]> git.proxmox.com Git - qemu.git/blob - target-alpha/cpu.h
e1d771562aed0e10308b63852cedf3ed1a229f8b
[qemu.git] / target-alpha / cpu.h
1 /*
2 * Alpha emulation cpu definitions for qemu.
3 *
4 * Copyright (c) 2007 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #if !defined (__CPU_ALPHA_H__)
21 #define __CPU_ALPHA_H__
22
23 #include "config.h"
24 #include "qemu-common.h"
25
26 #define TARGET_LONG_BITS 64
27
28 #define CPUArchState struct CPUAlphaState
29
30 #include "cpu-defs.h"
31
32 #include "softfloat.h"
33
34 #define TARGET_HAS_ICE 1
35
36 #define ELF_MACHINE EM_ALPHA
37
38 #define ICACHE_LINE_SIZE 32
39 #define DCACHE_LINE_SIZE 32
40
41 #define TARGET_PAGE_BITS 13
42
43 #ifdef CONFIG_USER_ONLY
44 /* ??? The kernel likes to give addresses in high memory. If the host has
45 more virtual address space than the guest, this can lead to impossible
46 allocations. Honor the long-standing assumption that only kernel addrs
47 are negative, but otherwise allow allocations anywhere. This could lead
48 to tricky emulation problems for programs doing tagged addressing, but
49 that's far fewer than encounter the impossible allocation problem. */
50 #define TARGET_PHYS_ADDR_SPACE_BITS 63
51 #define TARGET_VIRT_ADDR_SPACE_BITS 63
52 #else
53 /* ??? EV4 has 34 phys addr bits, EV5 has 40, EV6 has 44. */
54 #define TARGET_PHYS_ADDR_SPACE_BITS 44
55 #define TARGET_VIRT_ADDR_SPACE_BITS (30 + TARGET_PAGE_BITS)
56 #endif
57
58 /* Alpha major type */
59 enum {
60 ALPHA_EV3 = 1,
61 ALPHA_EV4 = 2,
62 ALPHA_SIM = 3,
63 ALPHA_LCA = 4,
64 ALPHA_EV5 = 5, /* 21164 */
65 ALPHA_EV45 = 6, /* 21064A */
66 ALPHA_EV56 = 7, /* 21164A */
67 };
68
69 /* EV4 minor type */
70 enum {
71 ALPHA_EV4_2 = 0,
72 ALPHA_EV4_3 = 1,
73 };
74
75 /* LCA minor type */
76 enum {
77 ALPHA_LCA_1 = 1, /* 21066 */
78 ALPHA_LCA_2 = 2, /* 20166 */
79 ALPHA_LCA_3 = 3, /* 21068 */
80 ALPHA_LCA_4 = 4, /* 21068 */
81 ALPHA_LCA_5 = 5, /* 21066A */
82 ALPHA_LCA_6 = 6, /* 21068A */
83 };
84
85 /* EV5 minor type */
86 enum {
87 ALPHA_EV5_1 = 1, /* Rev BA, CA */
88 ALPHA_EV5_2 = 2, /* Rev DA, EA */
89 ALPHA_EV5_3 = 3, /* Pass 3 */
90 ALPHA_EV5_4 = 4, /* Pass 3.2 */
91 ALPHA_EV5_5 = 5, /* Pass 4 */
92 };
93
94 /* EV45 minor type */
95 enum {
96 ALPHA_EV45_1 = 1, /* Pass 1 */
97 ALPHA_EV45_2 = 2, /* Pass 1.1 */
98 ALPHA_EV45_3 = 3, /* Pass 2 */
99 };
100
101 /* EV56 minor type */
102 enum {
103 ALPHA_EV56_1 = 1, /* Pass 1 */
104 ALPHA_EV56_2 = 2, /* Pass 2 */
105 };
106
107 enum {
108 IMPLVER_2106x = 0, /* EV4, EV45 & LCA45 */
109 IMPLVER_21164 = 1, /* EV5, EV56 & PCA45 */
110 IMPLVER_21264 = 2, /* EV6, EV67 & EV68x */
111 IMPLVER_21364 = 3, /* EV7 & EV79 */
112 };
113
114 enum {
115 AMASK_BWX = 0x00000001,
116 AMASK_FIX = 0x00000002,
117 AMASK_CIX = 0x00000004,
118 AMASK_MVI = 0x00000100,
119 AMASK_TRAP = 0x00000200,
120 AMASK_PREFETCH = 0x00001000,
