]> git.proxmox.com Git - mirror_qemu.git/blob - target-arm/cpu.h
36407de6b38f569694339f338a3fe8be2a03e519
[mirror_qemu.git] / target-arm / cpu.h
1 /*
2 * ARM virtual CPU header
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #ifndef CPU_ARM_H
20 #define CPU_ARM_H
21
22 #include "config.h"
23
24 #include "kvm-consts.h"
25
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 # define ELF_MACHINE EM_AARCH64
30 #else
31 # define TARGET_LONG_BITS 32
32 # define ELF_MACHINE EM_ARM
33 #endif
34
35 #define TARGET_IS_BIENDIAN 1
36
37 #define CPUArchState struct CPUARMState
38
39 #include "qemu-common.h"
40 #include "exec/cpu-defs.h"
41
42 #include "fpu/softfloat.h"
43
44 #define EXCP_UDEF 1 /* undefined instruction */
45 #define EXCP_SWI 2 /* software interrupt */
46 #define EXCP_PREFETCH_ABORT 3
47 #define EXCP_DATA_ABORT 4
48 #define EXCP_IRQ 5
49 #define EXCP_FIQ 6
50 #define EXCP_BKPT 7
51 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
52 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
53 #define EXCP_STREX 10
54 #define EXCP_HVC 11 /* HyperVisor Call */
55 #define EXCP_HYP_TRAP 12
56 #define EXCP_SMC 13 /* Secure Monitor Call */
57 #define EXCP_VIRQ 14
58 #define EXCP_VFIQ 15
59 #define EXCP_SEMIHOST 16 /* semihosting call (A64 only) */
60
61 #define ARMV7M_EXCP_RESET 1
62 #define ARMV7M_EXCP_NMI 2
63 #define ARMV7M_EXCP_HARD 3
64 #define ARMV7M_EXCP_MEM 4
65 #define ARMV7M_EXCP_BUS 5
66 #define ARMV7M_EXCP_USAGE 6
67 #define ARMV7M_EXCP_SVC 11
68 #define ARMV7M_EXCP_DEBUG 12
69 #define ARMV7M_EXCP_PENDSV 14
70 #define ARMV7M_EXCP_SYSTICK 15
71
72 /* ARM-specific interrupt pending bits. */
73 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
74 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
75 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
76
77 /* The usual mapping for an AArch64 system register to its AArch32
78 * counterpart is for the 32 bit world to have access to the lower
79 * half only (with writes leaving the upper half untouched). It's
80 * therefore useful to be able to pass TCG the offset of the least
81 * significant half of a uint64_t struct member.
82 */
83 #ifdef HOST_WORDS_BIGENDIAN
84 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
85 #define offsetofhigh32(S, M) offsetof(S, M)
86 #else
87 #define offsetoflow32(S, M) offsetof(S, M)
88 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
89 #endif
90
91 /* Meanings of the ARMCPU object's four inbound GPIO lines */
92 #define ARM_CPU_IRQ 0
93 #define ARM_CPU_FIQ 1
94 #define ARM_CPU_VIRQ 2
95 #define ARM_CPU_VFIQ 3
96
97 struct arm_boot_info;
98
99 #define NB_MMU_MODES 7
100
101 /* We currently assume float and double are IEEE single and double
102 precision respectively.
103 Doing runtime conversions is tricky because VFP registers may contain
104 integer values (eg. as the result of a FTOSI instruction).
105 s<2n> maps to the least significant half of d<n>
106 s<2n+1> maps to the most significant half of d<n>
107 */
108
109 /* CPU state for each instance of a generic timer (in cp15 c14) */
110 typedef struct ARMGenericTimer {
111 uint64_t cval; /* Timer CompareValue register */
112 uint64_t ctl; /* Timer Control register */
113 } ARMGenericTimer;
114
115 #define GTIMER_PHYS 0
116 #define GTIMER_VIRT 1
117 #define GTIMER_HYP 2
118 #define GTIMER_SEC 3
119 #define NUM_GTIMERS 4
120
121 typedef struct {
122 uint64_t raw_tcr;
123 uint32_t mask;
124 uint32_t base_mask;
125 } TCR;
126
127 typedef struct CPUARMState {
128 /* Regs for current mode. */
129 uint32_t regs[16];
130
131 /* 32/64 switch only happens when taking and returning from
132 * exceptions so the overlap semantics are taken care of then
133 * instead of having a complicated union.
134 */
135 /* Regs for A64 mode. */
136 uint64_t xregs[32];
137 uint64_t pc;
138 /* PSTATE isn't an architectural register for ARMv8. However, it is
139 * convenient for us to assemble the underlying state into a 32 bit format
140 * identical to the architectural format used for the SPSR. (This is also
141 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
142 * 'pstate' register are.) Of the PSTATE bits:
143 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
144 * semantics as for AArch32, as described in the comments on each field)
145 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
146 * DAIF (exception masks) are kept in env->daif
147 * all other bits are stored in their correct places in env->pstate
148 */
149 uint32_t pstate;
150 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
151
152 /* Frequently accessed CPSR bits are stored separately for efficiency.
