]> git.proxmox.com Git - qemu.git/blob - target-alpha/op_helper.c
7ad1b3d55c59f9e2bb1ef515f722b524f29e96ae
[qemu.git] / target-alpha / op_helper.c
1 /*
2 * Alpha emulation cpu micro-operations helpers for qemu.
3 *
4 * Copyright (c) 2007 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
19 */
20
21 #include "exec.h"
22 #include "host-utils.h"
23 #include "softfloat.h"
24 #include "helper.h"
25
26 void helper_tb_flush (void)
27 {
28 tb_flush(env);
29 }
30
31 /*****************************************************************************/
32 /* Exceptions processing helpers */
33 void helper_excp (int excp, int error)
34 {
35 env->exception_index = excp;
36 env->error_code = error;
37 cpu_loop_exit();
38 }
39
40 uint64_t helper_amask (uint64_t arg)
41 {
42 switch (env->implver) {
43 case IMPLVER_2106x:
44 /* EV4, EV45, LCA, LCA45 & EV5 */
45 break;
46 case IMPLVER_21164:
47 case IMPLVER_21264:
48 case IMPLVER_21364:
49 arg &= ~env->amask;
50 break;
51 }
52 return arg;
53 }
54
55 uint64_t helper_load_pcc (void)
56 {
57 /* XXX: TODO */
58 return 0;
59 }
60
61 uint64_t helper_load_implver (void)
62 {
63 return env->implver;
64 }
65
66 uint64_t helper_load_fpcr (void)
67 {
68 uint64_t ret = 0;
69 #ifdef CONFIG_SOFTFLOAT
70 ret |= env->fp_status.float_exception_flags << 52;
71 if (env->fp_status.float_exception_flags)
72 ret |= 1ULL << 63;
73 env->ipr[IPR_EXC_SUM] &= ~0x3E:
74 env->ipr[IPR_EXC_SUM] |= env->fp_status.float_exception_flags << 1;
75 #endif
76 switch (env->fp_status.float_rounding_mode) {
77 case float_round_nearest_even:
78 ret |= 2ULL << 58;
79 break;
80 case float_round_down:
81 ret |= 1ULL << 58;
82 break;
83 case float_round_up:
84 ret |= 3ULL << 58;
85 break;
86 case float_round_to_zero:
87 break;
88 }
89 return ret;
90 }
91
92 void helper_store_fpcr (uint64_t val)
93 {
94 #ifdef CONFIG_SOFTFLOAT
95 set_float_exception_flags((val >> 52) & 0x3F, &FP_STATUS);
96 #endif
97 switch ((val >> 58) & 3) {
98 case 0:
99 set_float_rounding_mode(float_round_to_zero, &FP_STATUS);
100 break;
101 case 1:
102 set_float_rounding_mode(float_round_down, &FP_STATUS);
103 break;
104 case 2:
105 set_float_rounding_mode(float_round_nearest_even, &FP_STATUS);
106 break;
107 case 3:
108 set_float_rounding_mode(float_round_up, &FP_STATUS);
109 break;
110 }
111 }
112
113 spinlock_t intr_cpu_lock = SPIN_LOCK_UNLOCKED;
114
115 uint64_t helper_rs(void)
116 {
117 uint64_t tmp;
118
119 spin_lock(&intr_cpu_lock);
120 tmp = env->intr_flag;
121 env->intr_flag = 1;
122 spin_unlock(&intr_cpu_lock);
123
124 return tmp;
125 }
126
127 uint64_t helper_rc(void)
128 {
129 uint64_t tmp;
130
131 spin_lock(&intr_cpu_lock);
132 tmp = env->intr_flag;
133 env->intr_flag = 0;
134 spin_unlock(&intr_cpu_lock);
135
136 return tmp;
137 }
138
139 uint64_t helper_addqv (uint64_t op1, uint64_t op2)
140 {
141 uint64_t tmp = op1;
142 op1 += op2;
143 if (unlikely((tmp ^ op2 ^ (-1ULL)) & (tmp ^ op1) & (1ULL << 63))) {
144 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
145 }
146 return op1;
147 }
148
149 uint64_t helper_addlv (uint64_t op1, uint64_t op2)
150 {
151 uint64_t tmp = op1;
152 op1 = (uint32_t)(op1 + op2);
153 if (unlikely((tmp ^ op2 ^ (-1UL)) & (tmp ^ op1) & (1UL << 31))) {
154 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
155 }
156 return op1;
157 }