121 };
122
123 enum {
124 VAX_ROUND_NORMAL = 0,
125 VAX_ROUND_CHOPPED,
126 };
127
128 enum {
129 IEEE_ROUND_NORMAL = 0,
130 IEEE_ROUND_DYNAMIC,
131 IEEE_ROUND_PLUS,
132 IEEE_ROUND_MINUS,
133 IEEE_ROUND_CHOPPED,
134 };
135
136 /* IEEE floating-point operations encoding */
137 /* Trap mode */
138 enum {
139 FP_TRAP_I = 0x0,
140 FP_TRAP_U = 0x1,
141 FP_TRAP_S = 0x4,
142 FP_TRAP_SU = 0x5,
143 FP_TRAP_SUI = 0x7,
144 };
145
146 /* Rounding mode */
147 enum {
148 FP_ROUND_CHOPPED = 0x0,
149 FP_ROUND_MINUS = 0x1,
150 FP_ROUND_NORMAL = 0x2,
151 FP_ROUND_DYNAMIC = 0x3,
152 };
153
154 /* FPCR bits */
155 #define FPCR_SUM (1ULL << 63)
156 #define FPCR_INED (1ULL << 62)
157 #define FPCR_UNFD (1ULL << 61)
158 #define FPCR_UNDZ (1ULL << 60)
159 #define FPCR_DYN_SHIFT 58
160 #define FPCR_DYN_CHOPPED (0ULL << FPCR_DYN_SHIFT)
161 #define FPCR_DYN_MINUS (1ULL << FPCR_DYN_SHIFT)
162 #define FPCR_DYN_NORMAL (2ULL << FPCR_DYN_SHIFT)
163 #define FPCR_DYN_PLUS (3ULL << FPCR_DYN_SHIFT)
164 #define FPCR_DYN_MASK (3ULL << FPCR_DYN_SHIFT)
165 #define FPCR_IOV (1ULL << 57)
166 #define FPCR_INE (1ULL << 56)
167 #define FPCR_UNF (1ULL << 55)
168 #define FPCR_OVF (1ULL << 54)
169 #define FPCR_DZE (1ULL << 53)
170 #define FPCR_INV (1ULL << 52)
171 #define FPCR_OVFD (1ULL << 51)
172 #define FPCR_DZED (1ULL << 50)
173 #define FPCR_INVD (1ULL << 49)
174 #define FPCR_DNZ (1ULL << 48)
175 #define FPCR_DNOD (1ULL << 47)
176 #define FPCR_STATUS_MASK (FPCR_IOV | FPCR_INE | FPCR_UNF \
177 | FPCR_OVF | FPCR_DZE | FPCR_INV)
178
179 /* The silly software trap enables implemented by the kernel emulation.
180 These are more or less architecturally required, since the real hardware
181 has read-as-zero bits in the FPCR when the features aren't implemented.
182 For the purposes of QEMU, we pretend the FPCR can hold everything. */
183 #define SWCR_TRAP_ENABLE_INV (1ULL << 1)
184 #define SWCR_TRAP_ENABLE_DZE (1ULL << 2)
185 #define SWCR_TRAP_ENABLE_OVF (1ULL << 3)
186 #define SWCR_TRAP_ENABLE_UNF (1ULL << 4)
187 #define SWCR_TRAP_ENABLE_INE (1ULL << 5)
188 #define SWCR_TRAP_ENABLE_DNO (1ULL << 6)
189 #define SWCR_TRAP_ENABLE_MASK ((1ULL << 7) - (1ULL << 1))
190
191 #define SWCR_MAP_DMZ (1ULL << 12)
192 #define SWCR_MAP_UMZ (1ULL << 13)
193 #define SWCR_MAP_MASK (SWCR_MAP_DMZ | SWCR_MAP_UMZ)
194
195 #define SWCR_STATUS_INV (1ULL << 17)
196 #define SWCR_STATUS_DZE (1ULL << 18)
197 #define SWCR_STATUS_OVF (1ULL << 19)
198 #define SWCR_STATUS_UNF (1ULL << 20)
199 #define SWCR_STATUS_INE (1ULL << 21)
200 #define SWCR_STATUS_DNO (1ULL << 22)
201 #define SWCR_STATUS_MASK ((1ULL << 23) - (1ULL << 17))
202
203 #define SWCR_MASK (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK | SWCR_STATUS_MASK)
204
205 /* MMU modes definitions */
206
207 /* Alpha has 5 MMU modes: PALcode, kernel, executive, supervisor, and user.