153 This contains all the other bits. Use cpsr_{read,write} to access
154 the whole CPSR. */
155 uint32_t uncached_cpsr;
156 uint32_t spsr;
157
158 /* Banked registers. */
159 uint64_t banked_spsr[8];
160 uint32_t banked_r13[8];
161 uint32_t banked_r14[8];
162
163 /* These hold r8-r12. */
164 uint32_t usr_regs[5];
165 uint32_t fiq_regs[5];
166
167 /* cpsr flag cache for faster execution */
168 uint32_t CF; /* 0 or 1 */
169 uint32_t VF; /* V is the bit 31. All other bits are undefined */
170 uint32_t NF; /* N is bit 31. All other bits are undefined. */
171 uint32_t ZF; /* Z set if zero. */
172 uint32_t QF; /* 0 or 1 */
173 uint32_t GE; /* cpsr[19:16] */
174 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
175 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
176 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
177
178 uint64_t elr_el[4]; /* AArch64 exception link regs */
179 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
180
181 /* System control coprocessor (cp15) */
182 struct {
183 uint32_t c0_cpuid;
184 union { /* Cache size selection */
185 struct {
186 uint64_t _unused_csselr0;
187 uint64_t csselr_ns;
188 uint64_t _unused_csselr1;
189 uint64_t csselr_s;
190 };
191 uint64_t csselr_el[4];
192 };
193 union { /* System control register. */
194 struct {
195 uint64_t _unused_sctlr;
196 uint64_t sctlr_ns;
197 uint64_t hsctlr;
198 uint64_t sctlr_s;
199 };
200 uint64_t sctlr_el[4];
201 };
202 uint64_t cpacr_el1; /* Architectural feature access control register */
203 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
204 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
205 uint64_t sder; /* Secure debug enable register. */
206 uint32_t nsacr; /* Non-secure access control register. */
207 union { /* MMU translation table base 0. */
208 struct {
209 uint64_t _unused_ttbr0_0;
210 uint64_t ttbr0_ns;
211 uint64_t _unused_ttbr0_1;
212 uint64_t ttbr0_s;
213 };
214 uint64_t ttbr0_el[4];
215 };
216 union { /* MMU translation table base 1. */
217 struct {
218 uint64_t _unused_ttbr1_0;
219 uint64_t ttbr1_ns;
220 uint64_t _unused_ttbr1_1;
221 uint64_t ttbr1_s;
222 };
223 uint64_t ttbr1_el[4];
224 };
225 /* MMU translation table base control. */
226 TCR tcr_el[4];
227 uint32_t c2_data; /* MPU data cachable bits. */
228 uint32_t c2_insn; /* MPU instruction cachable bits. */
229 union { /* MMU domain access control register
230 * MPU write buffer control.
231 */
232 struct {
233 uint64_t dacr_ns;
234 uint64_t dacr_s;
235 };
236 struct {
237 uint64_t dacr32_el2;
238 };
239 };
240 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
241 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
242 uint64_t hcr_el2; /* Hypervisor configuration register */
243 uint64_t scr_el3; /* Secure configuration register. */
244 union { /* Fault status registers. */
245 struct {
246 uint64_t ifsr_ns;
247 uint64_t ifsr_s;
248 };
249 struct {
250 uint64_t ifsr32_el2;
251 };
252 };
253 union {
254 struct {
255 uint64_t _unused_dfsr;
256 uint64_t dfsr_ns;
257 uint64_t hsr;
258 uint64_t dfsr_s;
259 };
260 uint64_t esr_el[4];
261 };
262 uint32_t c6_region[8]; /* MPU base/size registers. */
263 union { /* Fault address registers. */
264 struct {
265 uint64_t _unused_far0;
266 #ifdef HOST_WORDS_BIGENDIAN
267 uint32_t ifar_ns;
268 uint32_t dfar_ns;
269 uint32_t ifar_s;
270 uint32_t dfar_s;
271 #else
272 uint32_t dfar_ns;
273 uint32_t ifar_ns;
274 uint32_t dfar_s;
275 uint32_t ifar_s;
276 #endif
277 uint64_t _unused_far3;
278 };
279 uint64_t far_el[4];
280 };
281 union { /* Translation result. */
282 struct {
283 uint64_t _unused_par_0;
284 uint64_t par_ns;
285 uint64_t _unused_par_1;
286 uint64_t par_s;
287 };
288 uint64_t par_el[4];
289 };
290
291 uint32_t c6_rgnr;
292
293 uint32_t c9_insn; /* Cache lockdown registers. */
294 uint32_t c9_data;
295 uint64_t c9_pmcr; /* performance monitor control register */
296 uint64_t c9_pmcnten; /* perf monitor counter enables */
297 uint32_t c9_pmovsr; /* perf monitor overflow status */
298 uint32_t c9_pmxevtyper; /* perf monitor event type */
299 uint32_t c9_pmuserenr; /* perf monitor user enable */
300 uint32_t c9_pminten; /* perf monitor interrupt enables */
301 union { /* Memory attribute redirection */
302 struct {
303 #ifdef HOST_WORDS_BIGENDIAN
304 uint64_t _unused_mair_0;
305 uint32_t mair1_ns;
306 uint32_t mair0_ns;
307 uint64_t _unused_mair_1;
308 uint32_t mair1_s;
309 uint32_t mair0_s;
310 #else
311 uint64_t _unused_mair_0;
312 uint32_t mair0_ns;
313 uint32_t mair1_ns;
314 uint64_t _unused_mair_1;
315 uint32_t mair0_s;
