->config->dtlb.nrefillentries :
602 env->config->itlb.nrefillentries) == 32;
603 return is32 ? 0xffff8000 : 0xffffc000;
604 } else if (way == 4) {
605 return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
606 } else if (way <= 6) {
607 uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
608 bool varway56 = dtlb ?
609 env->config->dtlb.varway56 :
610 env->config->itlb.varway56;
611
612 if (varway56) {
613 return mask << (way == 5 ? 2 : 3);
614 } else {
615 return mask << 1;
616 }
617 } else {
618 return 0xfffff000;
619 }
620 }
621
622 /*!
623 * Split virtual address into VPN (with index) and entry index
624 * for the given TLB way
625 */
626 void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
627 uint32_t *vpn, uint32_t wi, uint32_t *ei)
628 {
629 bool varway56 = dtlb ?
630 env->config->dtlb.varway56 :
631 env->config->itlb.varway56;
632
633 if (!dtlb) {
634 wi &= 7;
635 }
636
637 if (wi < 4) {
638 bool is32 = (dtlb ?
639 env->config->dtlb.nrefillentries :
640 env->config->itlb.nrefillentries) == 32;
641 *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
642 } else {
643 switch (wi) {
644 case 4:
645 {
646 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
647 *ei = (v >> eibase) & 0x3;
648 }
649 break;
650
651 case 5:
652 if (varway56) {
653 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
654 *ei = (v >> eibase) & 0x3;
655 } else {
656 *ei = (v >> 27) & 0x1;
657 }
658 break;
659
660 case 6:
661 if (varway56) {
662 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
663 *ei = (v >> eibase) & 0x7;
664 } else {
665 *ei = (v >> 28) & 0x1;
666 }
667 break;
668
669 default:
670 *ei = 0;
671 break;
672 }
673 }
674 *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
675 }
676
677 /*!
678 * Split TLB address into TLB way, entry index and VPN (with index).
679 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
680 */
681 static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
682 uint32_t *vpn, uint32_t *wi, uint32_t *ei)
683 {
684 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
685 *wi = v & (dtlb ? 0xf : 0x7);
686 split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
687 } else {
688 *vpn = v & REGION_PAGE_MASK;
689 *wi = 0;
690 *ei = (v >> 29) & 0x7;
691 }
692 }
693
694 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
695 uint32_t v, bool dtlb, uint32_t *pwi)
696 {
697 uint32_t vpn;
698 uint32_t wi;
699 uint32_t ei;
700
701 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
702 if (pwi) {
703 *pwi = wi;
704 }
705 return xtensa_tlb_get_entry(env, dtlb, wi, ei);
706 }
707
708 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
709 {
710 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
711 uint32_t wi;
712 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
713 return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
714 } else {
715 return v & REGION_PAGE_MASK;
716 }
717 }
718
719 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
720 {
721 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
722 return entry->paddr | entry->attr;
723 }
724
725 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
726 {
727 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
728 uint32_t wi;
729 xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
730 if (entry->variable && entry->asid) {
731 tlb_flush_page(CPU(xtensa_env_get_cpu(env)), entry->vaddr);
732 entry->asid = 0;
733 }
734 }
735 }
736
737 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
738 {
739 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
740 uint32_t wi;
741 uint32_t ei;
742 uint8_t ring;
743 int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
744
745 switch (res) {
746 case 0:
747 if (ring >= xtensa_get_ring(env)) {
748 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
749 }
750 break;
751
752 case INST_TLB_MULTI_HIT_CAUSE:
753 case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
754 HELPER(exception_cause_vaddr)(env, env->pc, res, v);
755 break;
756 }
757 return 0;
758 } else {
759 return (v & REGION_PAGE_MASK) | 0x1;
760 }
761 }
762
763 void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
764 xtensa_tlb_entry *entry, bool dtlb,
765 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
766 {
767 entry->vaddr = vpn;
768 entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
769 entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
770 entry->attr = pte & 0xf;
771 }
772
773 void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
774 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
775 {
776 XtensaCPU *cpu = xtensa_env_get_cpu(env);
777 CPUState *cs = CPU(cpu);
778 xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
779
780 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
781 if (entry->variable) {
782 if (entry->asid) {
783 tlb_flush_page(cs, entry->vaddr);
784 }
785 xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
786 tlb_flush_page(cs, entry->vaddr);
787 } else {
788 qemu_log_mask(LOG_GUEST_ERROR, "%s %d, %d, %d trying to set immutable entry\n",
789 __func__, dtlb, wi, ei);
790 }
791 } else {
792 tlb_flush_page(cs, entry->vaddr);
793 if (xtensa_option_enabled(env->config,
794 XTENSA_OPTION_REGION_TRANSLATION)) {
795 entry->paddr = pte & REGION_PAGE_MASK;
796 }
797 entry->attr = pte & 0xf;
798 }
799 }
800
801 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
802 {
803 uint32_t vpn;
804 uint32_t wi;
805 uint32_t ei;
806 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
807 xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
808 }
809
810
811 void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
812 {
813 uint32_t change = v ^ env->sregs[IBREAKENABLE];
814 unsigned i;
815
816 for (i = 0; i < env->config->nibreak; ++i) {
817 if (change & (1 << i)) {
818 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
819 }
820 }
821 env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
822 }
823