208 The Unix PALcode only exposes the kernel and user modes; presumably
209 executive and supervisor are used by VMS.
210
211 PALcode itself uses physical mode for code and kernel mode for data;
212 there are PALmode instructions that can access data via physical mode
213 or via an os-installed "alternate mode", which is one of the 4 above.
214
215 QEMU does not currently properly distinguish between code/data when
216 looking up addresses. To avoid having to address this issue, our
217 emulated PALcode will cheat and use the KSEG mapping for its code+data
218 rather than physical addresses.
219
220 Moreover, we're only emulating Unix PALcode, and not attempting VMS.
221
222 All of which allows us to drop all but kernel and user modes.
223 Elide the unused MMU modes to save space. */
224
225 #define NB_MMU_MODES 2
226
227 #define MMU_MODE0_SUFFIX _kernel
228 #define MMU_MODE1_SUFFIX _user
229 #define MMU_KERNEL_IDX 0
230 #define MMU_USER_IDX 1
231
232 typedef struct CPUAlphaState CPUAlphaState;
233
234 struct CPUAlphaState {
235 uint64_t ir[31];
236 float64 fir[31];
237 uint64_t pc;
238 uint64_t unique;
239 uint64_t lock_addr;
240 uint64_t lock_st_addr;
241 uint64_t lock_value;
242 float_status fp_status;
243 /* The following fields make up the FPCR, but in FP_STATUS format. */
244 uint8_t fpcr_exc_status;
245 uint8_t fpcr_exc_mask;
246 uint8_t fpcr_dyn_round;
247 uint8_t fpcr_flush_to_zero;
248 uint8_t fpcr_dnod;
249 uint8_t fpcr_undz;
250
251 /* The Internal Processor Registers. Some of these we assume always
252 exist for use in user-mode. */
253 uint8_t ps;
254 uint8_t intr_flag;
255 uint8_t pal_mode;
256 uint8_t fen;
257
258 uint32_t pcc_ofs;
259
260 /* These pass data from the exception logic in the translator and
261 helpers to the OS entry point. This is used for both system
262 emulation and user-mode. */
263 uint64_t trap_arg0;
264 uint64_t trap_arg1;
265 uint64_t trap_arg2;
266
267 #if !defined(CONFIG_USER_ONLY)
268 /* The internal data required by our emulation of the Unix PALcode. */
269 uint64_t exc_addr;
270 uint64_t palbr;
271 uint64_t ptbr;
272 uint64_t vptptr;
273 uint64_t sysval;
274 uint64_t usp;
275 uint64_t shadow[8];
276 uint64_t scratch[24];
277 #endif
278
279 /* This alarm doesn't exist in real hardware; we wish it did. */
280 uint64_t alarm_expire;
281
282 /* Those resources are used only in QEMU core */
283 CPU_COMMON
284
285 int error_code;
286
287 uint32_t features;
288 uint32_t amask;
289 int implver;
290 };
291
292 #define cpu_exec cpu_alpha_exec
293 #define cpu_gen_code cpu_alpha_gen_code
294 #define cpu_signal_handler cpu_alpha_signal_handler
295
296 #include "cpu-all.h"
297 #include "cpu-qom.h"
298
299 enum {
300 FEATURE_ASN = 0x00000001,
301 FEATURE_SPS = 0x00000002,
302 FEATURE_VIRBND = 0x00000004,
303 FEATURE_TBCHK = 0x00000008,
304 };
305
306 enum {
307 EXCP_RESET,
308 EXCP_MCHK,
309 EXCP_SMP_INTERRUPT,
310 EXCP_CLK_INTERRUPT,
311 EXCP_DEV_INTERRUPT,
312 EXCP_MMFAULT,
313 EXCP_UNALIGN,
314 EXCP_OPCDEC,
315 EXCP_ARITH,
316 EXCP_FEN,