316 uint32_t mair1_s;
317 #endif
318 };
319 uint64_t mair_el[4];
320 };
321 union { /* vector base address register */
322 struct {
323 uint64_t _unused_vbar;
324 uint64_t vbar_ns;
325 uint64_t hvbar;
326 uint64_t vbar_s;
327 };
328 uint64_t vbar_el[4];
329 };
330 uint32_t mvbar; /* (monitor) vector base address register */
331 struct { /* FCSE PID. */
332 uint32_t fcseidr_ns;
333 uint32_t fcseidr_s;
334 };
335 union { /* Context ID. */
336 struct {
337 uint64_t _unused_contextidr_0;
338 uint64_t contextidr_ns;
339 uint64_t _unused_contextidr_1;
340 uint64_t contextidr_s;
341 };
342 uint64_t contextidr_el[4];
343 };
344 union { /* User RW Thread register. */
345 struct {
346 uint64_t tpidrurw_ns;
347 uint64_t tpidrprw_ns;
348 uint64_t htpidr;
349 uint64_t _tpidr_el3;
350 };
351 uint64_t tpidr_el[4];
352 };
353 /* The secure banks of these registers don't map anywhere */
354 uint64_t tpidrurw_s;
355 uint64_t tpidrprw_s;
356 uint64_t tpidruro_s;
357
358 union { /* User RO Thread register. */
359 uint64_t tpidruro_ns;
360 uint64_t tpidrro_el[1];
361 };
362 uint64_t c14_cntfrq; /* Counter Frequency register */
363 uint64_t c14_cntkctl; /* Timer Control register */
364 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
365 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
366 ARMGenericTimer c14_timer[NUM_GTIMERS];
367 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
368 uint32_t c15_ticonfig; /* TI925T configuration byte. */
369 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
370 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
371 uint32_t c15_threadid; /* TI debugger thread-ID. */
372 uint32_t c15_config_base_address; /* SCU base address. */
373 uint32_t c15_diagnostic; /* diagnostic register */
374 uint32_t c15_power_diagnostic;
375 uint32_t c15_power_control; /* power control */
376 uint64_t dbgbvr[16]; /* breakpoint value registers */
377 uint64_t dbgbcr[16]; /* breakpoint control registers */
378 uint64_t dbgwvr[16]; /* watchpoint value registers */
379 uint64_t dbgwcr[16]; /* watchpoint control registers */
380 uint64_t mdscr_el1;
381 /* If the counter is enabled, this stores the last time the counter
382 * was reset. Otherwise it stores the counter value
383 */
384 uint64_t c15_ccnt;
385 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
386 } cp15;
387
388 struct {
389 uint32_t other_sp;
390 uint32_t vecbase;
391 uint32_t basepri;
392 uint32_t control;
393 int current_sp;
394 int exception;
395 } v7m;
396
397 /* Information associated with an exception about to be taken:
398 * code which raises an exception must set cs->exception_index and
399 * the relevant parts of this structure; the cpu_do_interrupt function
400 * will then set the guest-visible registers as part of the exception
401 * entry process.
402 */
403 struct {
404 uint32_t syndrome; /* AArch64 format syndrome register */
405 uint32_t fsr; /* AArch32 format fault status register info */
406 uint64_t vaddress; /* virtual addr associated with exception, if any */
407 uint32_t target_el; /* EL the exception should be targeted for */
408 /* If we implement EL2 we will also need to store information
409 * about the intermediate physical address for stage 2 faults.
410 */
411 } exception;
412
413 /* Thumb-2 EE state. */
414 uint32_t teecr;
415 uint32_t teehbr;
416
417 /* VFP coprocessor state. */
418 struct {
419 /* VFP/Neon register state. Note that the mapping between S, D and Q
420 * views of the register bank differs between AArch64 and AArch32:
421 * In AArch32:
422 * Qn = regs[2n+1]:regs[2n]
423 * Dn = regs[n]
424 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
425 * (and regs[32] to regs[63] are inaccessible)
426 * In AArch64:
427 * Qn = regs[2n+1]:regs[2n]
428 * Dn = regs[2n]
429 * Sn = regs[2n] bits 31..0
430 * This corresponds to the architecturally defined mapping between
431 * the two execution states, and means we do not need to explicitly
432 * map these registers when changing states.
433 */
434 float64 regs[64];
435
436 uint32_t xregs[16];
437 /* We store these fpcsr fields separately for convenience. */
438 int vec_len;
439 int vec_stride;
440
441 /* scratch space when Tn are not sufficient. */
442 uint32_t scratch[8];
443
444 /* fp_status is the "normal" fp status. standard_fp_status retains
445 * values corresponding to the ARM "Standard FPSCR Value", ie
446 * default-NaN, flush-to-zero, round-to-nearest and is used by
447 * any operations (generally Neon) which the architecture defines
448 * as controlled by the standard FPSCR value rather than the FPSCR.