824 void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
825 {
826 if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
827 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
828 tb_invalidate_virtual_addr(env, v);
829 }
830 env->sregs[IBREAKA + i] = v;
831 }
832
833 static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
834 uint32_t dbreakc)
835 {
836 CPUState *cs = CPU(xtensa_env_get_cpu(env));
837 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
838 uint32_t mask = dbreakc | ~DBREAKC_MASK;
839
840 if (env->cpu_watchpoint[i]) {
841 cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
842 }
843 if (dbreakc & DBREAKC_SB) {
844 flags |= BP_MEM_WRITE;
845 }
846 if (dbreakc & DBREAKC_LB) {
847 flags |= BP_MEM_READ;
848 }
849 /* contiguous mask after inversion is one less than some power of 2 */
850 if ((~mask + 1) & ~mask) {
851 qemu_log_mask(LOG_GUEST_ERROR, "DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
852 /* cut mask after the first zero bit */
853 mask = 0xffffffff << (32 - clo32(mask));
854 }
855 if (cpu_watchpoint_insert(cs, dbreaka & mask, ~mask + 1,
856 flags, &env->cpu_watchpoint[i])) {
857 env->cpu_watchpoint[i] = NULL;
858 qemu_log_mask(LOG_GUEST_ERROR, "Failed to set data breakpoint at 0x%08x/%d\n",
859 dbreaka & mask, ~mask + 1);
860 }
861 }
862
863 void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
864 {
865 uint32_t dbreakc = env->sregs[DBREAKC + i];
866
867 if ((dbreakc & DBREAKC_SB_LB) &&
868 env->sregs[DBREAKA + i] != v) {
869 set_dbreak(env, i, v, dbreakc);
870 }
871 env->sregs[DBREAKA + i] = v;
872 }
873
874 void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
875 {
876 if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
877 if (v & DBREAKC_SB_LB) {
878 set_dbreak(env, i, env->sregs[DBREAKA + i], v);
879 } else {
880 if (env->cpu_watchpoint[i]) {
881 CPUState *cs = CPU(xtensa_env_get_cpu(env));
882
883 cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
884 env->cpu_watchpoint[i] = NULL;
885 }
886 }
887 }
888 env->sregs[DBREAKC + i] = v;
889 }
890
891 void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
892 {
893 static const int rounding_mode[] = {
894 float_round_nearest_even,
895 float_round_to_zero,
896 float_round_up,
897 float_round_down,
898 };
899
900 env->uregs[FCR] = v & 0xfffff07f;
901 set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
902 }
903
904 float32 HELPER(abs_s)(float32 v)
905 {
906 return float32_abs(v);
907 }
908
909 float32 HELPER(neg_s)(float32 v)
910 {
911 return float32_chs(v);
912 }
913
914 float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
915 {
916 return float32_add(a, b, &env->fp_status);
917 }
918
919 float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
920 {
921 return float32_sub(a, b, &env->fp_status);
922 }
923
924 float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
925 {
926 return float32_mul(a, b, &env->fp_status);
927 }
928
929 float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
930 {
931 return float32_muladd(b, c, a, 0,
932 &env->fp_status);
933 }
934
935 float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
936 {
937 return float32_muladd(b, c, a, float_muladd_negate_product,
938 &env->fp_status);
939 }
940
941 uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
942 {
943 float_status fp_status = {0};
944
945 set_float_rounding_mode(rounding_mode, &fp_status);
946 return float32_to_int32(
947 float32_scalbn(v, scale, &fp_status), &fp_status);
948 }
949
950 uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
951 {
952 float_status fp_status = {0};
953 float32 res;
954
955 set_float_rounding_mode(rounding_mode, &fp_status);
956
957 res = float32_scalbn(v, scale, &fp_status);
958
959 if (float32_is_neg(v) && !float32_is_any_nan(v)) {
960 return float32_to_int32(res, &fp_status);
961 } else {
962 return float32_to_uint32(res, &fp_status);
963 }
964 }
965
966 float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
967 {
968 return float32_scalbn(int32_to_float32(v, &env->fp_status),
969 (int32_t)scale, &env->fp_status);
970 }
971
972 float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
973 {
974 return float32_scalbn(uint32_to_float32(v, &env->fp_status),
975 (int32_t)scale, &env->fp_status);
976 }
977
978 static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
979 {
980 if (v) {
981 env->sregs[BR] |= br;
982 } else {
983 env->sregs[BR] &= ~br;
984 }
985 }
986
987 void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
988 {
989 set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
990 }
991
992 void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
993 {
994 set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
995 }
996
997 void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
998 {
999 int v = float32_compare_quiet(a, b, &env->fp_status);
1000 set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
1001 }
1002
1003 void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1004 {
1005 set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
1006 }
1007
1008 void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1009 {
1010 int v = float32_compare_quiet(a, b, &env->fp_status);
1011 set_br(env, v == float_relation_less || v == float_relation_unordered, br);
1012 }
1013
1014 void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1015 {
1016 set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
1017 }
1018
1019 void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1020 {
1021 int v = float32_compare_quiet(a, b, &env->fp_status);
1022 set_br(env, v != float_relation_greater, br);
1023 }
1024
1025 uint32_t HELPER(rer)(CPUXtensaState *env, uint32_t addr)
1026 {
1027 return address_space_ldl(env->address_space_er, addr,
1028 (MemTxAttrs){0}, NULL);
1029 }
1030
1031 void HELPER(wer)(CPUXtensaState *env, uint32_t data, uint32_t addr)
1032 {
1033 address_space_stl(env->address_space_er, addr, data,
1034 (MemTxAttrs){0}, NULL);
1035 }