158
159 uint64_t helper_subqv (uint64_t op1, uint64_t op2)
160 {
161 uint64_t tmp = op1;
162 op1 -= op2;
163 if (unlikely(((~tmp) ^ op1 ^ (-1ULL)) & ((~tmp) ^ op2) & (1ULL << 63))) {
164 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
165 }
166 return op1;
167 }
168
169 uint64_t helper_sublv (uint64_t op1, uint64_t op2)
170 {
171 uint64_t tmp = op1;
172 op1 = (uint32_t)(op1 - op2);
173 if (unlikely(((~tmp) ^ op1 ^ (-1UL)) & ((~tmp) ^ op2) & (1UL << 31))) {
174 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
175 }
176 return op1;
177 }
178
179 uint64_t helper_mullv (uint64_t op1, uint64_t op2)
180 {
181 int64_t res = (int64_t)op1 * (int64_t)op2;
182
183 if (unlikely((int32_t)res != res)) {
184 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
185 }
186 return (int64_t)((int32_t)res);
187 }
188
189 uint64_t helper_mulqv (uint64_t op1, uint64_t op2)
190 {
191 uint64_t tl, th;
192
193 muls64(&tl, &th, op1, op2);
194 /* If th != 0 && th != -1, then we had an overflow */
195 if (unlikely((th + 1) > 1)) {
196 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
197 }
198 return tl;
199 }
200
201 uint64_t helper_umulh (uint64_t op1, uint64_t op2)
202 {
203 uint64_t tl, th;
204
205 mulu64(&tl, &th, op1, op2);
206 return th;
207 }
208
209 uint64_t helper_ctpop (uint64_t arg)
210 {
211 return ctpop64(arg);
212 }
213
214 uint64_t helper_ctlz (uint64_t arg)
215 {
216 return clz64(arg);
217 }
218
219 uint64_t helper_cttz (uint64_t arg)
220 {
221 return ctz64(arg);
222 }
223
224 static always_inline uint64_t byte_zap (uint64_t op, uint8_t mskb)
225 {
226 uint64_t mask;
227
228 mask = 0;
229 mask |= ((mskb >> 0) & 1) * 0x00000000000000FFULL;
230 mask |= ((mskb >> 1) & 1) * 0x000000000000FF00ULL;
231 mask |= ((mskb >> 2) & 1) * 0x0000000000FF0000ULL;
232 mask |= ((mskb >> 3) & 1) * 0x00000000FF000000ULL;
233 mask |= ((mskb >> 4) & 1) * 0x000000FF00000000ULL;
234 mask |= ((mskb >> 5) & 1) * 0x0000FF0000000000ULL;
235 mask |= ((mskb >> 6) & 1) * 0x00FF000000000000ULL;
236 mask |= ((mskb >> 7) & 1) * 0xFF00000000000000ULL;
237
238 return op & ~mask;
239 }
240
241 uint64_t helper_mskbl(uint64_t val, uint64_t mask)
242 {
243 return byte_zap(val, 0x01 << (mask & 7));
244 }
245
246 uint64_t helper_insbl(uint64_t val, uint64_t mask)
247 {
248 val <<= (mask & 7) * 8;
249 return byte_zap(val, ~(0x01 << (mask & 7)));
250 }
251
252 uint64_t helper_mskwl(uint64_t val, uint64_t mask)
253 {
254 return byte_zap(val, 0x03 << (mask & 7));
255 }
256
257 uint64_t helper_inswl(uint64_t val, uint64_t mask)
258 {
259 val <<= (mask & 7) * 8;
260 return byte_zap(val, ~(0x03 << (mask & 7)));
261 }
262
263 uint64_t helper_mskll(uint64_t val, uint64_t mask)
264 {
265 return byte_zap(val, 0x0F << (mask & 7));
266 }
267
268 uint64_t helper_insll(uint64_t val, uint64_t mask)
269 {
270 val <<= (mask & 7) * 8;
271 return byte_zap(val, ~(0x0F << (mask & 7)));
272 }
273
274 uint64_t helper_zap(uint64_t val, uint64_t mask)
275 {
276 return byte_zap(val, mask);
277 }
278
279 uint64_t helper_zapnot(uint64_t val, uint64_t mask)
280 {
281 return byte_zap(val, ~mask);
282 }
283
284 uint64_t helper_mskql(uint64_t val, uint64_t mask)
285 {
286 return byte_zap(val, 0xFF << (mask & 7));
287 }
288
289 uint64_t helper_insql(uint64_t val, uint64_t mask)
290 {
291 val <<= (mask & 7) * 8;