449 *
450 * To avoid having to transfer exception bits around, we simply
451 * say that the FPSCR cumulative exception flags are the logical
452 * OR of the flags in the two fp statuses. This relies on the
453 * only thing which needs to read the exception flags being
454 * an explicit FPSCR read.
455 */
456 float_status fp_status;
457 float_status standard_fp_status;
458 } vfp;
459 uint64_t exclusive_addr;
460 uint64_t exclusive_val;
461 uint64_t exclusive_high;
462 #if defined(CONFIG_USER_ONLY)
463 uint64_t exclusive_test;
464 uint32_t exclusive_info;
465 #endif
466
467 /* iwMMXt coprocessor state. */
468 struct {
469 uint64_t regs[16];
470 uint64_t val;
471
472 uint32_t cregs[16];
473 } iwmmxt;
474
475 /* For mixed endian mode. */
476 bool bswap_code;
477
478 #if defined(CONFIG_USER_ONLY)
479 /* For usermode syscall translation. */
480 int eabi;
481 #endif
482
483 struct CPUBreakpoint *cpu_breakpoint[16];
484 struct CPUWatchpoint *cpu_watchpoint[16];
485
486 CPU_COMMON
487
488 /* These fields after the common ones so they are preserved on reset. */
489
490 /* Internal CPU feature flags. */
491 uint64_t features;
492
493 /* PMSAv7 MPU */
494 struct {
495 uint32_t *drbar;
496 uint32_t *drsr;
497 uint32_t *dracr;
498 } pmsav7;
499
500 void *nvic;
501 const struct arm_boot_info *boot_info;
502 } CPUARMState;
503
504 #include "cpu-qom.h"
505
506 ARMCPU *cpu_arm_init(const char *cpu_model);
507 int cpu_arm_exec(CPUState *cpu);
508 target_ulong do_arm_semihosting(CPUARMState *env);
509 void aarch64_sync_32_to_64(CPUARMState *env);
510 void aarch64_sync_64_to_32(CPUARMState *env);
511
512 static inline bool is_a64(CPUARMState *env)
513 {
514 return env->aarch64;
515 }
516
517 /* you can call this signal handler from your SIGBUS and SIGSEGV
518 signal handlers to inform the virtual CPU of exceptions. non zero
519 is returned if the signal was handled by the virtual CPU. */
520 int cpu_arm_signal_handler(int host_signum, void *pinfo,
521 void *puc);
522
523 /**
524 * pmccntr_sync
525 * @env: CPUARMState
526 *
527 * Synchronises the counter in the PMCCNTR. This must always be called twice,
528 * once before any action that might affect the timer and again afterwards.
529 * The function is used to swap the state of the register if required.
530 * This only happens when not in user mode (!CONFIG_USER_ONLY)
531 */
532 void pmccntr_sync(CPUARMState *env);
533
534 /* SCTLR bit meanings. Several bits have been reused in newer
535 * versions of the architecture; in that case we define constants
536 * for both old and new bit meanings. Code which tests against those
537 * bits should probably check or otherwise arrange that the CPU
538 * is the architectural version it expects.
539 */
540 #define SCTLR_M (1U << 0)
541 #define SCTLR_A (1U << 1)
542 #define SCTLR_C (1U << 2)
543 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
544 #define SCTLR_SA (1U << 3)
545 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
546 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
547 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
548 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
549 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
550 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
551 #define SCTLR_ITD (1U << 7) /* v8 onward */
552 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
553 #define SCTLR_SED (1U << 8) /* v8 onward */
554 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
555 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
556 #define SCTLR_F (1U << 10) /* up to v6 */
557 #define SCTLR_SW (1U << 10) /* v7 onward */
558 #define SCTLR_Z (1U << 11)
559 #define SCTLR_I (1U << 12)
560 #define SCTLR_V (1U << 13)
561 #define SCTLR_RR (1U << 14) /* up to v7 */
562 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
563 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
564 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
565 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
566 #define SCTLR_nTWI (1U << 16) /* v8 onward */
567 #define SCTLR_HA (1U << 17)
568 #define SCTLR_BR (1U << 17) /* PMSA only */
569 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
570 #define SCTLR_nTWE (1U << 18) /* v8 onward */
571 #define SCTLR_WXN (1U << 19)
572 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
573 #define SCTLR_UWXN (1U << 20) /* v7 onward */
574 #define SCTLR_FI (1U << 21)
575 #define SCTLR_U (1U << 22)
576 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
577 #define SCTLR_VE (1U << 24) /* up to v7 */
578 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
579 #define SCTLR_EE (1U << 25)
580 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
581 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
582 #define SCTLR_NMFI (1U << 27)
583 #define SCTLR_TRE (1U << 28)
584 #define SCTLR_AFE (1U << 29)
585 #define SCTLR_TE (1U << 30)
586
587 #define CPTR_TCPAC (1U << 31)
588 #define CPTR_TTA (1U << 20)
589 #define CPTR_TFP (1U << 10)
590
591 #define CPSR_M (0x1fU)
592 #define CPSR_T (1U << 5)
593 #define CPSR_F (1U << 6)
594 #define CPSR_I (1U << 7)
595 #define CPSR_A (1U << 8)
596 #define CPSR_E (1U << 9)
597 #define CPSR_IT_2_7 (0xfc00U)
598 #define CPSR_GE (0xfU << 16)
599 #define CPSR_IL (1U << 20)
600 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
601 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
602 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
603 * where it is live state but not accessible to the AArch32 code.