317 EXCP_CALL_PAL,
318 /* For Usermode emulation. */
319 EXCP_STL_C,
320 EXCP_STQ_C,
321 };
322
323 /* Alpha-specific interrupt pending bits. */
324 #define CPU_INTERRUPT_TIMER CPU_INTERRUPT_TGT_EXT_0
325 #define CPU_INTERRUPT_SMP CPU_INTERRUPT_TGT_EXT_1
326 #define CPU_INTERRUPT_MCHK CPU_INTERRUPT_TGT_EXT_2
327
328 /* OSF/1 Page table bits. */
329 enum {
330 PTE_VALID = 0x0001,
331 PTE_FOR = 0x0002, /* used for page protection (fault on read) */
332 PTE_FOW = 0x0004, /* used for page protection (fault on write) */
333 PTE_FOE = 0x0008, /* used for page protection (fault on exec) */
334 PTE_ASM = 0x0010,
335 PTE_KRE = 0x0100,
336 PTE_URE = 0x0200,
337 PTE_KWE = 0x1000,
338 PTE_UWE = 0x2000
339 };
340
341 /* Hardware interrupt (entInt) constants. */
342 enum {
343 INT_K_IP,
344 INT_K_CLK,
345 INT_K_MCHK,
346 INT_K_DEV,
347 INT_K_PERF,
348 };
349
350 /* Memory management (entMM) constants. */
351 enum {
352 MM_K_TNV,
353 MM_K_ACV,
354 MM_K_FOR,
355 MM_K_FOE,
356 MM_K_FOW
357 };
358
359 /* Arithmetic exception (entArith) constants. */
360 enum {
361 EXC_M_SWC = 1, /* Software completion */
362 EXC_M_INV = 2, /* Invalid operation */
363 EXC_M_DZE = 4, /* Division by zero */
364 EXC_M_FOV = 8, /* Overflow */
365 EXC_M_UNF = 16, /* Underflow */
366 EXC_M_INE = 32, /* Inexact result */
367 EXC_M_IOV = 64 /* Integer Overflow */
368 };
369
370 /* Processor status constants. */
371 enum {
372 /* Low 3 bits are interrupt mask level. */
373 PS_INT_MASK = 7,
374
375 /* Bits 4 and 5 are the mmu mode. The VMS PALcode uses all 4 modes;
376 The Unix PALcode only uses bit 4. */
377 PS_USER_MODE = 8
378 };
379
380 static inline int cpu_mmu_index(CPUAlphaState *env)
381 {
382 if (env->pal_mode) {
383 return MMU_KERNEL_IDX;
384 } else if (env->ps & PS_USER_MODE) {
385 return MMU_USER_IDX;
386 } else {
387 return MMU_KERNEL_IDX;
388 }
389 }
390
391 enum {
392 IR_V0 = 0,
393 IR_T0 = 1,
394 IR_T1 = 2,
395 IR_T2 = 3,
396 IR_T3 = 4,
397 IR_T4 = 5,
398 IR_T5 = 6,
399 IR_T6 = 7,
400 IR_T7 = 8,
401 IR_S0 = 9,
402 IR_S1 = 10,
403 IR_S2 = 11,
404 IR_S3 = 12,
405 IR_S4 = 13,
406 IR_S5 = 14,
407 IR_S6 = 15,
408 IR_FP = IR_S6,
409 IR_A0 = 16,
410 IR_A1 = 17,
411 IR_A2 = 18,
412 IR_A3 = 19,
413 IR_A4 = 20,
414 IR_A5 = 21,
415 IR_T8 = 22,
416 IR_T9 = 23,
417 IR_T10 = 24,
418 IR_T11 = 25,
419 IR_RA = 26,
420 IR_T12 = 27,
421 IR_PV = IR_T12,
422 IR_AT = 28,
423 IR_GP = 29,
424 IR_SP = 30,
425 IR_ZERO = 31,
426 };
427
428 AlphaCPU *cpu_alpha_init(const char *cpu_model);
429
430 static inline CPUAlphaState *cpu_init(const char *cpu_model)
431 {
432 AlphaCPU *cpu = cpu_alpha_init(cpu_model);
433 if (cpu == NULL) {
434 return NULL;
435 }
436 return &cpu->env;
437 }
438
439 int cpu_alpha_exec(CPUAlphaState *s);
440 /* you can call this signal handler from your SIGBUS and SIGSEGV
441 signal handlers to inform the virtual CPU of exceptions. non zero
442 is returned if the signal was handled by the virtual CPU. */
443 int cpu_alpha_signal_handler(int host_signum, void *pinfo,
444 void *puc);