292 return byte_zap(val, ~(0xFF << (mask & 7)));
293 }
294
295 uint64_t helper_mskwh(uint64_t val, uint64_t mask)
296 {
297 return byte_zap(val, (0x03 << (mask & 7)) >> 8);
298 }
299
300 uint64_t helper_inswh(uint64_t val, uint64_t mask)
301 {
302 val >>= 64 - ((mask & 7) * 8);
303 return byte_zap(val, ~((0x03 << (mask & 7)) >> 8));
304 }
305
306 uint64_t helper_msklh(uint64_t val, uint64_t mask)
307 {
308 return byte_zap(val, (0x0F << (mask & 7)) >> 8);
309 }
310
311 uint64_t helper_inslh(uint64_t val, uint64_t mask)
312 {
313 val >>= 64 - ((mask & 7) * 8);
314 return byte_zap(val, ~((0x0F << (mask & 7)) >> 8));
315 }
316
317 uint64_t helper_mskqh(uint64_t val, uint64_t mask)
318 {
319 return byte_zap(val, (0xFF << (mask & 7)) >> 8);
320 }
321
322 uint64_t helper_insqh(uint64_t val, uint64_t mask)
323 {
324 val >>= 64 - ((mask & 7) * 8);
325 return byte_zap(val, ~((0xFF << (mask & 7)) >> 8));
326 }
327
328 uint64_t helper_cmpbge (uint64_t op1, uint64_t op2)
329 {
330 uint8_t opa, opb, res;
331 int i;
332
333 res = 0;
334 for (i = 0; i < 8; i++) {
335 opa = op1 >> (i * 8);
336 opb = op2 >> (i * 8);
337 if (opa >= opb)
338 res |= 1 << i;
339 }
340 return res;
341 }
342
343 /* Floating point helpers */
344
345 /* F floating (VAX) */
346 static always_inline uint64_t float32_to_f (float32 fa)
347 {
348 uint64_t r, exp, mant, sig;
349 CPU_FloatU a;
350
351 a.f = fa;
352 sig = ((uint64_t)a.l & 0x80000000) << 32;
353 exp = (a.l >> 23) & 0xff;
354 mant = ((uint64_t)a.l & 0x007fffff) << 29;
355
356 if (exp == 255) {
357 /* NaN or infinity */
358 r = 1; /* VAX dirty zero */
359 } else if (exp == 0) {
360 if (mant == 0) {
361 /* Zero */
362 r = 0;
363 } else {
364 /* Denormalized */
365 r = sig | ((exp + 1) << 52) | mant;
366 }
367 } else {
368 if (exp >= 253) {
369 /* Overflow */
370 r = 1; /* VAX dirty zero */
371 } else {
372 r = sig | ((exp + 2) << 52);
373 }
374 }
375
376 return r;
377 }
378
379 static always_inline float32 f_to_float32 (uint64_t a)
380 {
381 uint32_t exp, mant_sig;
382 CPU_FloatU r;
383
384 exp = ((a >> 55) & 0x80) | ((a >> 52) & 0x7f);
385 mant_sig = ((a >> 32) & 0x80000000) | ((a >> 29) & 0x007fffff);
386
387 if (unlikely(!exp && mant_sig)) {
388 /* Reserved operands / Dirty zero */
389 helper_excp(EXCP_OPCDEC, 0);
390 }
391
392 if (exp < 3) {
393 /* Underflow */
394 r.l = 0;
395 } else {
396 r.l = ((exp - 2) << 23) | mant_sig;
397 }
398
399 return r.f;
400 }
401
402 uint32_t helper_f_to_memory (uint64_t a)
403 {
404 uint32_t r;
405 r = (a & 0x00001fffe0000000ull) >> 13;
406 r |= (a & 0x07ffe00000000000ull) >> 45;
407 r |= (a & 0xc000000000000000ull) >> 48;
408 return r;
409 }
410
411 uint64_t helper_memory_to_f (uint32_t a)
412 {
413 uint64_t r;
414 r = ((uint64_t)(a & 0x0000c000)) << 48;
415 r |= ((uint64_t)(a & 0x003fffff)) << 45;
416 r |= ((uint64_t)(a & 0xffff0000)) << 13;
417 if (!(a & 0x00004000))
418 r |= 0x7ll << 59;
419 return r;
420 }
421
422 uint64_t helper_addf (uint64_t a, uint64_t b)
423 {
424 float32 fa, fb, fr;
425
426 fa = f_to_float32(a);
427 fb = f_to_float32(b);
428 fr = float32_add(fa, fb, &FP_STATUS);
429 return float32_to_f(fr);
430 }
431
432 uint64_t helper_subf (uint64_t a, uint64_t b)
433 {
434 float32 fa, fb, fr;
435
436 fa = f_to_float32(a);
437 fb = f_to_float32(b);