604 */
605 #define CPSR_RESERVED (0x7U << 21)
606 #define CPSR_J (1U << 24)
607 #define CPSR_IT_0_1 (3U << 25)
608 #define CPSR_Q (1U << 27)
609 #define CPSR_V (1U << 28)
610 #define CPSR_C (1U << 29)
611 #define CPSR_Z (1U << 30)
612 #define CPSR_N (1U << 31)
613 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
614 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
615
616 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
617 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
618 | CPSR_NZCV)
619 /* Bits writable in user mode. */
620 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
621 /* Execution state bits. MRS read as zero, MSR writes ignored. */
622 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
623 /* Mask of bits which may be set by exception return copying them from SPSR */
624 #define CPSR_ERET_MASK (~CPSR_RESERVED)
625
626 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
627 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
628 #define TTBCR_PD0 (1U << 4)
629 #define TTBCR_PD1 (1U << 5)
630 #define TTBCR_EPD0 (1U << 7)
631 #define TTBCR_IRGN0 (3U << 8)
632 #define TTBCR_ORGN0 (3U << 10)
633 #define TTBCR_SH0 (3U << 12)
634 #define TTBCR_T1SZ (3U << 16)
635 #define TTBCR_A1 (1U << 22)
636 #define TTBCR_EPD1 (1U << 23)
637 #define TTBCR_IRGN1 (3U << 24)
638 #define TTBCR_ORGN1 (3U << 26)
639 #define TTBCR_SH1 (1U << 28)
640 #define TTBCR_EAE (1U << 31)
641
642 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
643 * Only these are valid when in AArch64 mode; in
644 * AArch32 mode SPSRs are basically CPSR-format.
645 */
646 #define PSTATE_SP (1U)
647 #define PSTATE_M (0xFU)
648 #define PSTATE_nRW (1U << 4)
649 #define PSTATE_F (1U << 6)
650 #define PSTATE_I (1U << 7)
651 #define PSTATE_A (1U << 8)
652 #define PSTATE_D (1U << 9)
653 #define PSTATE_IL (1U << 20)
654 #define PSTATE_SS (1U << 21)
655 #define PSTATE_V (1U << 28)
656 #define PSTATE_C (1U << 29)
657 #define PSTATE_Z (1U << 30)
658 #define PSTATE_N (1U << 31)
659 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
660 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
661 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
662 /* Mode values for AArch64 */
663 #define PSTATE_MODE_EL3h 13
664 #define PSTATE_MODE_EL3t 12
665 #define PSTATE_MODE_EL2h 9
666 #define PSTATE_MODE_EL2t 8
667 #define PSTATE_MODE_EL1h 5
668 #define PSTATE_MODE_EL1t 4
669 #define PSTATE_MODE_EL0t 0
670
671 /* Map EL and handler into a PSTATE_MODE. */
672 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
673 {
674 return (el << 2) | handler;
675 }
676
677 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
678 * interprocessing, so we don't attempt to sync with the cpsr state used by
679 * the 32 bit decoder.
680 */
681 static inline uint32_t pstate_read(CPUARMState *env)
682 {
683 int ZF;
684
685 ZF = (env->ZF == 0);
686 return (env->NF & 0x80000000) | (ZF << 30)
687 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
688 | env->pstate | env->daif;
689 }
690
691 static inline void pstate_write(CPUARMState *env, uint32_t val)
692 {
693 env->ZF = (~val) & PSTATE_Z;
694 env->NF = val;
695 env->CF = (val >> 29) & 1;
696 env->VF = (val << 3) & 0x80000000;
697 env->daif = val & PSTATE_DAIF;
698 env->pstate = val & ~CACHED_PSTATE_BITS;
699 }
700
701 /* Return the current CPSR value. */
702 uint32_t cpsr_read(CPUARMState *env);
703 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
704 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
705
706 /* Return the current xPSR value. */
707 static inline uint32_t xpsr_read(CPUARMState *env)
708 {
709 int ZF;
710 ZF = (env->ZF == 0);
711 return (env->NF & 0x80000000) | (ZF << 30)
712 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
713 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
714 | ((env->condexec_bits & 0xfc) << 8)
715 | env->v7m.exception;
716 }
717
718 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
719 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
720 {
721 if (mask & CPSR_NZCV) {
722 env->ZF = (~val) & CPSR_Z;
723 env->NF = val;
724 env->CF = (val >> 29) & 1;
725 env->VF = (val << 3) & 0x80000000;
726 }