445 int cpu_alpha_handle_mmu_fault (CPUAlphaState *env, uint64_t address, int rw,
446 int mmu_idx);
447 #define cpu_handle_mmu_fault cpu_alpha_handle_mmu_fault
448 void do_interrupt (CPUAlphaState *env);
449 void do_restore_state(CPUAlphaState *, uintptr_t retaddr);
450 void QEMU_NORETURN dynamic_excp(CPUAlphaState *, uintptr_t, int, int);
451 void QEMU_NORETURN arith_excp(CPUAlphaState *, uintptr_t, int, uint64_t);
452
453 uint64_t cpu_alpha_load_fpcr (CPUAlphaState *env);
454 void cpu_alpha_store_fpcr (CPUAlphaState *env, uint64_t val);
455 #ifndef CONFIG_USER_ONLY
456 void swap_shadow_regs(CPUAlphaState *env);
457 QEMU_NORETURN void cpu_unassigned_access(CPUAlphaState *env1,
458 hwaddr addr, int is_write,
459 int is_exec, int unused, int size);
460 #endif
461
462 /* Bits in TB->FLAGS that control how translation is processed. */
463 enum {
464 TB_FLAGS_PAL_MODE = 1,
465 TB_FLAGS_FEN = 2,
466 TB_FLAGS_USER_MODE = 8,
467
468 TB_FLAGS_AMASK_SHIFT = 4,
469 TB_FLAGS_AMASK_BWX = AMASK_BWX << TB_FLAGS_AMASK_SHIFT,
470 TB_FLAGS_AMASK_FIX = AMASK_FIX << TB_FLAGS_AMASK_SHIFT,
471 TB_FLAGS_AMASK_CIX = AMASK_CIX << TB_FLAGS_AMASK_SHIFT,
472 TB_FLAGS_AMASK_MVI = AMASK_MVI << TB_FLAGS_AMASK_SHIFT,
473 TB_FLAGS_AMASK_TRAP = AMASK_TRAP << TB_FLAGS_AMASK_SHIFT,
474 TB_FLAGS_AMASK_PREFETCH = AMASK_PREFETCH << TB_FLAGS_AMASK_SHIFT,
475 };
476
477 static inline void cpu_get_tb_cpu_state(CPUAlphaState *env, target_ulong *pc,
478 target_ulong *cs_base, int *pflags)
479 {
480 int flags = 0;
481
482 *pc = env->pc;
483 *cs_base = 0;
484
485 if (env->pal_mode) {
486 flags = TB_FLAGS_PAL_MODE;
487 } else {
488 flags = env->ps & PS_USER_MODE;
489 }
490 if (env->fen) {
491 flags |= TB_FLAGS_FEN;
492 }
493 flags |= env->amask << TB_FLAGS_AMASK_SHIFT;
494
495 *pflags = flags;
496 }
497
498 #if defined(CONFIG_USER_ONLY)
499 static inline void cpu_clone_regs(CPUAlphaState *env, target_ulong newsp)
500 {
501 if (newsp) {
502 env->ir[IR_SP] = newsp;
503 }
504 env->ir[IR_V0] = 0;
505 env->ir[IR_A3] = 0;
506 }
507
508 static inline void cpu_set_tls(CPUAlphaState *env, target_ulong newtls)
509 {
510 env->unique = newtls;
511 }
512 #endif
513
514 static inline bool cpu_has_work(CPUState *cpu)
515 {
516 CPUAlphaState *env = &ALPHA_CPU(cpu)->env;
517
518 /* Here we are checking to see if the CPU should wake up from HALT.
519 We will have gotten into this state only for WTINT from PALmode. */
520 /* ??? I'm not sure how the IPL state works with WTINT to keep a CPU
521 asleep even if (some) interrupts have been asserted. For now,
522 assume that if a CPU really wants to stay asleep, it will mask
523 interrupts at the chipset level, which will prevent these bits
524 from being set in the first place. */
525 return env->interrupt_request & (CPU_INTERRUPT_HARD
526 | CPU_INTERRUPT_TIMER
527 | CPU_INTERRUPT_SMP
528 | CPU_INTERRUPT_MCHK);
529 }
530
531 #include "exec-all.h"
532
533 static inline void cpu_pc_from_tb(CPUAlphaState *env, TranslationBlock *tb)
534 {
535 env->pc = tb->pc;
536 }
537
538 #endif /* !defined (__CPU_ALPHA_H__) */