]> git.proxmox.com Git - mirror_qemu.git/blob - target-arm/cpu.h
nbd: fix max_discard/max_transfer_length
[mirror_qemu.git] / target-arm / cpu.h
1 /*
2 * ARM virtual CPU header
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #ifndef CPU_ARM_H
20 #define CPU_ARM_H
21
22 #include "config.h"
23
24 #include "kvm-consts.h"
25
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 # define ELF_MACHINE EM_AARCH64
30 #else
31 # define TARGET_LONG_BITS 32
32 # define ELF_MACHINE EM_ARM
33 #endif
34
35 #define TARGET_IS_BIENDIAN 1
36
37 #define CPUArchState struct CPUARMState
38
39 #include "qemu-common.h"
40 #include "exec/cpu-defs.h"
41
42 #include "fpu/softfloat.h"
43
44 #define EXCP_UDEF 1 /* undefined instruction */
45 #define EXCP_SWI 2 /* software interrupt */
46 #define EXCP_PREFETCH_ABORT 3
47 #define EXCP_DATA_ABORT 4
48 #define EXCP_IRQ 5
49 #define EXCP_FIQ 6
50 #define EXCP_BKPT 7
51 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
52 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
53 #define EXCP_STREX 10
54 #define EXCP_HVC 11 /* HyperVisor Call */
55 #define EXCP_HYP_TRAP 12
56 #define EXCP_SMC 13 /* Secure Monitor Call */
57 #define EXCP_VIRQ 14
58 #define EXCP_VFIQ 15
59
60 #define ARMV7M_EXCP_RESET 1
61 #define ARMV7M_EXCP_NMI 2
62 #define ARMV7M_EXCP_HARD 3
63 #define ARMV7M_EXCP_MEM 4
64 #define ARMV7M_EXCP_BUS 5
65 #define ARMV7M_EXCP_USAGE 6
66 #define ARMV7M_EXCP_SVC 11
67 #define ARMV7M_EXCP_DEBUG 12
68 #define ARMV7M_EXCP_PENDSV 14
69 #define ARMV7M_EXCP_SYSTICK 15
70
71 /* ARM-specific interrupt pending bits. */
72 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
73 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
74 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
75
76 /* The usual mapping for an AArch64 system register to its AArch32
77 * counterpart is for the 32 bit world to have access to the lower
78 * half only (with writes leaving the upper half untouched). It's
79 * therefore useful to be able to pass TCG the offset of the least
80 * significant half of a uint64_t struct member.
81 */
82 #ifdef HOST_WORDS_BIGENDIAN
83 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
84 #define offsetofhigh32(S, M) offsetof(S, M)
85 #else
86 #define offsetoflow32(S, M) offsetof(S, M)
87 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
88 #endif
89
90 /* Meanings of the ARMCPU object's four inbound GPIO lines */
91 #define ARM_CPU_IRQ 0
92 #define ARM_CPU_FIQ 1
93 #define ARM_CPU_VIRQ 2
94 #define ARM_CPU_VFIQ 3
95
96 typedef void ARMWriteCPFunc(void *opaque, int cp_info,
97 int srcreg, int operand, uint32_t value);
98 typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
99 int dstreg, int operand);
100
101 struct arm_boot_info;
102
103 #define NB_MMU_MODES 7
104
105 /* We currently assume float and double are IEEE single and double
106 precision respectively.
107 Doing runtime conversions is tricky because VFP registers may contain
108 integer values (eg. as the result of a FTOSI instruction).
109 s<2n> maps to the least significant half of d<n>
110 s<2n+1> maps to the most significant half of d<n>
111 */
112
113 /* CPU state for each instance of a generic timer (in cp15 c14) */
114 typedef struct ARMGenericTimer {
115 uint64_t cval; /* Timer CompareValue register */
116 uint64_t ctl; /* Timer Control register */
117 } ARMGenericTimer;
118
119 #define GTIMER_PHYS 0
120 #define GTIMER_VIRT 1
121 #define NUM_GTIMERS 2
122
123 typedef struct {
124 uint64_t raw_tcr;
125 uint32_t mask;
126 uint32_t base_mask;
127 } TCR;
128
129 typedef struct CPUARMState {
130 /* Regs for current mode. */
131 uint32_t regs[16];
132
133 /* 32/64 switch only happens when taking and returning from
134 * exceptions so the overlap semantics are taken care of then
135 * instead of having a complicated union.
136 */
137 /* Regs for A64 mode. */
138 uint64_t xregs[32];
139 uint64_t pc;
140 /* PSTATE isn't an architectural register for ARMv8. However, it is
141 * convenient for us to assemble the underlying state into a 32 bit format
142 * identical to the architectural format used for the SPSR. (This is also
143 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
144 * 'pstate' register are.) Of the PSTATE bits:
145 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
146 * semantics as for AArch32, as described in the comments on each field)
147 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
148 * DAIF (exception masks) are kept in env->daif
149 * all other bits are stored in their correct places in env->pstate
150 */
151 uint32_t pstate;
152 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
153
154 /* Frequently accessed CPSR bits are stored separately for efficiency.
155 This contains all the other bits. Use cpsr_{read,write} to access
156 the whole CPSR. */
157 uint32_t uncached_cpsr;
158 uint32_t spsr;
159
160 /* Banked registers. */
161 uint64_t banked_spsr[8];
162 uint32_t banked_r13[8];
163 uint32_t banked_r14[8];
164
165 /* These hold r8-r12. */
166 uint32_t usr_regs[5];
167 uint32_t fiq_regs[5];
168
169 /* cpsr flag cache for faster execution */
170 uint32_t CF; /* 0 or 1 */
171 uint32_t VF; /* V is the bit 31. All other bits are undefined */
172 uint32_t NF; /* N is bit 31. All other bits are undefined. */
173 uint32_t ZF; /* Z set if zero. */
174 uint32_t QF; /* 0 or 1 */
175 uint32_t GE; /* cpsr[19:16] */
176 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
177 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
178 uint64_t daif; /* exception masks, in the bits they are in in PSTATE */
179
180 uint64_t elr_el[4]; /* AArch64 exception link regs */
181 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
182
183 /* System control coprocessor (cp15) */
184 struct {
185 uint32_t c0_cpuid;
186 union { /* Cache size selection */
187 struct {
188 uint64_t _unused_csselr0;
189 uint64_t csselr_ns;
190 uint64_t _unused_csselr1;
191 uint64_t csselr_s;
192 };
193 uint64_t csselr_el[4];
194 };
195 union { /* System control register. */
196 struct {
197 uint64_t _unused_sctlr;
198 uint64_t sctlr_ns;
199 uint64_t hsctlr;
200 uint64_t sctlr_s;
201 };
202 uint64_t sctlr_el[4];
203 };
204 uint64_t c1_coproc; /* Coprocessor access register. */
205 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
206 uint64_t sder; /* Secure debug enable register. */
207 uint32_t nsacr; /* Non-secure access control register. */
208 union { /* MMU translation table base 0. */
209 struct {
210 uint64_t _unused_ttbr0_0;
211 uint64_t ttbr0_ns;
212 uint64_t _unused_ttbr0_1;
213 uint64_t ttbr0_s;
214 };
215 uint64_t ttbr0_el[4];
216 };
217 union { /* MMU translation table base 1. */
218 struct {
219 uint64_t _unused_ttbr1_0;
220 uint64_t ttbr1_ns;
221 uint64_t _unused_ttbr1_1;
222 uint64_t ttbr1_s;
223 };
224 uint64_t ttbr1_el[4];
225 };
226 /* MMU translation table base control. */
227 TCR tcr_el[4];
228 uint32_t c2_data; /* MPU data cachable bits. */
229 uint32_t c2_insn; /* MPU instruction cachable bits. */
230 union { /* MMU domain access control register
231 * MPU write buffer control.