727 if (mask & CPSR_Q)
728 env->QF = ((val & CPSR_Q) != 0);
729 if (mask & (1 << 24))
730 env->thumb = ((val & (1 << 24)) != 0);
731 if (mask & CPSR_IT_0_1) {
732 env->condexec_bits &= ~3;
733 env->condexec_bits |= (val >> 25) & 3;
734 }
735 if (mask & CPSR_IT_2_7) {
736 env->condexec_bits &= 3;
737 env->condexec_bits |= (val >> 8) & 0xfc;
738 }
739 if (mask & 0x1ff) {
740 env->v7m.exception = val & 0x1ff;
741 }
742 }
743
744 #define HCR_VM (1ULL << 0)
745 #define HCR_SWIO (1ULL << 1)
746 #define HCR_PTW (1ULL << 2)
747 #define HCR_FMO (1ULL << 3)
748 #define HCR_IMO (1ULL << 4)
749 #define HCR_AMO (1ULL << 5)
750 #define HCR_VF (1ULL << 6)
751 #define HCR_VI (1ULL << 7)
752 #define HCR_VSE (1ULL << 8)
753 #define HCR_FB (1ULL << 9)
754 #define HCR_BSU_MASK (3ULL << 10)
755 #define HCR_DC (1ULL << 12)
756 #define HCR_TWI (1ULL << 13)
757 #define HCR_TWE (1ULL << 14)
758 #define HCR_TID0 (1ULL << 15)
759 #define HCR_TID1 (1ULL << 16)
760 #define HCR_TID2 (1ULL << 17)
761 #define HCR_TID3 (1ULL << 18)
762 #define HCR_TSC (1ULL << 19)
763 #define HCR_TIDCP (1ULL << 20)
764 #define HCR_TACR (1ULL << 21)
765 #define HCR_TSW (1ULL << 22)
766 #define HCR_TPC (1ULL << 23)
767 #define HCR_TPU (1ULL << 24)
768 #define HCR_TTLB (1ULL << 25)
769 #define HCR_TVM (1ULL << 26)
770 #define HCR_TGE (1ULL << 27)
771 #define HCR_TDZ (1ULL << 28)
772 #define HCR_HCD (1ULL << 29)
773 #define HCR_TRVM (1ULL << 30)
774 #define HCR_RW (1ULL << 31)
775 #define HCR_CD (1ULL << 32)
776 #define HCR_ID (1ULL << 33)
777 #define HCR_MASK ((1ULL << 34) - 1)
778
779 #define SCR_NS (1U << 0)
780 #define SCR_IRQ (1U << 1)
781 #define SCR_FIQ (1U << 2)
782 #define SCR_EA (1U << 3)
783 #define SCR_FW (1U << 4)
784 #define SCR_AW (1U << 5)
785 #define SCR_NET (1U << 6)
786 #define SCR_SMD (1U << 7)
787 #define SCR_HCE (1U << 8)
788 #define SCR_SIF (1U << 9)
789 #define SCR_RW (1U << 10)
790 #define SCR_ST (1U << 11)
791 #define SCR_TWI (1U << 12)
792 #define SCR_TWE (1U << 13)
793 #define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
794 #define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
795
796 /* Return the current FPSCR value. */
797 uint32_t vfp_get_fpscr(CPUARMState *env);
798 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
799
800 /* For A64 the FPSCR is split into two logically distinct registers,
801 * FPCR and FPSR. However since they still use non-overlapping bits
802 * we store the underlying state in fpscr and just mask on read/write.
803 */
804 #define FPSR_MASK 0xf800009f
805 #define FPCR_MASK 0x07f79f00
806 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
807 {
808 return vfp_get_fpscr(env) & FPSR_MASK;
809 }
810
811 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
812 {
813 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
814 vfp_set_fpscr(env, new_fpscr);
815 }
816
817 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
818 {
819 return vfp_get_fpscr(env) & FPCR_MASK;
820 }
821
822 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
823 {
824 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
825 vfp_set_fpscr(env, new_fpscr);
826 }
827
828 enum arm_cpu_mode {
829 ARM_CPU_MODE_USR = 0x10,
830 ARM_CPU_MODE_FIQ = 0x11,
831 ARM_CPU_MODE_IRQ = 0x12,
832 ARM_CPU_MODE_SVC = 0x13,
833 ARM_CPU_MODE_MON = 0x16,
834 ARM_CPU_MODE_ABT = 0x17,
835 ARM_CPU_MODE_HYP = 0x1a,
836 ARM_CPU_MODE_UND = 0x1b,
837 ARM_CPU_MODE_SYS = 0x1f
838 };
839
840 /* VFP system registers. */
841 #define ARM_VFP_FPSID 0
842 #define ARM_VFP_FPSCR 1
843 #define ARM_VFP_MVFR2 5
844 #define ARM_VFP_MVFR1 6
845 #define ARM_VFP_MVFR0 7
846 #define ARM_VFP_FPEXC 8
847 #define ARM_VFP_FPINST 9
848 #define ARM_VFP_FPINST2 10
849
850 /* iwMMXt coprocessor control registers. */
851 #define ARM_IWMMXT_wCID 0
852 #define ARM_IWMMXT_wCon 1
853 #define ARM_IWMMXT_wCSSF 2
854 #define ARM_IWMMXT_wCASF 3
855 #define ARM_IWMMXT_wCGR0 8
856 #define ARM_IWMMXT_wCGR1 9
857 #define ARM_IWMMXT_wCGR2 10
858 #define ARM_IWMMXT_wCGR3 11
859
860 /* If adding a feature bit which corresponds to a Linux ELF
861 * HWCAP bit, remember to update the feature-bit-to-hwcap
862 * mapping in linux-user/elfload.c:get_elf_hwcap().