438 fr = float32_sub(fa, fb, &FP_STATUS);
439 return float32_to_f(fr);
440 }
441
442 uint64_t helper_mulf (uint64_t a, uint64_t b)
443 {
444 float32 fa, fb, fr;
445
446 fa = f_to_float32(a);
447 fb = f_to_float32(b);
448 fr = float32_mul(fa, fb, &FP_STATUS);
449 return float32_to_f(fr);
450 }
451
452 uint64_t helper_divf (uint64_t a, uint64_t b)
453 {
454 float32 fa, fb, fr;
455
456 fa = f_to_float32(a);
457 fb = f_to_float32(b);
458 fr = float32_div(fa, fb, &FP_STATUS);
459 return float32_to_f(fr);
460 }
461
462 uint64_t helper_sqrtf (uint64_t t)
463 {
464 float32 ft, fr;
465
466 ft = f_to_float32(t);
467 fr = float32_sqrt(ft, &FP_STATUS);
468 return float32_to_f(fr);
469 }
470
471
472 /* G floating (VAX) */
473 static always_inline uint64_t float64_to_g (float64 fa)
474 {
475 uint64_t r, exp, mant, sig;
476 CPU_DoubleU a;
477
478 a.d = fa;
479 sig = a.ll & 0x8000000000000000ull;
480 exp = (a.ll >> 52) & 0x7ff;
481 mant = a.ll & 0x000fffffffffffffull;
482
483 if (exp == 2047) {
484 /* NaN or infinity */
485 r = 1; /* VAX dirty zero */
486 } else if (exp == 0) {
487 if (mant == 0) {
488 /* Zero */
489 r = 0;
490 } else {
491 /* Denormalized */
492 r = sig | ((exp + 1) << 52) | mant;
493 }
494 } else {
495 if (exp >= 2045) {
496 /* Overflow */
497 r = 1; /* VAX dirty zero */
498 } else {
499 r = sig | ((exp + 2) << 52);
500 }
501 }
502
503 return r;
504 }
505
506 static always_inline float64 g_to_float64 (uint64_t a)
507 {
508 uint64_t exp, mant_sig;
509 CPU_DoubleU r;
510
511 exp = (a >> 52) & 0x7ff;
512 mant_sig = a & 0x800fffffffffffffull;
513
514 if (!exp && mant_sig) {
515 /* Reserved operands / Dirty zero */
516 helper_excp(EXCP_OPCDEC, 0);
517 }
518
519 if (exp < 3) {
520 /* Underflow */
521 r.ll = 0;
522 } else {
523 r.ll = ((exp - 2) << 52) | mant_sig;
524 }
525
526 return r.d;
527 }
528
529 uint64_t helper_g_to_memory (uint64_t a)
530 {
531 uint64_t r;
532 r = (a & 0x000000000000ffffull) << 48;
533 r |= (a & 0x00000000ffff0000ull) << 16;
534 r |= (a & 0x0000ffff00000000ull) >> 16;
535 r |= (a & 0xffff000000000000ull) >> 48;
536 return r;
537 }
538
539 uint64_t helper_memory_to_g (uint64_t a)
540 {
541 uint64_t r;
542 r = (a & 0x000000000000ffffull) << 48;
543 r |= (a & 0x00000000ffff0000ull) << 16;
544 r |= (a & 0x0000ffff00000000ull) >> 16;
545 r |= (a & 0xffff000000000000ull) >> 48;
546 return r;
547 }
548
549 uint64_t helper_addg (uint64_t a, uint64_t b)
550 {
551 float64 fa, fb, fr;
552
553 fa = g_to_float64(a);
554 fb = g_to_float64(b);
555 fr = float64_add(fa, fb, &FP_STATUS);
556 return float64_to_g(fr);
557 }
558
559 uint64_t helper_subg (uint64_t a, uint64_t b)
560 {
561 float64 fa, fb, fr;
562
563 fa = g_to_float64(a);
564 fb = g_to_float64(b);
565 fr = float64_sub(fa, fb, &FP_STATUS);
566 return float64_to_g(fr);
567 }
568
569 uint64_t helper_mulg (uint64_t a, uint64_t b)
570 {
571 float64 fa, fb, fr;
572
573 fa = g_to_float64(a);
574 fb = g_to_float64(b);
575 fr = float64_mul(fa, fb, &FP_STATUS);
576 return float64_to_g(fr);
577 }
578
579 uint64_t helper_divg (uint64_t a, uint64_t b)
580 {
581 float64 fa, fb, fr;
582
583 fa = g_to_float64(a);
584 fb = g_to_float64(b);
585 fr = float64_div(fa, fb, &FP_STATUS);
586 return float64_to_g(fr);
587 }
588
589 uint64_t helper_sqrtg (uint64_t a)
590 {
591 float64 fa, fr;
592