232 */
233 struct {
234 uint64_t dacr_ns;
235 uint64_t dacr_s;
236 };
237 struct {
238 uint64_t dacr32_el2;
239 };
240 };
241 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
242 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
243 uint64_t hcr_el2; /* Hypervisor configuration register */
244 uint64_t scr_el3; /* Secure configuration register. */
245 union { /* Fault status registers. */
246 struct {
247 uint64_t ifsr_ns;
248 uint64_t ifsr_s;
249 };
250 struct {
251 uint64_t ifsr32_el2;
252 };
253 };
254 union {
255 struct {
256 uint64_t _unused_dfsr;
257 uint64_t dfsr_ns;
258 uint64_t hsr;
259 uint64_t dfsr_s;
260 };
261 uint64_t esr_el[4];
262 };
263 uint32_t c6_region[8]; /* MPU base/size registers. */
264 union { /* Fault address registers. */
265 struct {
266 uint64_t _unused_far0;
267 #ifdef HOST_WORDS_BIGENDIAN
268 uint32_t ifar_ns;
269 uint32_t dfar_ns;
270 uint32_t ifar_s;
271 uint32_t dfar_s;
272 #else
273 uint32_t dfar_ns;
274 uint32_t ifar_ns;
275 uint32_t dfar_s;
276 uint32_t ifar_s;
277 #endif
278 uint64_t _unused_far3;
279 };
280 uint64_t far_el[4];
281 };
282 union { /* Translation result. */
283 struct {
284 uint64_t _unused_par_0;
285 uint64_t par_ns;
286 uint64_t _unused_par_1;
287 uint64_t par_s;
288 };
289 uint64_t par_el[4];
290 };
291 uint32_t c9_insn; /* Cache lockdown registers. */
292 uint32_t c9_data;
293 uint64_t c9_pmcr; /* performance monitor control register */
294 uint64_t c9_pmcnten; /* perf monitor counter enables */
295 uint32_t c9_pmovsr; /* perf monitor overflow status */
296 uint32_t c9_pmxevtyper; /* perf monitor event type */
297 uint32_t c9_pmuserenr; /* perf monitor user enable */
298 uint32_t c9_pminten; /* perf monitor interrupt enables */
299 union { /* Memory attribute redirection */
300 struct {
301 #ifdef HOST_WORDS_BIGENDIAN
302 uint64_t _unused_mair_0;
303 uint32_t mair1_ns;
304 uint32_t mair0_ns;
305 uint64_t _unused_mair_1;
306 uint32_t mair1_s;
307 uint32_t mair0_s;
308 #else
309 uint64_t _unused_mair_0;
310 uint32_t mair0_ns;
311 uint32_t mair1_ns;
312 uint64_t _unused_mair_1;
313 uint32_t mair0_s;
314 uint32_t mair1_s;
315 #endif
316 };
317 uint64_t mair_el[4];
318 };
319 union { /* vector base address register */
320 struct {
321 uint64_t _unused_vbar;
322 uint64_t vbar_ns;
323 uint64_t hvbar;
324 uint64_t vbar_s;
325 };
326 uint64_t vbar_el[4];
327 };
328 uint32_t mvbar; /* (monitor) vector base address register */
329 struct { /* FCSE PID. */
330 uint32_t fcseidr_ns;
331 uint32_t fcseidr_s;
332 };
333 union { /* Context ID. */
334 struct {
335 uint64_t _unused_contextidr_0;
336 uint64_t contextidr_ns;
337 uint64_t _unused_contextidr_1;
338 uint64_t contextidr_s;
339 };
340 uint64_t contextidr_el[4];
341 };
342 union { /* User RW Thread register. */
343 struct {
344 uint64_t tpidrurw_ns;
345 uint64_t tpidrprw_ns;
346 uint64_t htpidr;
347 uint64_t _tpidr_el3;
348 };
349 uint64_t tpidr_el[4];
350 };
351 /* The secure banks of these registers don't map anywhere */
352 uint64_t tpidrurw_s;
353 uint64_t tpidrprw_s;
354 uint64_t tpidruro_s;
355
356 union { /* User RO Thread register. */
357 uint64_t tpidruro_ns;
358 uint64_t tpidrro_el[1];
359 };
360 uint64_t c14_cntfrq; /* Counter Frequency register */
361 uint64_t c14_cntkctl; /* Timer Control register */
362 ARMGenericTimer c14_timer[NUM_GTIMERS];
363 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
364 uint32_t c15_ticonfig; /* TI925T configuration byte. */
365 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
366 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
367 uint32_t c15_threadid; /* TI debugger thread-ID. */
368 uint32_t c15_config_base_address; /* SCU base address. */
369 uint32_t c15_diagnostic; /* diagnostic register */
370 uint32_t c15_power_diagnostic;
371 uint32_t c15_power_control; /* power control */
372 uint64_t dbgbvr[16]; /* breakpoint value registers */
373 uint64_t dbgbcr[16]; /* breakpoint control registers */
374 uint64_t dbgwvr[16]; /* watchpoint value registers */
375 uint64_t dbgwcr[16]; /* watchpoint control registers */
376 uint64_t mdscr_el1;
377 /* If the counter is enabled, this stores the last time the counter
378 * was reset. Otherwise it stores the counter value
379 */
380 uint64_t c15_ccnt;
381 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
382 } cp15;
383
384 struct {
385 uint32_t other_sp;
386 uint32_t vecbase;
387 uint32_t basepri;
388 uint32_t control;
389 int current_sp;
390 int exception;
391 int pending_exception;
392 } v7m;
393
394 /* Information associated with an exception about to be taken:
395 * code which raises an exception must set cs->exception_index and
396 * the relevant parts of this structure; the cpu_do_interrupt function
397 * will then set the guest-visible registers as part of the exception
398 * entry process.
399 */
400 struct {
401 uint32_t syndrome; /* AArch64 format syndrome register */
402 uint32_t fsr; /* AArch32 format fault status register info */
403 uint64_t vaddress; /* virtual addr associated with exception, if any */
404 /* If we implement EL2 we will also need to store information
405 * about the intermediate physical address for stage 2 faults.
406 */
407 } exception;
408
409 /* Thumb-2 EE state. */
410 uint32_t teecr;
411 uint32_t teehbr;
412
413 /* VFP coprocessor state. */
414 struct {
415 /* VFP/Neon register state. Note that the mapping between S, D and Q
416 * views of the register bank differs between AArch64 and AArch32:
417 * In AArch32:
418 * Qn = regs[2n+1]:regs[2n]
419 * Dn = regs[n]
420 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
421 * (and regs[32] to regs[63] are inaccessible)
422 * In AArch64:
423 * Qn = regs[2n+1]:regs[2n]
424 * Dn = regs[2n]
425 * Sn = regs[2n] bits 31..0
426 * This corresponds to the architecturally defined mapping between
427 * the two execution states, and means we do not need to explicitly
428 * map these registers when changing states.
429 */
430 float64 regs[64];
431
432 uint32_t xregs[16];
433 /* We store these fpcsr fields separately for convenience. */
434 int vec_len;
435 int vec_stride;
436
437 /* scratch space when Tn are not sufficient. */
438 uint32_t scratch[8];
439
440 /* fp_status is the "normal" fp status. standard_fp_status retains
441 * values corresponding to the ARM "Standard FPSCR Value", ie
442 * default-NaN, flush-to-zero, round-to-nearest and is used by
443 * any operations (generally Neon) which the architecture defines
444 * as controlled by the standard FPSCR value rather than the FPSCR.
445 *
446 * To avoid having to transfer exception bits around, we simply
447 * say that the FPSCR cumulative exception flags are the logical
448 * OR of the flags in the two fp statuses. This relies on the
449 * only thing which needs to read the exception flags being
450 * an explicit FPSCR read.
451 */
452 float_status fp_status;
453 float_status standard_fp_status;
454 } vfp;
455 uint64_t exclusive_addr;
456 uint64_t exclusive_val;
457 uint64_t exclusive_high;
458 #if defined(CONFIG_USER_ONLY)
459 uint64_t exclusive_test;
460 uint32_t exclusive_info;
461 #endif
462
463 /* iwMMXt coprocessor state. */
464 struct {
465 uint64_t regs[16];
466 uint64_t val;
467
468 uint32_t cregs[16];
469 } iwmmxt;
470
471 /* For mixed endian mode. */
472 bool bswap_code;
473
474 #if defined(CONFIG_USER_ONLY)
475 /* For usermode syscall translation. */
476 int eabi;
477 #endif
478
479 struct CPUBreakpoint *cpu_breakpoint[16];
480 struct CPUWatchpoint *cpu_watchpoint[16];
481
482 CPU_COMMON
483
484 /* These fields after the common ones so they are preserved on reset. */
485
486 /* Internal CPU feature flags. */
487 uint64_t features;
488
489 void *nvic;
490 const struct arm_boot_info *boot_info;
491 } CPUARMState;
492
493 #include "cpu-qom.h"
494
495 ARMCPU *cpu_arm_init(const char *cpu_model);
496 int cpu_arm_exec(CPUARMState *s);
497 uint32_t do_arm_semihosting(CPUARMState *env);
498
499 static inline bool is_a64(CPUARMState *env)
500 {
501 return env->aarch64;
502 }
503
504 /* you can call this signal handler from your SIGBUS and SIGSEGV
505 signal handlers to inform the virtual CPU of exceptions. non zero
506 is returned if the signal was handled by the virtual CPU. */
507 int cpu_arm_signal_handler(int host_signum, void *pinfo,
508 void *puc);
509 int arm_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int rw,
510 int mmu_idx);
511
512 /**
513 * pmccntr_sync
514 * @env: CPUARMState
515 *
516 * Synchronises the counter in the PMCCNTR. This must always be called twice,
517 * once before any action that might affect the timer and again afterwards.