863 */
864 enum arm_features {
865 ARM_FEATURE_VFP,
866 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
867 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
868 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
869 ARM_FEATURE_V6,
870 ARM_FEATURE_V6K,
871 ARM_FEATURE_V7,
872 ARM_FEATURE_THUMB2,
873 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
874 ARM_FEATURE_VFP3,
875 ARM_FEATURE_VFP_FP16,
876 ARM_FEATURE_NEON,
877 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
878 ARM_FEATURE_M, /* Microcontroller profile. */
879 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
880 ARM_FEATURE_THUMB2EE,
881 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
882 ARM_FEATURE_V4T,
883 ARM_FEATURE_V5,
884 ARM_FEATURE_STRONGARM,
885 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
886 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
887 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
888 ARM_FEATURE_GENERIC_TIMER,
889 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
890 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
891 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
892 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
893 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
894 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
895 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
896 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
897 ARM_FEATURE_V8,
898 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
899 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
900 ARM_FEATURE_CBAR, /* has cp15 CBAR */
901 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
902 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
903 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
904 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
905 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
906 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
907 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
908 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
909 };
910
911 static inline int arm_feature(CPUARMState *env, int feature)
912 {
913 return (env->features & (1ULL << feature)) != 0;
914 }
915
916 #if !defined(CONFIG_USER_ONLY)
917 /* Return true if exception levels below EL3 are in secure state,
918 * or would be following an exception return to that level.
919 * Unlike arm_is_secure() (which is always a question about the
920 * _current_ state of the CPU) this doesn't care about the current
921 * EL or mode.
922 */
923 static inline bool arm_is_secure_below_el3(CPUARMState *env)
924 {
925 if (arm_feature(env, ARM_FEATURE_EL3)) {
926 return !(env->cp15.scr_el3 & SCR_NS);
927 } else {
928 /* If EL2 is not supported then the secure state is implementation
929 * defined, in which case QEMU defaults to non-secure.
930 */
931 return false;
932 }
933 }
934
935 /* Return true if the processor is in secure state */
936 static inline bool arm_is_secure(CPUARMState *env)
937 {
938 if (arm_feature(env, ARM_FEATURE_EL3)) {
939 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
940 /* CPU currently in AArch64 state and EL3 */
941 return true;
942 } else if (!is_a64(env) &&
943 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
944 /* CPU currently in AArch32 state and monitor mode */
945 return true;
946 }
947 }
948 return arm_is_secure_below_el3(env);
949 }
950
951 #else
952 static inline bool arm_is_secure_below_el3(CPUARMState *env)
953 {
954 return false;
955 }
956
957 static inline bool arm_is_secure(CPUARMState *env)
958 {
959 return false;
960 }
961 #endif
962
963 /* Return true if the specified exception level is running in AArch64 state. */
964 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
965 {
966 /* We don't currently support EL2, and this isn't valid for EL0
967 * (if we're in EL0, is_a64() is what you want, and if we're not in EL0
968 * then the state of EL0 isn't well defined.)
969 */
970 assert(el == 1 || el == 3);
971
972 /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
973 * is a QEMU-imposed simplification which we may wish to change later.
974 * If we in future support EL2 and/or EL3, then the state of lower
975 * exception levels is controlled by the HCR.RW and SCR.RW bits.
976 */
977 return arm_feature(env, ARM_FEATURE_AARCH64);
978 }
979
980 /* Function for determing whether guest cp register reads and writes should
981 * access the secure or non-secure bank of a cp register. When EL3 is
982 * operating in AArch32 state, the NS-bit determines whether the secure
983 * instance of a cp register should be used. When EL3 is AArch64 (or if
984 * it doesn't exist at all) then there is no register banking, and all
985 * accesses are to the non-secure version.
986 */
987 static inline bool access_secure_reg(CPUARMState *env)
988 {
989 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
990 !arm_el_is_aa64(env, 3) &&
991 !(env->cp15.scr_el3 & SCR_NS));
992
993 return ret;
994 }
995
996 /* Macros for accessing a specified CP register bank */
997 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
998 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
999
1000 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1001 do { \
1002 if (_secure) { \
1003 (_env)->cp15._regname##_s = (_val); \
1004 } else { \
1005 (_env)->cp15._regname##_ns = (_val); \
1006 } \
1007 } while (0)
1008
1009 /* Macros for automatically accessing a specific CP register bank depending on
1010 * the current secure state of the system. These macros are not intended for
1011 * supporting instruction translation reads/writes as these are dependent
1012 * solely on the SCR.NS bit and not the mode.