593 fa = g_to_float64(a);
594 fr = float64_sqrt(fa, &FP_STATUS);
595 return float64_to_g(fr);
596 }
597
598
599 /* S floating (single) */
600 static always_inline uint64_t float32_to_s (float32 fa)
601 {
602 CPU_FloatU a;
603 uint64_t r;
604
605 a.f = fa;
606
607 r = (((uint64_t)(a.l & 0xc0000000)) << 32) | (((uint64_t)(a.l & 0x3fffffff)) << 29);
608 if (((a.l & 0x7f800000) != 0x7f800000) && (!(a.l & 0x40000000)))
609 r |= 0x7ll << 59;
610 return r;
611 }
612
613 static always_inline float32 s_to_float32 (uint64_t a)
614 {
615 CPU_FloatU r;
616 r.l = ((a >> 32) & 0xc0000000) | ((a >> 29) & 0x3fffffff);
617 return r.f;
618 }
619
620 uint32_t helper_s_to_memory (uint64_t a)
621 {
622 /* Memory format is the same as float32 */
623 float32 fa = s_to_float32(a);
624 return *(uint32_t*)(&fa);
625 }
626
627 uint64_t helper_memory_to_s (uint32_t a)
628 {
629 /* Memory format is the same as float32 */
630 return float32_to_s(*(float32*)(&a));
631 }
632
633 uint64_t helper_adds (uint64_t a, uint64_t b)
634 {
635 float32 fa, fb, fr;
636
637 fa = s_to_float32(a);
638 fb = s_to_float32(b);
639 fr = float32_add(fa, fb, &FP_STATUS);
640 return float32_to_s(fr);
641 }
642
643 uint64_t helper_subs (uint64_t a, uint64_t b)
644 {
645 float32 fa, fb, fr;
646
647 fa = s_to_float32(a);
648 fb = s_to_float32(b);
649 fr = float32_sub(fa, fb, &FP_STATUS);
650 return float32_to_s(fr);
651 }
652
653 uint64_t helper_muls (uint64_t a, uint64_t b)
654 {
655 float32 fa, fb, fr;
656
657 fa = s_to_float32(a);
658 fb = s_to_float32(b);
659 fr = float32_mul(fa, fb, &FP_STATUS);
660 return float32_to_s(fr);
661 }
662
663 uint64_t helper_divs (uint64_t a, uint64_t b)
664 {
665 float32 fa, fb, fr;
666
667 fa = s_to_float32(a);
668 fb = s_to_float32(b);
669 fr = float32_div(fa, fb, &FP_STATUS);
670 return float32_to_s(fr);
671 }
672
673 uint64_t helper_sqrts (uint64_t a)
674 {
675 float32 fa, fr;
676
677 fa = s_to_float32(a);
678 fr = float32_sqrt(fa, &FP_STATUS);
679 return float32_to_s(fr);
680 }
681
682
683 /* T floating (double) */
684 static always_inline float64 t_to_float64 (uint64_t a)
685 {
686 /* Memory format is the same as float64 */
687 CPU_DoubleU r;
688 r.ll = a;
689 return r.d;
690 }
691
692 static always_inline uint64_t float64_to_t (float64 fa)
693 {
694 /* Memory format is the same as float64 */
695 CPU_DoubleU r;
696 r.d = fa;
697 return r.ll;
698 }
699
700 uint64_t helper_addt (uint64_t a, uint64_t b)
701 {
702 float64 fa, fb, fr;
703
704 fa = t_to_float64(a);
705 fb = t_to_float64(b);
706 fr = float64_add(fa, fb, &FP_STATUS);
707 return float64_to_t(fr);
708 }
709
710 uint64_t helper_subt (uint64_t a, uint64_t b)
711 {
712 float64 fa, fb, fr;
713
714 fa = t_to_float64(a);
715 fb = t_to_float64(b);
716 fr = float64_sub(fa, fb, &FP_STATUS);
717 return float64_to_t(fr);
718 }
719
720 uint64_t helper_mult (uint64_t a, uint64_t b)
721 {
722 float64 fa, fb, fr;
723
724 fa = t_to_float64(a);
725 fb = t_to_float64(b);
726 fr = float64_mul(fa, fb, &FP_STATUS);
727 return float64_to_t(fr);
728 }
729
730 uint64_t helper_divt (uint64_t a, uint64_t b)
731 {
732 float64 fa, fb, fr;
733
734 fa = t_to_float64(a);
735 fb = t_to_float64(b);
736 fr = float64_div(fa, fb, &FP_STATUS);
737 return float64_to_t(fr);
738 }
739
740 uint64_t helper_sqrtt (uint64_t a)
741 {