518 * The function is used to swap the state of the register if required.
519 * This only happens when not in user mode (!CONFIG_USER_ONLY)
520 */
521 void pmccntr_sync(CPUARMState *env);
522
523 /* SCTLR bit meanings. Several bits have been reused in newer
524 * versions of the architecture; in that case we define constants
525 * for both old and new bit meanings. Code which tests against those
526 * bits should probably check or otherwise arrange that the CPU
527 * is the architectural version it expects.
528 */
529 #define SCTLR_M (1U << 0)
530 #define SCTLR_A (1U << 1)
531 #define SCTLR_C (1U << 2)
532 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
533 #define SCTLR_SA (1U << 3)
534 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
535 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
536 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
537 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
538 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
539 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
540 #define SCTLR_ITD (1U << 7) /* v8 onward */
541 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
542 #define SCTLR_SED (1U << 8) /* v8 onward */
543 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
544 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
545 #define SCTLR_F (1U << 10) /* up to v6 */
546 #define SCTLR_SW (1U << 10) /* v7 onward */
547 #define SCTLR_Z (1U << 11)
548 #define SCTLR_I (1U << 12)
549 #define SCTLR_V (1U << 13)
550 #define SCTLR_RR (1U << 14) /* up to v7 */
551 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
552 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
553 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
554 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
555 #define SCTLR_nTWI (1U << 16) /* v8 onward */
556 #define SCTLR_HA (1U << 17)
557 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
558 #define SCTLR_nTWE (1U << 18) /* v8 onward */
559 #define SCTLR_WXN (1U << 19)
560 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
561 #define SCTLR_UWXN (1U << 20) /* v7 onward */
562 #define SCTLR_FI (1U << 21)
563 #define SCTLR_U (1U << 22)
564 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
565 #define SCTLR_VE (1U << 24) /* up to v7 */
566 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
567 #define SCTLR_EE (1U << 25)
568 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
569 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
570 #define SCTLR_NMFI (1U << 27)
571 #define SCTLR_TRE (1U << 28)
572 #define SCTLR_AFE (1U << 29)
573 #define SCTLR_TE (1U << 30)
574
575 #define CPSR_M (0x1fU)
576 #define CPSR_T (1U << 5)
577 #define CPSR_F (1U << 6)
578 #define CPSR_I (1U << 7)
579 #define CPSR_A (1U << 8)
580 #define CPSR_E (1U << 9)
581 #define CPSR_IT_2_7 (0xfc00U)
582 #define CPSR_GE (0xfU << 16)
583 #define CPSR_IL (1U << 20)
584 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
585 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
586 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
587 * where it is live state but not accessible to the AArch32 code.
588 */
589 #define CPSR_RESERVED (0x7U << 21)
590 #define CPSR_J (1U << 24)
591 #define CPSR_IT_0_1 (3U << 25)
592 #define CPSR_Q (1U << 27)
593 #define CPSR_V (1U << 28)
594 #define CPSR_C (1U << 29)
595 #define CPSR_Z (1U << 30)
596 #define CPSR_N (1U << 31)
597 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
598 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
599
600 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
601 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
602 | CPSR_NZCV)
603 /* Bits writable in user mode. */
604 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
605 /* Execution state bits. MRS read as zero, MSR writes ignored. */
606 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
607 /* Mask of bits which may be set by exception return copying them from SPSR */
608 #define CPSR_ERET_MASK (~CPSR_RESERVED)
609
610 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
611 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
612 #define TTBCR_PD0 (1U << 4)
613 #define TTBCR_PD1 (1U << 5)
614 #define TTBCR_EPD0 (1U << 7)
615 #define TTBCR_IRGN0 (3U << 8)
616 #define TTBCR_ORGN0 (3U << 10)
617 #define TTBCR_SH0 (3U << 12)
618 #define TTBCR_T1SZ (3U << 16)
619 #define TTBCR_A1 (1U << 22)
620 #define TTBCR_EPD1 (1U << 23)
621 #define TTBCR_IRGN1 (3U << 24)
622 #define TTBCR_ORGN1 (3U << 26)
623 #define TTBCR_SH1 (1U << 28)
624 #define TTBCR_EAE (1U << 31)
625
626 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
627 * Only these are valid when in AArch64 mode; in
628 * AArch32 mode SPSRs are basically CPSR-format.
629 */
630 #define PSTATE_SP (1U)
631 #define PSTATE_M (0xFU)
632 #define PSTATE_nRW (1U << 4)
633 #define PSTATE_F (1U << 6)
634 #define PSTATE_I (1U << 7)
635 #define PSTATE_A (1U << 8)
636 #define PSTATE_D (1U << 9)
637 #define PSTATE_IL (1U << 20)
638 #define PSTATE_SS (1U << 21)
639 #define PSTATE_V (1U << 28)
640 #define PSTATE_C (1U << 29)
641 #define PSTATE_Z (1U << 30)
642 #define PSTATE_N (1U << 31)
643 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
644 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
645 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
646 /* Mode values for AArch64 */
647 #define PSTATE_MODE_EL3h 13
648 #define PSTATE_MODE_EL3t 12
649 #define PSTATE_MODE_EL2h 9
650 #define PSTATE_MODE_EL2t 8
651 #define PSTATE_MODE_EL1h 5
652 #define PSTATE_MODE_EL1t 4
653 #define PSTATE_MODE_EL0t 0
654
655 /* Map EL and handler into a PSTATE_MODE. */
656 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
657 {
658 return (el << 2) | handler;
659 }
660
661 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
662 * interprocessing, so we don't attempt to sync with the cpsr state used by
663 * the 32 bit decoder.
664 */
665 static inline uint32_t pstate_read(CPUARMState *env)
666 {
667 int ZF;
668
669 ZF = (env->ZF == 0);
670 return (env->NF & 0x80000000) | (ZF << 30)
671 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
672 | env->pstate | env->daif;
673 }
674
675 static inline void pstate_write(CPUARMState *env, uint32_t val)
676 {
677 env->ZF = (~val) & PSTATE_Z;
678 env->NF = val;
679 env->CF = (val >> 29) & 1;
680 env->VF = (val << 3) & 0x80000000;
681 env->daif = val & PSTATE_DAIF;
682 env->pstate = val & ~CACHED_PSTATE_BITS;
683 }
684
685 /* Return the current CPSR value. */
686 uint32_t cpsr_read(CPUARMState *env);
687 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
688 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
689
690 /* Return the current xPSR value. */
691 static inline uint32_t xpsr_read(CPUARMState *env)
692 {
693 int ZF;
694 ZF = (env->ZF == 0);
695 return (env->NF & 0x80000000) | (ZF << 30)
696 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
697 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
698 | ((env->condexec_bits & 0xfc) << 8)
699 | env->v7m.exception;
700 }
701
702 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
703 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
704 {
705 if (mask & CPSR_NZCV) {
706 env->ZF = (~val) & CPSR_Z;
707 env->NF = val;
708 env->CF = (val >> 29) & 1;
709 env->VF = (val << 3) & 0x80000000;
710 }
711 if (mask & CPSR_Q)
712 env->QF = ((val & CPSR_Q) != 0);
713 if (mask & (1 << 24))
714 env->thumb = ((val & (1 << 24)) != 0);
715 if (mask & CPSR_IT_0_1) {
716 env->condexec_bits &= ~3;
717 env->condexec_bits |= (val >> 25) & 3;
718 }
719 if (mask & CPSR_IT_2_7) {
720 env->condexec_bits &= 3;
721 env->condexec_bits |= (val >> 8) & 0xfc;
722 }
723 if (mask & 0x1ff) {
724 env->v7m.exception = val & 0x1ff;
725 }
726 }
727
728 #define HCR_VM (1ULL << 0)
729 #define HCR_SWIO (1ULL << 1)
730 #define HCR_PTW (1ULL << 2)
731 #define HCR_FMO (1ULL << 3)
732 #define HCR_IMO (1ULL << 4)
733 #define HCR_AMO (1ULL << 5)
734 #define HCR_VF (1ULL << 6)
735 #define HCR_VI (1ULL << 7)
736 #define HCR_VSE (1ULL << 8)
737 #define HCR_FB (1ULL << 9)
738 #define HCR_BSU_MASK (3ULL << 10)
739 #define HCR_DC (1ULL << 12)
740 #define HCR_TWI (1ULL << 13)
741 #define HCR_TWE (1ULL << 14)
742 #define HCR_TID0 (1ULL << 15)
743 #define HCR_TID1 (1ULL << 16)
744 #define HCR_TID2 (1ULL << 17)
745 #define HCR_TID3 (1ULL << 18)
746 #define HCR_TSC (1ULL << 19)
747 #define HCR_TIDCP (1ULL << 20)
748 #define HCR_TACR (1ULL << 21)
749 #define HCR_TSW (1ULL << 22)
750 #define HCR_TPC (1ULL << 23)
751 #define HCR_TPU (1ULL << 24)
752 #define HCR_TTLB (1ULL << 25)
753 #define HCR_TVM (1ULL << 26)
754 #define HCR_TGE (1ULL << 27)
755 #define HCR_TDZ (1ULL << 28)
756 #define HCR_HCD (1ULL << 29)
757 #define HCR_TRVM (1ULL << 30)
758 #define HCR_RW (1ULL << 31)
759 #define HCR_CD (1ULL << 32)
760 #define HCR_ID (1ULL << 33)
761 #define HCR_MASK ((1ULL << 34) - 1)
762
763 #define SCR_NS (1U << 0)
764 #define SCR_IRQ (1U << 1)
765 #define SCR_FIQ (1U << 2)
766 #define SCR_EA (1U << 3)
767 #define SCR_FW (1U << 4)
768 #define SCR_AW (1U << 5)
769 #define SCR_NET (1U << 6)
770 #define SCR_SMD (1U << 7)
771 #define SCR_HCE (1U << 8)
772 #define SCR_SIF (1U << 9)
773 #define SCR_RW (1U << 10)
774 #define SCR_ST (1U << 11)
775 #define SCR_TWI (1U << 12)
776 #define SCR_TWE (1U << 13)
777 #define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
778 #define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
779
780 /* Return the current FPSCR value. */
781 uint32_t vfp_get_fpscr(CPUARMState *env);
782 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
783
784 /* For A64 the FPSCR is split into two logically distinct registers,
785 * FPCR and FPSR. However since they still use non-overlapping bits
786 * we store the underlying state in fpscr and just mask on read/write.
787 */
788 #define FPSR_MASK 0xf800009f
789 #define FPCR_MASK 0x07f79f00
790 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
791 {
792 return vfp_get_fpscr(env) & FPSR_MASK;
793 }
794
795 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
796 {
797 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
798 vfp_set_fpscr(env, new_fpscr);
799 }
800
801 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
802 {
803 return vfp_get_fpscr(env) & FPCR_MASK;
804 }
805
806 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
807 {
808 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
809 vfp_set_fpscr(env, new_fpscr);
810 }
811
812 enum arm_cpu_mode {
813 ARM_CPU_MODE_USR = 0x10,
814 ARM_CPU_MODE_FIQ = 0x11,
815 ARM_CPU_MODE_IRQ = 0x12,
816 ARM_CPU_MODE_SVC = 0x13,
817 ARM_CPU_MODE_MON = 0x16,
818 ARM_CPU_MODE_ABT = 0x17,
819 ARM_CPU_MODE_HYP = 0x1a,
820 ARM_CPU_MODE_UND = 0x1b,
821 ARM_CPU_MODE_SYS = 0x1f
822 };
823
824 /* VFP system registers. */
825 #define ARM_VFP_FPSID 0
826 #define ARM_VFP_FPSCR 1
827 #define ARM_VFP_MVFR2 5
828 #define ARM_VFP_MVFR1 6
829 #define ARM_VFP_MVFR0 7
830 #define ARM_VFP_FPEXC 8
831 #define ARM_VFP_FPINST 9
832 #define ARM_VFP_FPINST2 10
833
834 /* iwMMXt coprocessor control registers. */
835 #define ARM_IWMMXT_wCID 0
836 #define ARM_IWMMXT_wCon 1
837 #define ARM_IWMMXT_wCSSF 2
838 #define ARM_IWMMXT_wCASF 3
839 #define ARM_IWMMXT_wCGR0 8
840 #define ARM_IWMMXT_wCGR1 9
841 #define ARM_IWMMXT_wCGR2 10
842 #define ARM_IWMMXT_wCGR3 11
843
844 /* If adding a feature bit which corresponds to a Linux ELF
845 * HWCAP bit, remember to update the feature-bit-to-hwcap
846 * mapping in linux-user/elfload.c:get_elf_hwcap().
847 */
848 enum arm_features {
849 ARM_FEATURE_VFP,
850 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
851 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
852 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
853 ARM_FEATURE_V6,
854 ARM_FEATURE_V6K,
855 ARM_FEATURE_V7,
856 ARM_FEATURE_THUMB2,
857 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
858 ARM_FEATURE_VFP3,
859 ARM_FEATURE_VFP_FP16,
860 ARM_FEATURE_NEON,
861 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
862 ARM_FEATURE_M, /* Microcontroller profile. */
863 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
864 ARM_FEATURE_THUMB2EE,
865 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
866 ARM_FEATURE_V4T,
867 ARM_FEATURE_V5,
868 ARM_FEATURE_STRONGARM,
869 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
870 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
871 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
872 ARM_FEATURE_GENERIC_TIMER,
873 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
874 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
875 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
876 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
877 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
878 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
879 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
880 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
881 ARM_FEATURE_V8,
882 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
883 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
884 ARM_FEATURE_CBAR, /* has cp15 CBAR */
885 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
886 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
887 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
888 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
889 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
890 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
891 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
892 };
893
894 static inline int arm_feature(CPUARMState *env, int feature)
895 {
896 return (env->features & (1ULL << feature)) != 0;
897 }
898
899 #if !defined(CONFIG_USER_ONLY)
900 /* Return true if exception levels below EL3 are in secure state,
901 * or would be following an exception return to that level.
902 * Unlike arm_is_secure() (which is always a question about the
903 * _current_ state of the CPU) this doesn't care about the current
904 * EL or mode.
905 */
906 static inline bool arm_is_secure_below_el3(CPUARMState *env)
907 {
908 if (arm_feature(env, ARM_FEATURE_EL3)) {
909 return !(env->cp15.scr_el3 & SCR_NS);
910 } else {
911 /* If EL2 is not supported then the secure state is implementation
912 * defined, in which case QEMU defaults to non-secure.
913 */
914 return false;
915 }
916 }
917
918 /* Return true if the processor is in secure state */
919 static inline bool arm_is_secure(CPUARMState *env)
920 {
921 if (arm_feature(env, ARM_FEATURE_EL3)) {
922 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
923 /* CPU currently in AArch64 state and EL3 */
924 return true;
925 } else if (!is_a64(env) &&
926 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
927 /* CPU currently in AArch32 state and monitor mode */
928 return true;
929 }
930 }
931 return arm_is_secure_below_el3(env);
932 }
933
934 #else
935 static inline bool arm_is_secure_below_el3(CPUARMState *env)
936 {
937 return false;
938 }
939
940 static inline bool arm_is_secure(CPUARMState *env)
941 {
942 return false;
943 }
944 #endif
945
946 /* Return true if the specified exception level is running in AArch64 state. */
947 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
948 {
949 /* We don't currently support EL2, and this isn't valid for EL0
950 * (if we're in EL0, is_a64() is what you want, and if we're not in EL0
951 * then the state of EL0 isn't well defined.)
952 */
953 assert(el == 1 || el == 3);
954
955 /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
956 * is a QEMU-imposed simplification which we may wish to change later.
957 * If we in future support EL2 and/or EL3, then the state of lower
958 * exception levels is controlled by the HCR.RW and SCR.RW bits.
959 */
960 return arm_feature(env, ARM_FEATURE_AARCH64);
961 }
962
963 /* Function for determing whether guest cp register reads and writes should
964 * access the secure or non-secure bank of a cp register. When EL3 is
965 * operating in AArch32 state, the NS-bit determines whether the secure
966 * instance of a cp register should be used. When EL3 is AArch64 (or if
967 * it doesn't exist at all) then there is no register banking, and all
968 * accesses are to the non-secure version.