742 float64 fa, fr;
743
744 fa = t_to_float64(a);
745 fr = float64_sqrt(fa, &FP_STATUS);
746 return float64_to_t(fr);
747 }
748
749
750 /* Sign copy */
751 uint64_t helper_cpys(uint64_t a, uint64_t b)
752 {
753 return (a & 0x8000000000000000ULL) | (b & ~0x8000000000000000ULL);
754 }
755
756 uint64_t helper_cpysn(uint64_t a, uint64_t b)
757 {
758 return ((~a) & 0x8000000000000000ULL) | (b & ~0x8000000000000000ULL);
759 }
760
761 uint64_t helper_cpyse(uint64_t a, uint64_t b)
762 {
763 return (a & 0xFFF0000000000000ULL) | (b & ~0xFFF0000000000000ULL);
764 }
765
766
767 /* Comparisons */
768 uint64_t helper_cmptun (uint64_t a, uint64_t b)
769 {
770 float64 fa, fb;
771
772 fa = t_to_float64(a);
773 fb = t_to_float64(b);
774
775 if (float64_is_nan(fa) || float64_is_nan(fb))
776 return 0x4000000000000000ULL;
777 else
778 return 0;
779 }
780
781 uint64_t helper_cmpteq(uint64_t a, uint64_t b)
782 {
783 float64 fa, fb;
784
785 fa = t_to_float64(a);
786 fb = t_to_float64(b);
787
788 if (float64_eq(fa, fb, &FP_STATUS))
789 return 0x4000000000000000ULL;
790 else
791 return 0;
792 }
793
794 uint64_t helper_cmptle(uint64_t a, uint64_t b)
795 {
796 float64 fa, fb;
797
798 fa = t_to_float64(a);
799 fb = t_to_float64(b);
800
801 if (float64_le(fa, fb, &FP_STATUS))
802 return 0x4000000000000000ULL;
803 else
804 return 0;
805 }
806
807 uint64_t helper_cmptlt(uint64_t a, uint64_t b)
808 {
809 float64 fa, fb;
810
811 fa = t_to_float64(a);
812 fb = t_to_float64(b);
813
814 if (float64_lt(fa, fb, &FP_STATUS))
815 return 0x4000000000000000ULL;
816 else
817 return 0;
818 }
819
820 uint64_t helper_cmpgeq(uint64_t a, uint64_t b)
821 {
822 float64 fa, fb;
823
824 fa = g_to_float64(a);
825 fb = g_to_float64(b);
826
827 if (float64_eq(fa, fb, &FP_STATUS))
828 return 0x4000000000000000ULL;
829 else
830 return 0;
831 }
832
833 uint64_t helper_cmpgle(uint64_t a, uint64_t b)
834 {
835 float64 fa, fb;
836
837 fa = g_to_float64(a);
838 fb = g_to_float64(b);
839
840 if (float64_le(fa, fb, &FP_STATUS))
841 return 0x4000000000000000ULL;
842 else
843 return 0;
844 }
845
846 uint64_t helper_cmpglt(uint64_t a, uint64_t b)
847 {
848 float64 fa, fb;
849
850 fa = g_to_float64(a);
851 fb = g_to_float64(b);
852
853 if (float64_lt(fa, fb, &FP_STATUS))
854 return 0x4000000000000000ULL;
855 else
856 return 0;
857 }
858
859 uint64_t helper_cmpfeq (uint64_t a)
860 {
861 return !(a & 0x7FFFFFFFFFFFFFFFULL);
862 }
863
864 uint64_t helper_cmpfne (uint64_t a)
865 {
866 return (a & 0x7FFFFFFFFFFFFFFFULL);
867 }
868
869 uint64_t helper_cmpflt (uint64_t a)
870 {
871 return (a & 0x8000000000000000ULL) && (a & 0x7FFFFFFFFFFFFFFFULL);
872 }
873
874 uint64_t helper_cmpfle (uint64_t a)
875 {
876 return (a & 0x8000000000000000ULL) || !(a & 0x7FFFFFFFFFFFFFFFULL);
877 }
878
879 uint64_t helper_cmpfgt (uint64_t a)
880 {
881 return !(a & 0x8000000000000000ULL) && (a & 0x7FFFFFFFFFFFFFFFULL);
882 }
883
884 uint64_t helper_cmpfge (uint64_t a)
885 {
886 return !(a & 0x8000000000000000ULL) || !(a & 0x7FFFFFFFFFFFFFFFULL);
887 }
888
889
890 /* Floating point format conversion */
891 uint64_t helper_cvtts (uint64_t a)
892 {
893 float64 fa;
894 float32 fr;
895
896 fa = t_to_float64(a);
897 fr = float64_to_float32(fa, &FP_STATUS);
898 return float32_to_s(fr);
899 }
900
901 uint64_t helper_cvtst (uint64_t a)
902 {