969 */
970 static inline bool access_secure_reg(CPUARMState *env)
971 {
972 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
973 !arm_el_is_aa64(env, 3) &&
974 !(env->cp15.scr_el3 & SCR_NS));
975
976 return ret;
977 }
978
979 /* Macros for accessing a specified CP register bank */
980 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
981 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
982
983 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
984 do { \
985 if (_secure) { \
986 (_env)->cp15._regname##_s = (_val); \
987 } else { \
988 (_env)->cp15._regname##_ns = (_val); \
989 } \
990 } while (0)
991
992 /* Macros for automatically accessing a specific CP register bank depending on
993 * the current secure state of the system. These macros are not intended for
994 * supporting instruction translation reads/writes as these are dependent
995 * solely on the SCR.NS bit and not the mode.
996 */
997 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
998 A32_BANKED_REG_GET((_env), _regname, \
999 ((!arm_el_is_aa64((_env), 3) && arm_is_secure(_env))))
1000
1001 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1002 A32_BANKED_REG_SET((_env), _regname, \
1003 ((!arm_el_is_aa64((_env), 3) && arm_is_secure(_env))), \
1004 (_val))
1005
1006 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1007 unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx);
1008
1009 /* Interface between CPU and Interrupt controller. */
1010 void armv7m_nvic_set_pending(void *opaque, int irq);
1011 int armv7m_nvic_acknowledge_irq(void *opaque);
1012 void armv7m_nvic_complete_irq(void *opaque, int irq);
1013
1014 /* Interface for defining coprocessor registers.
1015 * Registers are defined in tables of arm_cp_reginfo structs
1016 * which are passed to define_arm_cp_regs().
1017 */
1018
1019 /* When looking up a coprocessor register we look for it
1020 * via an integer which encodes all of:
1021 * coprocessor number
1022 * Crn, Crm, opc1, opc2 fields
1023 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1024 * or via MRRC/MCRR?)
1025 * non-secure/secure bank (AArch32 only)
1026 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1027 * (In this case crn and opc2 should be zero.)
1028 * For AArch64, there is no 32/64 bit size distinction;
1029 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1030 * and 4 bit CRn and CRm. The encoding patterns are chosen
1031 * to be easy to convert to and from the KVM encodings, and also
1032 * so that the hashtable can contain both AArch32 and AArch64
1033 * registers (to allow for interprocessing where we might run
1034 * 32 bit code on a 64 bit core).
1035 */
1036 /* This bit is private to our hashtable cpreg; in KVM register
1037 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1038 * in the upper bits of the 64 bit ID.
1039 */
1040 #define CP_REG_AA64_SHIFT 28
1041 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1042
1043 /* To enable banking of coprocessor registers depending on ns-bit we
1044 * add a bit to distinguish between secure and non-secure cpregs in the
1045 * hashtable.
1046 */
1047 #define CP_REG_NS_SHIFT 29
1048 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1049
1050 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1051 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1052 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1053
1054 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1055 (CP_REG_AA64_MASK | \
1056 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1057 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1058 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1059 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1060 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1061 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1062
1063 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1064 * version used as a key for the coprocessor register hashtable
1065 */
1066 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1067 {
1068 uint32_t cpregid = kvmid;
1069 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1070 cpregid |= CP_REG_AA64_MASK;
1071 } else {
1072 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1073 cpregid |= (1 << 15);
1074 }
1075
1076 /* KVM is always non-secure so add the NS flag on AArch32 register
1077 * entries.
1078 */
1079 cpregid |= 1 << CP_REG_NS_SHIFT;
1080 }
1081 return cpregid;
1082 }
1083
1084 /* Convert a truncated 32 bit hashtable key into the full
1085 * 64 bit KVM register ID.
1086 */
1087 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1088 {
1089 uint64_t kvmid;
1090
1091 if (cpregid & CP_REG_AA64_MASK) {
1092 kvmid = cpregid & ~CP_REG_AA64_MASK;
1093 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1094 } else {
1095 kvmid = cpregid & ~(1 << 15);
1096 if (cpregid & (1 << 15)) {
1097 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1098 } else {
1099 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1100 }
1101 }
1102 return kvmid;
1103 }
1104
1105 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1106 * special-behaviour cp reg and bits [15..8] indicate what behaviour
1107 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1108 * TCG can assume the value to be constant (ie load at translate time)
1109 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1110 * indicates that the TB should not be ended after a write to this register
1111 * (the default is that the TB ends after cp writes). OVERRIDE permits
1112 * a register definition to override a previous definition for the
1113 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1114 * old must have the OVERRIDE bit set.
1115 * ALIAS indicates that this register is an alias view of some underlying
1116 * state which is also visible via another register, and that the other
1117 * register is handling migration; registers marked ALIAS will not be migrated
1118 * but may have their state set by syncing of register state from KVM.
1119 * NO_RAW indicates that this register has no underlying state and does not
1120 * support raw access for state saving/loading; it will not be used for either
1121 * migration or KVM state synchronization. (Typically this is for "registers"
1122 * which are actually used as instructions for cache maintenance and so on.)
1123 * IO indicates that this register does I/O and therefore its accesses
1124 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1125 * registers which implement clocks or timers require this.
1126 */
1127 #define ARM_CP_SPECIAL 1
1128 #define ARM_CP_CONST 2
1129 #define ARM_CP_64BIT 4
1130 #define ARM_CP_SUPPRESS_TB_END 8
1131 #define ARM_CP_OVERRIDE 16
1132 #define ARM_CP_ALIAS 32
1133 #define ARM_CP_IO 64
1134 #define ARM_CP_NO_RAW 128
1135 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1136 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1137 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1138 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1139 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1140 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1141 /* Used only as a terminator for ARMCPRegInfo lists */
1142 #define ARM_CP_SENTINEL 0xffff
1143 /* Mask of only the flag bits in a type field */
1144 #define ARM_CP_FLAG_MASK 0xff
1145
1146 /* Valid values for ARMCPRegInfo state field, indicating which of
1147 * the AArch32 and AArch64 execution states this register is visible in.
1148 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1149 * If the reginfo is declared to be visible in both states then a second
1150 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1151 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1152 * Note that we rely on the values of these enums as we iterate through
1153 * the various states in some places.
1154 */
1155 enum {
1156 ARM_CP_STATE_AA32 = 0,
1157 ARM_CP_STATE_AA64 = 1,
1158 ARM_CP_STATE_BOTH = 2,
1159 };
1160
1161 /* ARM CP register secure state flags. These flags identify security state
1162 * attributes for a given CP register entry.
1163 * The existence of both or neither secure and non-secure flags indicates that
1164 * the register has both a secure and non-secure hash entry. A single one of
1165 * these flags causes the register to only be hashed for the specified
1166 * security state.
1167 * Although definitions may have any combination of the S/NS bits, each
1168 * registered entry will only have one to identify whether the entry is secure
1169 * or non-secure.
1170 */
1171 enum {
1172 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
1173 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
1174 };
1175
1176 /* Return true if cptype is a valid type field. This is used to try to
1177 * catch errors where the sentinel has been accidentally left off the end
1178 * of a list of registers.
1179 */
1180 static inline bool cptype_valid(int cptype)
1181 {
1182 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1183 || ((cptype & ARM_CP_SPECIAL) &&
1184 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1185 }
1186
1187 /* Access rights:
1188 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1189 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1190 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1191 * (ie any of the privileged modes in Secure state, or Monitor mode).
1192 * If a register is accessible in one privilege level it's always accessible
1193 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1194 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1195 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1196 * terminology a little and call this PL3.
1197 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1198 * with the ELx exception levels.
1199 *
1200 * If access permissions for a register are more complex than can be
1201 * described with these bits, then use a laxer set of restrictions, and
1202 * do the more restrictive/complex check inside a helper function.
1203 */
1204 #define PL3_R 0x80
1205 #define PL3_W 0x40
1206 #define PL2_R (0x20 | PL3_R)
1207 #define PL2_W (0x10 | PL3_W)
1208 #define PL1_R (0x08 | PL2_R)
1209 #define PL1_W (0x04 | PL2_W)
1210 #define PL0_R (0x02 | PL1_R)
1211 #define PL0_W (0x01 | PL1_W)
1212
1213 #define PL3_RW (PL3_R | PL3_W)
1214 #define PL2_RW (PL2_R | PL2_W)
1215 #define PL1_RW (PL1_R | PL1_W)
1216 #define PL0_RW (PL0_R | PL0_W)
1217
1218 /* Return the current Exception Level (as per ARMv8; note that this differs
1219 * from the ARMv7 Privilege Level).