903 float32 fa;
904 float64 fr;
905
906 fa = s_to_float32(a);
907 fr = float32_to_float64(fa, &FP_STATUS);
908 return float64_to_t(fr);
909 }
910
911 uint64_t helper_cvtqs (uint64_t a)
912 {
913 float32 fr = int64_to_float32(a, &FP_STATUS);
914 return float32_to_s(fr);
915 }
916
917 uint64_t helper_cvttq (uint64_t a)
918 {
919 float64 fa = t_to_float64(a);
920 return float64_to_int64_round_to_zero(fa, &FP_STATUS);
921 }
922
923 uint64_t helper_cvtqt (uint64_t a)
924 {
925 float64 fr = int64_to_float64(a, &FP_STATUS);
926 return float64_to_t(fr);
927 }
928
929 uint64_t helper_cvtqf (uint64_t a)
930 {
931 float32 fr = int64_to_float32(a, &FP_STATUS);
932 return float32_to_f(fr);
933 }
934
935 uint64_t helper_cvtgf (uint64_t a)
936 {
937 float64 fa;
938 float32 fr;
939
940 fa = g_to_float64(a);
941 fr = float64_to_float32(fa, &FP_STATUS);
942 return float32_to_f(fr);
943 }
944
945 uint64_t helper_cvtgq (uint64_t a)
946 {
947 float64 fa = g_to_float64(a);
948 return float64_to_int64_round_to_zero(fa, &FP_STATUS);
949 }
950
951 uint64_t helper_cvtqg (uint64_t a)
952 {
953 float64 fr;
954 fr = int64_to_float64(a, &FP_STATUS);
955 return float64_to_g(fr);
956 }
957
958 uint64_t helper_cvtlq (uint64_t a)
959 {
960 return (int64_t)((int32_t)((a >> 32) | ((a >> 29) & 0x3FFFFFFF)));
961 }
962
963 static always_inline uint64_t __helper_cvtql (uint64_t a, int s, int v)
964 {
965 uint64_t r;
966
967 r = ((uint64_t)(a & 0xC0000000)) << 32;
968 r |= ((uint64_t)(a & 0x7FFFFFFF)) << 29;
969
970 if (v && (int64_t)((int32_t)r) != (int64_t)r) {
971 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
972 }
973 if (s) {
974 /* TODO */
975 }
976 return r;
977 }
978
979 uint64_t helper_cvtql (uint64_t a)
980 {
981 return __helper_cvtql(a, 0, 0);
982 }
983
984 uint64_t helper_cvtqlv (uint64_t a)
985 {
986 return __helper_cvtql(a, 0, 1);
987 }
988
989 uint64_t helper_cvtqlsv (uint64_t a)
990 {
991 return __helper_cvtql(a, 1, 1);
992 }
993
994 /* PALcode support special instructions */
995 #if !defined (CONFIG_USER_ONLY)
996 void helper_hw_rei (void)
997 {
998 env->pc = env->ipr[IPR_EXC_ADDR] & ~3;
999 env->ipr[IPR_EXC_ADDR] = env->ipr[IPR_EXC_ADDR] & 1;
1000 /* XXX: re-enable interrupts and memory mapping */
1001 }
1002
1003 void helper_hw_ret (uint64_t a)
1004 {
1005 env->pc = a & ~3;
1006 env->ipr[IPR_EXC_ADDR] = a & 1;
1007 /* XXX: re-enable interrupts and memory mapping */
1008 }
1009
1010 uint64_t helper_mfpr (int iprn, uint64_t val)
1011 {
1012 uint64_t tmp;
1013
1014 if (cpu_alpha_mfpr(env, iprn, &tmp) == 0)
1015 val = tmp;
1016
1017 return val;
1018 }
1019
1020 void helper_mtpr (int iprn, uint64_t val)
1021 {
1022 cpu_alpha_mtpr(env, iprn, val, NULL);
1023 }
1024
1025 void helper_set_alt_mode (void)
1026 {
1027 env->saved_mode = env->ps & 0xC;
1028 env->ps = (env->ps & ~0xC) | (env->ipr[IPR_ALT_MODE] & 0xC);
1029 }
1030
1031 void helper_restore_mode (void)
1032 {
1033 env->ps = (env->ps & ~0xC) | env->saved_mode;
1034 }
1035
1036 #endif
1037
1038 /*****************************************************************************/
1039 /* Softmmu support */
1040 #if !defined (CONFIG_USER_ONLY)
1041
1042 /* XXX: the two following helpers are pure hacks.
1043 * Hopefully, we emulate the PALcode, then we should never see
1044 * HW_LD / HW_ST instructions.
1045 */
1046 uint64_t helper_ld_virt_to_phys (uint64_t virtaddr)
1047 {
1048 uint64_t tlb_addr, physaddr;
1049 int index, mmu_idx;
1050 void *retaddr;
1051
1052 mmu_idx = cpu_mmu_index(env);
1053 index = (virtaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1054 redo:
1055 tlb_addr = env->tlb_table[mmu_idx][index].addr_read;
1056 if ((virtaddr & TARGET_PAGE_MASK) ==
1057 (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1058 physaddr = virtaddr + env->tlb_table[mmu_idx][index].addend;
1059 } else {
1060 /* the page is not in the TLB : fill it */
1061 retaddr = GETPC();
1062 tlb_fill(virtaddr, 0, mmu_idx, retaddr);
1063 goto redo;
1064 }
1065 return physaddr;
1066 }
1067
1068 uint64_t helper_st_virt_to_phys (uint64_t virtaddr)
1069 {
1070 uint64_t tlb_addr, physaddr;
1071 int index, mmu_idx;
1072 void *retaddr;
1073
1074 mmu_idx = cpu_mmu_index(env);
1075 index = (virtaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1076 redo:
1077 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
1078 if ((virtaddr & TARGET_PAGE_MASK) ==
1079 (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1080 physaddr = virtaddr + env->tlb_table[mmu_idx][index].addend;
1081 } else {
1082 /* the page is not in the TLB : fill it */
1083 retaddr = GETPC();
1084 tlb_fill(virtaddr, 1, mmu_idx, retaddr);
1085 goto redo;
1086 }
1087 return physaddr;
1088 }
1089
1090 void helper_ldl_raw(uint64_t t0, uint64_t t1)
1091 {
1092 ldl_raw(t1, t0);
1093 }
1094
1095 void helper_ldq_raw(uint64_t t0, uint64_t t1)
1096 {
1097 ldq_raw(t1, t0);
1098 }
1099
1100 void helper_ldl_l_raw(uint64_t t0, uint64_t t1)
1101 {
1102 env->lock = t1;
1103 ldl_raw(t1, t0);
1104 }
1105
1106 void helper_ldq_l_raw(uint64_t t0, uint64_t t1)
1107 {
1108 env->lock = t1;
1109 ldl_raw(t1, t0);
1110 }
1111
1112 void helper_ldl_kernel(uint64_t t0, uint64_t t1)
1113 {
1114 ldl_kernel(t1, t0);
1115 }
1116
1117 void helper_ldq_kernel(uint64_t t0, uint64_t t1)
1118 {
1119 ldq_kernel(t1, t0);
1120 }
1121
1122 void helper_ldl_data(uint64_t t0, uint64_t t1)
1123 {
1124 ldl_data(t1, t0);
1125 }
1126
1127 void helper_ldq_data(uint64_t t0, uint64_t t1)
1128 {
1129 ldq_data(t1, t0);
1130 }
1131
1132 void helper_stl_raw(uint64_t t0, uint64_t t1)
1133 {
1134 stl_raw(t1, t0);
1135 }
1136
1137 void helper_stq_raw(uint64_t t0, uint64_t t1)
1138 {
1139 stq_raw(t1, t0);
1140 }
1141
1142 uint64_t helper_stl_c_raw(uint64_t t0, uint64_t t1)
1143 {
1144 uint64_t ret;
1145
1146 if (t1 == env->lock) {
1147 stl_raw(t1, t0);
1148 ret = 0;
1149 } else
1150 ret = 1;
1151
1152 env->lock = 1;
1153
1154 return ret;
1155 }
1156
1157 uint64_t helper_stq_c_raw(uint64_t t0, uint64_t t1)
1158 {
1159 uint64_t ret;
1160
1161 if (t1 == env->lock) {
1162 stq_raw(t1, t0);
1163 ret = 0;
1164 } else
1165 ret = 1;
1166
1167 env->lock = 1;
1168
1169 return ret;
1170 }
1171
1172 #define MMUSUFFIX _mmu
1173
1174 #define SHIFT 0
1175 #include "softmmu_template.h"
1176
1177 #define SHIFT 1
1178 #include "softmmu_template.h"
1179
1180 #define SHIFT 2
1181 #include "softmmu_template.h"
1182
1183 #define SHIFT 3
1184 #include "softmmu_template.h"
1185
1186 /* try to fill the TLB and return an exception if error. If retaddr is
1187 NULL, it means that the function was called in C code (i.e. not
1188 from generated code or from helper.c) */
1189 /* XXX: fix it to restore all registers */
1190 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
1191 {
1192 TranslationBlock *tb;
1193 CPUState *saved_env;
1194 unsigned long pc;
1195 int ret;
1196
1197 /* XXX: hack to restore env in all cases, even if not called from
1198 generated code */
1199 saved_env = env;
1200 env = cpu_single_env;
1201 ret = cpu_alpha_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
1202 if (!likely(ret == 0)) {
1203 if (likely(retaddr)) {
1204 /* now we have a real cpu fault */
1205 pc = (unsigned long)retaddr;
1206 tb = tb_find_pc(pc);
1207 if (likely(tb)) {
1208 /* the PC is inside the translated code. It means that we have
1209 a virtual CPU fault */
1210 cpu_restore_state(tb, env, pc, NULL);
1211 }
1212 }
1213 /* Exception index and error code are already set */
1214 cpu_loop_exit();
1215 }
1216 env = saved_env;
1217 }
1218
1219 #endif