1220 */
1221 static inline int arm_current_el(CPUARMState *env)
1222 {
1223 if (arm_feature(env, ARM_FEATURE_M)) {
1224 return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1225 }
1226
1227 if (is_a64(env)) {
1228 return extract32(env->pstate, 2, 2);
1229 }
1230
1231 switch (env->uncached_cpsr & 0x1f) {
1232 case ARM_CPU_MODE_USR:
1233 return 0;
1234 case ARM_CPU_MODE_HYP:
1235 return 2;
1236 case ARM_CPU_MODE_MON:
1237 return 3;
1238 default:
1239 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1240 /* If EL3 is 32-bit then all secure privileged modes run in
1241 * EL3
1242 */
1243 return 3;
1244 }
1245
1246 return 1;
1247 }
1248 }
1249
1250 typedef struct ARMCPRegInfo ARMCPRegInfo;
1251
1252 typedef enum CPAccessResult {
1253 /* Access is permitted */
1254 CP_ACCESS_OK = 0,
1255 /* Access fails due to a configurable trap or enable which would
1256 * result in a categorized exception syndrome giving information about
1257 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1258 * 0xc or 0x18).
1259 */
1260 CP_ACCESS_TRAP = 1,
1261 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1262 * Note that this is not a catch-all case -- the set of cases which may
1263 * result in this failure is specifically defined by the architecture.
1264 */
1265 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1266 } CPAccessResult;
1267
1268 /* Access functions for coprocessor registers. These cannot fail and
1269 * may not raise exceptions.
1270 */
1271 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1272 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1273 uint64_t value);
1274 /* Access permission check functions for coprocessor registers. */
1275 typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1276 /* Hook function for register reset */
1277 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1278
1279 #define CP_ANY 0xff
1280
1281 /* Definition of an ARM coprocessor register */
1282 struct ARMCPRegInfo {
1283 /* Name of register (useful mainly for debugging, need not be unique) */
1284 const char *name;
1285 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1286 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1287 * 'wildcard' field -- any value of that field in the MRC/MCR insn
1288 * will be decoded to this register. The register read and write
1289 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1290 * used by the program, so it is possible to register a wildcard and
1291 * then behave differently on read/write if necessary.
1292 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1293 * must both be zero.
1294 * For AArch64-visible registers, opc0 is also used.
1295 * Since there are no "coprocessors" in AArch64, cp is purely used as a
1296 * way to distinguish (for KVM's benefit) guest-visible system registers
1297 * from demuxed ones provided to preserve the "no side effects on
1298 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1299 * visible (to match KVM's encoding); cp==0 will be converted to
1300 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1301 */
1302 uint8_t cp;
1303 uint8_t crn;
1304 uint8_t crm;
1305 uint8_t opc0;
1306 uint8_t opc1;
1307 uint8_t opc2;
1308 /* Execution state in which this register is visible: ARM_CP_STATE_* */
1309 int state;
1310 /* Register type: ARM_CP_* bits/values */
1311 int type;
1312 /* Access rights: PL*_[RW] */
1313 int access;
1314 /* Security state: ARM_CP_SECSTATE_* bits/values */
1315 int secure;
1316 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1317 * this register was defined: can be used to hand data through to the
1318 * register read/write functions, since they are passed the ARMCPRegInfo*.
1319 */
1320 void *opaque;
1321 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1322 * fieldoffset is non-zero, the reset value of the register.
1323 */
1324 uint64_t resetvalue;
1325 /* Offset of the field in CPUARMState for this register.
1326 *
1327 * This is not needed if either:
1328 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1329 * 2. both readfn and writefn are specified
1330 */
1331 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1332
1333 /* Offsets of the secure and non-secure fields in CPUARMState for the
1334 * register if it is banked. These fields are only used during the static
1335 * registration of a register. During hashing the bank associated
1336 * with a given security state is copied to fieldoffset which is used from
1337 * there on out.
1338 *
1339 * It is expected that register definitions use either fieldoffset or
1340 * bank_fieldoffsets in the definition but not both. It is also expected
1341 * that both bank offsets are set when defining a banked register. This
1342 * use indicates that a register is banked.
1343 */
1344 ptrdiff_t bank_fieldoffsets[2];
1345
1346 /* Function for making any access checks for this register in addition to
1347 * those specified by the 'access' permissions bits. If NULL, no extra
1348 * checks required. The access check is performed at runtime, not at
1349 * translate time.
1350 */
1351 CPAccessFn *accessfn;
1352 /* Function for handling reads of this register. If NULL, then reads
1353 * will be done by loading from the offset into CPUARMState specified
1354 * by fieldoffset.
1355 */
1356 CPReadFn *readfn;
1357 /* Function for handling writes of this register. If NULL, then writes
1358 * will be done by writing to the offset into CPUARMState specified
1359 * by fieldoffset.
1360 */
1361 CPWriteFn *writefn;
1362 /* Function for doing a "raw" read; used when we need to copy
1363 * coprocessor state to the kernel for KVM or out for
1364 * migration. This only needs to be provided if there is also a
1365 * readfn and it has side effects (for instance clear-on-read bits).
1366 */
1367 CPReadFn *raw_readfn;
1368 /* Function for doing a "raw" write; used when we need to copy KVM
1369 * kernel coprocessor state into userspace, or for inbound
1370 * migration. This only needs to be provided if there is also a
1371 * writefn and it masks out "unwritable" bits or has write-one-to-clear
1372 * or similar behaviour.
1373 */
1374 CPWriteFn *raw_writefn;
1375 /* Function for resetting the register. If NULL, then reset will be done
1376 * by writing resetvalue to the field specified in fieldoffset. If
1377 * fieldoffset is 0 then no reset will be done.
1378 */
1379 CPResetFn *resetfn;
1380 };
1381
1382 /* Macros which are lvalues for the field in CPUARMState for the
1383 * ARMCPRegInfo *ri.
1384 */
1385 #define CPREG_FIELD32(env, ri) \
1386 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1387 #define CPREG_FIELD64(env, ri) \
1388 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1389
1390 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1391
1392 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1393 const ARMCPRegInfo *regs, void *opaque);
1394 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1395 const ARMCPRegInfo *regs, void *opaque);
1396 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1397 {
1398 define_arm_cp_regs_with_opaque(cpu, regs, 0);
1399 }
1400 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1401 {
1402 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1403 }
1404 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1405
1406 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1407 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1408 uint64_t value);
1409 /* CPReadFn that can be used for read-as-zero behaviour */
1410 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1411
1412 /* CPResetFn that does nothing, for use if no reset is required even
1413 * if fieldoffset is non zero.
1414 */
1415 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1416
1417 /* Return true if this reginfo struct's field in the cpu state struct
1418 * is 64 bits wide.
1419 */
1420 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1421 {
1422 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1423 }
1424
1425 static inline bool cp_access_ok(int current_el,
1426 const ARMCPRegInfo *ri, int isread)
1427 {
1428 return (ri->access >> ((current_el * 2) + isread)) & 1;
1429 }
1430
1431 /**
1432 * write_list_to_cpustate
1433 * @cpu: ARMCPU
1434 *
1435 * For each register listed in the ARMCPU cpreg_indexes list, write
1436 * its value from the cpreg_values list into the ARMCPUState structure.
1437 * This updates TCG's working data structures from KVM data or
1438 * from incoming migration state.
1439 *
1440 * Returns: true if all register values were updated correctly,
1441 * false if some register was unknown or could not be written.
1442 * Note that we do not stop early on failure -- we will attempt
1443 * writing all registers in the list.
1444 */
1445 bool write_list_to_cpustate(ARMCPU *cpu);
1446
1447 /**
1448 * write_cpustate_to_list:
1449 * @cpu: ARMCPU
1450 *
1451 * For each register listed in the ARMCPU cpreg_indexes list, write
1452 * its value from the ARMCPUState structure into the cpreg_values list.
1453 * This is used to copy info from TCG's working data structures into
1454 * KVM or for outbound migration.
1455 *
1456 * Returns: true if all register values were read correctly,
1457 * false if some register was unknown or could not be read.
1458 * Note that we do not stop early on failure -- we will attempt
1459 * reading all registers in the list.
1460 */
1461 bool write_cpustate_to_list(ARMCPU *cpu);
1462
1463 /* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
1464 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1465 conventional cores (ie. Application or Realtime profile). */
1466
1467 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
1468
1469 #define ARM_CPUID_TI915T 0x54029152
1470 #define ARM_CPUID_TI925T 0x54029252
1471
1472 #if defined(CONFIG_USER_ONLY)
1473 #define TARGET_PAGE_BITS 12
1474 #else
1475 /* The ARM MMU allows 1k pages. */
1476 /* ??? Linux doesn't actually use these, and they're deprecated in recent
1477 architecture revisions. Maybe a configure option to disable them. */
1478 #define TARGET_PAGE_BITS 10
1479 #endif
1480
1481 #if defined(TARGET_AARCH64)
1482 # define TARGET_PHYS_ADDR_SPACE_BITS 48
1483 # define TARGET_VIRT_ADDR_SPACE_BITS 64
1484 #else
1485 # define TARGET_PHYS_ADDR_SPACE_BITS 40
1486 # define TARGET_VIRT_ADDR_SPACE_BITS 32
1487 #endif
1488
1489 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx)
1490 {
1491 CPUARMState *env = cs->env_ptr;
1492 unsigned int cur_el = arm_current_el(env);
1493 unsigned int target_el = arm_excp_target_el(cs, excp_idx);
1494 bool secure = arm_is_secure(env);
1495 uint32_t scr;
1496 uint32_t hcr;
1497 bool pstate_unmasked;
1498 int8_t unmasked = 0;
1499
1500 /* Don't take exceptions if they target a lower EL.
1501 * This check should catch any exceptions that would not be taken but left
1502 * pending.
1503 */
1504 if (cur_el > target_el) {
1505 return false;
1506 }
1507
1508 switch (excp_idx) {
1509 case EXCP_FIQ:
1510 /* If FIQs are routed to EL3 or EL2 then there are cases where we
1511 * override the CPSR.F in determining if the exception is masked or
1512 * not. If neither of these are set then we fall back to the CPSR.F
1513 * setting otherwise we further assess the state below.
1514 */
1515 hcr = (env->cp15.hcr_el2 & HCR_FMO);
1516 scr = (env->cp15.scr_el3 & SCR_FIQ);
1517
1518 /* When EL3 is 32-bit, the SCR.FW bit controls whether the CPSR.F bit
1519 * masks FIQ interrupts when taken in non-secure state. If SCR.FW is
1520 * set then FIQs can be masked by CPSR.F when non-secure but only
1521 * when FIQs are only routed to EL3.
1522 */
1523 scr &= !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1524 pstate_unmasked = !(env->daif & PSTATE_F);
1525 break;
1526
1527 case EXCP_IRQ:
1528 /* When EL3 execution state is 32-bit, if HCR.IMO is set then we may
1529 * override the CPSR.I masking when in non-secure state. The SCR.IRQ
1530 * setting has already been taken into consideration when setting the
1531 * target EL, so it does not have a further affect here.
1532 */
1533 hcr = (env->cp15.hcr_el2 & HCR_IMO);
1534 scr = false;
1535 pstate_unmasked = !(env->daif & PSTATE_I);
1536 break;
1537
1538 case EXCP_VFIQ:
1539 if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1540 /* VFIQs are only taken when hypervized and non-secure. */
1541 return false;
1542 }
1543 return !(env->daif & PSTATE_F);
1544 case EXCP_VIRQ:
1545 if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
1546 /* VIRQs are only taken when hypervized and non-secure. */
1547 return false;
1548 }
1549 return !(env->daif & PSTATE_I);
1550 default:
1551 g_assert_not_reached();
1552 }
1553
1554 /* Use the target EL, current execution state and SCR/HCR settings to
1555 * determine whether the corresponding CPSR bit is used to mask the
1556 * interrupt.
1557 */
1558 if ((target_el > cur_el) && (target_el != 1)) {
1559 if (arm_el_is_aa64(env, 3) || ((scr || hcr) && (!secure))) {
1560 unmasked = 1;
1561 }
1562 }
1563
1564 /* The PSTATE bits only mask the interrupt if we have not overriden the
1565 * ability above.
1566 */
1567 return unmasked || pstate_unmasked;
1568 }
1569
1570 static inline CPUARMState *cpu_init(const char *cpu_model)
1571 {
1572 ARMCPU *cpu = cpu_arm_init(cpu_model);
1573 if (cpu) {
1574 return &cpu->env;
1575 }
1576 return NULL;
1577 }
1578
1579 #define cpu_exec cpu_arm_exec
1580 #define cpu_gen_code cpu_arm_gen_code
1581 #define cpu_signal_handler cpu_arm_signal_handler
1582 #define cpu_list arm_cpu_list
1583
1584 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
1585 *
1586 * If EL3 is 64-bit:
1587 * + NonSecure EL1 & 0 stage 1
1588 * + NonSecure EL1 & 0 stage 2
1589 * + NonSecure EL2
1590 * + Secure EL1 & EL0
1591 * + Secure EL3
1592 * If EL3 is 32-bit:
1593 * + NonSecure PL1 & 0 stage 1
1594 * + NonSecure PL1 & 0 stage 2
1595 * + NonSecure PL2
1596 * + Secure PL0 & PL1
1597 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
1598 *
1599 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
1600 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
1601 * may differ in access permissions even if the VA->PA map is the same
1602 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
1603 * translation, which means that we have one mmu_idx that deals with two
1604 * concatenated translation regimes [this sort of combined s1+2 TLB is
1605 * architecturally permitted]
1606 * 3. we don't need to allocate an mmu_idx to translations that we won't be
1607 * handling via the TLB. The only way to do a stage 1 translation without
1608 * the immediate stage 2 translation is via the ATS or AT system insns,
1609 * which can be slow-pathed and always do a page table walk.
1610 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
1611 * translation regimes, because they map reasonably well to each other
1612 * and they can't both be active at the same time.
1613 * This gives us the following list of mmu_idx values:
1614 *
1615 * NS EL0 (aka NS PL0) stage 1+2
1616 * NS EL1 (aka NS PL1) stage 1+2
1617 * NS EL2 (aka NS PL2)
1618 * S EL3 (aka S PL1)
1619 * S EL0 (aka S PL0)
1620 * S EL1 (not used if EL3 is 32 bit)
1621 * NS EL0+1 stage 2
1622 *
1623 * (The last of these is an mmu_idx because we want to be able to use the TLB
1624 * for the accesses done as part of a stage 1 page table walk, rather than
1625 * having to walk the stage 2 page table over and over.)
1626 *
1627 * Our enumeration includes at the end some entries which are not "true"
1628 * mmu_idx values in that they don't have corresponding TLBs and are only
1629 * valid for doing slow path page table walks.
1630 *
1631 * The constant names here are patterned after the general style of the names
1632 * of the AT/ATS operations.
1633 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
1634 */
1635 typedef enum ARMMMUIdx {
1636 ARMMMUIdx_S12NSE0 = 0,
1637 ARMMMUIdx_S12NSE1 = 1,
1638 ARMMMUIdx_S1E2 = 2,
1639 ARMMMUIdx_S1E3 = 3,
1640 ARMMMUIdx_S1SE0 = 4,
1641 ARMMMUIdx_S1SE1 = 5,
1642 ARMMMUIdx_S2NS = 6,
1643 /* Indexes below here don't have TLBs and are used only for AT system
1644 * instructions or for the first stage of an S12 page table walk.
1645 */
1646 ARMMMUIdx_S1NSE0 = 7,
1647 ARMMMUIdx_S1NSE1 = 8,
1648 } ARMMMUIdx;
1649
1650 #define MMU_USER_IDX 0
1651
1652 /* Return the exception level we're running at if this is our mmu_idx */
1653 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
1654 {
1655 assert(mmu_idx < ARMMMUIdx_S2NS);
1656 return mmu_idx & 3;
1657 }
1658
1659 /* Determine the current mmu_idx to use for normal loads/stores */
1660 static inline int cpu_mmu_index(CPUARMState *env)
1661 {
1662 int el = arm_current_el(env);
1663
1664 if (el < 2 && arm_is_secure_below_el3(env)) {
1665 return ARMMMUIdx_S1SE0 + el;
1666 }
1667 return el;
1668 }
1669
1670 /* Return the Exception Level targeted by debug exceptions;
1671 * currently always EL1 since we don't implement EL2 or EL3.
1672 */
1673 static inline int arm_debug_target_el(CPUARMState *env)
1674 {
1675 return 1;
1676 }
1677
1678 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
1679 {
1680 if (arm_current_el(env) == arm_debug_target_el(env)) {
1681 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
1682 || (env->daif & PSTATE_D)) {
1683 return false;
1684 }
1685 }
1686 return true;
1687 }
1688
1689 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
1690 {
1691 if (arm_current_el(env) == 0 && arm_el_is_aa64(env, 1)) {
1692 return aa64_generate_debug_exceptions(env);
1693 }
1694 return arm_current_el(env) != 2;
1695 }
1696
1697 /* Return true if debugging exceptions are currently enabled.
1698 * This corresponds to what in ARM ARM pseudocode would be
1699 * if UsingAArch32() then
1700 * return AArch32.GenerateDebugExceptions()
1701 * else
1702 * return AArch64.GenerateDebugExceptions()
1703 * We choose to push the if() down into this function for clarity,
1704 * since the pseudocode has it at all callsites except for the one in
1705 * CheckSoftwareStep(), where it is elided because both branches would
1706 * always return the same value.
1707 *
1708 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
1709 * don't yet implement those exception levels or their associated trap bits.
1710 */
1711 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
1712 {
1713 if (env->aarch64) {
1714 return aa64_generate_debug_exceptions(env);
1715 } else {
1716 return aa32_generate_debug_exceptions(env);
1717 }
1718 }
1719
1720 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
1721 * implicitly means this always returns false in pre-v8 CPUs.)
1722 */
1723 static inline bool arm_singlestep_active(CPUARMState *env)
1724 {
1725 return extract32(env->cp15.mdscr_el1, 0, 1)
1726 && arm_el_is_aa64(env, arm_debug_target_el(env))
1727 && arm_generate_debug_exceptions(env);
1728 }
1729
1730 #include "exec/cpu-all.h"
1731
1732 /* Bit usage in the TB flags field: bit 31 indicates whether we are
1733 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
1734 * We put flags which are shared between 32 and 64 bit mode at the top
1735 * of the word, and flags which apply to only one mode at the bottom.
1736 */
1737 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1738 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
1739 #define ARM_TBFLAG_MMUIDX_SHIFT 28
1740 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
1741
1742 /* Bit usage when in AArch32 state: */
1743 #define ARM_TBFLAG_THUMB_SHIFT 0
1744 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
1745 #define ARM_TBFLAG_VECLEN_SHIFT 1
1746 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1747 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
1748 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
1749 #define ARM_TBFLAG_VFPEN_SHIFT 7
1750 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
1751 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
1752 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
1753 #define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1754 #define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
1755 #define ARM_TBFLAG_CPACR_FPEN_SHIFT 17
1756 #define ARM_TBFLAG_CPACR_FPEN_MASK (1 << ARM_TBFLAG_CPACR_FPEN_SHIFT)
1757 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 18
1758 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
1759 #define ARM_TBFLAG_PSTATE_SS_SHIFT 19
1760 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
1761 /* We store the bottom two bits of the CPAR as TB flags and handle
1762 * checks on the other bits at runtime
1763 */
1764 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 20
1765 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
1766 /* Indicates whether cp register reads and writes by guest code should access
1767 * the secure or nonsecure bank of banked registers; note that this is not
1768 * the same thing as the current security state of the processor!
1769 */
1770 #define ARM_TBFLAG_NS_SHIFT 22
1771 #define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
1772
1773 /* Bit usage when in AArch64 state */
1774 #define ARM_TBFLAG_AA64_FPEN_SHIFT 2
1775 #define ARM_TBFLAG_AA64_FPEN_MASK (1 << ARM_TBFLAG_AA64_FPEN_SHIFT)
1776 #define ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT 3
1777 #define ARM_TBFLAG_AA64_SS_ACTIVE_MASK (1 << ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT)
1778 #define ARM_TBFLAG_AA64_PSTATE_SS_SHIFT 4
1779 #define ARM_TBFLAG_AA64_PSTATE_SS_MASK (1 << ARM_TBFLAG_AA64_PSTATE_SS_SHIFT)
1780
1781 /* some convenience accessor macros */
1782 #define ARM_TBFLAG_AARCH64_STATE(F) \
1783 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
1784 #define ARM_TBFLAG_MMUIDX(F) \
1785 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
1786 #define ARM_TBFLAG_THUMB(F) \
1787 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1788 #define ARM_TBFLAG_VECLEN(F) \
1789 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1790 #define ARM_TBFLAG_VECSTRIDE(F) \
1791 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
1792 #define ARM_TBFLAG_VFPEN(F) \
1793 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1794 #define ARM_TBFLAG_CONDEXEC(F) \
1795 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
1796 #define ARM_TBFLAG_BSWAP_CODE(F) \
1797 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
1798 #define ARM_TBFLAG_CPACR_FPEN(F) \
1799 (((F) & ARM_TBFLAG_CPACR_FPEN_MASK) >> ARM_TBFLAG_CPACR_FPEN_SHIFT)
1800 #define ARM_TBFLAG_SS_ACTIVE(F) \
1801 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
1802 #define ARM_TBFLAG_PSTATE_SS(F) \
1803 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
1804 #define ARM_TBFLAG_XSCALE_CPAR(F) \
1805 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
1806 #define ARM_TBFLAG_AA64_FPEN(F) \
1807 (((F) & ARM_TBFLAG_AA64_FPEN_MASK) >> ARM_TBFLAG_AA64_FPEN_SHIFT)
1808 #define ARM_TBFLAG_AA64_SS_ACTIVE(F) \
1809 (((F) & ARM_TBFLAG_AA64_SS_ACTIVE_MASK) >> ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT)
1810 #define ARM_TBFLAG_AA64_PSTATE_SS(F) \
1811 (((F) & ARM_TBFLAG_AA64_PSTATE_SS_MASK) >> ARM_TBFLAG_AA64_PSTATE_SS_SHIFT)
1812 #define ARM_TBFLAG_NS(F) \
1813 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
1814
1815 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
1816 target_ulong *cs_base, int *flags)
1817 {
1818 int fpen;
1819
1820 if (arm_feature(env, ARM_FEATURE_V6)) {
1821 fpen = extract32(env->cp15.c1_coproc, 20, 2);
1822 } else {
1823 /* CPACR doesn't exist before v6, so VFP is always accessible */
1824 fpen = 3;
1825 }
1826
1827 if (is_a64(env)) {
1828 *pc = env->pc;
1829 *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
1830 if (fpen == 3 || (fpen == 1 && arm_current_el(env) != 0)) {
1831 *flags |= ARM_TBFLAG_AA64_FPEN_MASK;
1832 }
1833 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
1834 * states defined in the ARM ARM for software singlestep:
1835 * SS_ACTIVE PSTATE.SS State
1836 * 0 x Inactive (the TB flag for SS is always 0)
1837 * 1 0 Active-pending
1838 * 1 1 Active-not-pending
1839 */
1840 if (arm_singlestep_active(env)) {
1841 *flags |= ARM_TBFLAG_AA64_SS_ACTIVE_MASK;
1842 if (env->pstate & PSTATE_SS) {
1843 *flags |= ARM_TBFLAG_AA64_PSTATE_SS_MASK;
1844 }
1845 }
1846 } else {
1847 *pc = env->regs[15];
1848 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1849 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1850 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1851 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1852 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
1853 if (!(access_secure_reg(env))) {
1854 *flags |= ARM_TBFLAG_NS_MASK;
1855 }
1856 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
1857 || arm_el_is_aa64(env, 1)) {
1858 *flags |= ARM_TBFLAG_VFPEN_MASK;
1859 }
1860 if (fpen == 3 || (fpen == 1 && arm_current_el(env) != 0)) {
1861 *flags |= ARM_TBFLAG_CPACR_FPEN_MASK;
1862 }
1863 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
1864 * states defined in the ARM ARM for software singlestep:
1865 * SS_ACTIVE PSTATE.SS State
1866 * 0 x Inactive (the TB flag for SS is always 0)
1867 * 1 0 Active-pending
1868 * 1 1 Active-not-pending
1869 */
1870 if (arm_singlestep_active(env)) {
1871 *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
1872 if (env->uncached_cpsr & PSTATE_SS) {
1873 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
1874 }
1875 }
1876 *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
1877 << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
1878 }
1879
1880 *flags |= (cpu_mmu_index(env) << ARM_TBFLAG_MMUIDX_SHIFT);
1881
1882 *cs_base = 0;
1883 }
1884
1885 #include "exec/exec-all.h"
1886
1887 static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
1888 {
1889 if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
1890 env->pc = tb->pc;
1891 } else {
1892 env->regs[15] = tb->pc;
1893 }
1894 }
1895
1896 enum {
1897 QEMU_PSCI_CONDUIT_DISABLED = 0,
1898 QEMU_PSCI_CONDUIT_SMC = 1,
1899 QEMU_PSCI_CONDUIT_HVC = 2,
1900 };
1901
1902 #endif