1013 */
1014 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1015 A32_BANKED_REG_GET((_env), _regname, \
1016 ((!arm_el_is_aa64((_env), 3) && arm_is_secure(_env))))
1017
1018 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1019 A32_BANKED_REG_SET((_env), _regname, \
1020 ((!arm_el_is_aa64((_env), 3) && arm_is_secure(_env))), \
1021 (_val))
1022
1023 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1024 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1025 uint32_t cur_el, bool secure);
1026
1027 /* Interface between CPU and Interrupt controller. */
1028 void armv7m_nvic_set_pending(void *opaque, int irq);
1029 int armv7m_nvic_acknowledge_irq(void *opaque);
1030 void armv7m_nvic_complete_irq(void *opaque, int irq);
1031
1032 /* Interface for defining coprocessor registers.
1033 * Registers are defined in tables of arm_cp_reginfo structs
1034 * which are passed to define_arm_cp_regs().
1035 */
1036
1037 /* When looking up a coprocessor register we look for it
1038 * via an integer which encodes all of:
1039 * coprocessor number
1040 * Crn, Crm, opc1, opc2 fields
1041 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1042 * or via MRRC/MCRR?)
1043 * non-secure/secure bank (AArch32 only)
1044 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1045 * (In this case crn and opc2 should be zero.)
1046 * For AArch64, there is no 32/64 bit size distinction;
1047 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1048 * and 4 bit CRn and CRm. The encoding patterns are chosen
1049 * to be easy to convert to and from the KVM encodings, and also
1050 * so that the hashtable can contain both AArch32 and AArch64
1051 * registers (to allow for interprocessing where we might run
1052 * 32 bit code on a 64 bit core).
1053 */
1054 /* This bit is private to our hashtable cpreg; in KVM register
1055 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1056 * in the upper bits of the 64 bit ID.
1057 */
1058 #define CP_REG_AA64_SHIFT 28
1059 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1060
1061 /* To enable banking of coprocessor registers depending on ns-bit we
1062 * add a bit to distinguish between secure and non-secure cpregs in the
1063 * hashtable.
1064 */
1065 #define CP_REG_NS_SHIFT 29
1066 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1067
1068 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1069 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1070 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1071
1072 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1073 (CP_REG_AA64_MASK | \
1074 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1075 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1076 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1077 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1078 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1079 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1080
1081 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1082 * version used as a key for the coprocessor register hashtable
1083 */
1084 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1085 {
1086 uint32_t cpregid = kvmid;
1087 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1088 cpregid |= CP_REG_AA64_MASK;
1089 } else {
1090 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1091 cpregid |= (1 << 15);
1092 }
1093
1094 /* KVM is always non-secure so add the NS flag on AArch32 register
1095 * entries.
1096 */
1097 cpregid |= 1 << CP_REG_NS_SHIFT;
1098 }
1099 return cpregid;
1100 }
1101
1102 /* Convert a truncated 32 bit hashtable key into the full
1103 * 64 bit KVM register ID.
1104 */
1105 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1106 {
1107 uint64_t kvmid;
1108
1109 if (cpregid & CP_REG_AA64_MASK) {
1110 kvmid = cpregid & ~CP_REG_AA64_MASK;
1111 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1112 } else {
1113 kvmid = cpregid & ~(1 << 15);
1114 if (cpregid & (1 << 15)) {
1115 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1116 } else {
1117 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1118 }
1119 }
1120 return kvmid;
1121 }
1122
1123 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1124 * special-behaviour cp reg and bits [15..8] indicate what behaviour
1125 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1126 * TCG can assume the value to be constant (ie load at translate time)
1127 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1128 * indicates that the TB should not be ended after a write to this register
1129 * (the default is that the TB ends after cp writes). OVERRIDE permits
1130 * a register definition to override a previous definition for the
1131 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1132 * old must have the OVERRIDE bit set.
1133 * ALIAS indicates that this register is an alias view of some underlying
1134 * state which is also visible via another register, and that the other
1135 * register is handling migration and reset; registers marked ALIAS will not be
1136 * migrated but may have their state set by syncing of register state from KVM.
1137 * NO_RAW indicates that this register has no underlying state and does not
1138 * support raw access for state saving/loading; it will not be used for either
1139 * migration or KVM state synchronization. (Typically this is for "registers"
1140 * which are actually used as instructions for cache maintenance and so on.)
1141 * IO indicates that this register does I/O and therefore its accesses
1142 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1143 * registers which implement clocks or timers require this.
1144 */
1145 #define ARM_CP_SPECIAL 1
1146 #define ARM_CP_CONST 2
1147 #define ARM_CP_64BIT 4
1148 #define ARM_CP_SUPPRESS_TB_END 8
1149 #define ARM_CP_OVERRIDE 16
1150 #define ARM_CP_ALIAS 32
1151 #define ARM_CP_IO 64
1152 #define ARM_CP_NO_RAW 128
1153 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1154 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1155 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1156 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1157 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1158 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1159 /* Used only as a terminator for ARMCPRegInfo lists */
1160 #define ARM_CP_SENTINEL 0xffff
1161 /* Mask of only the flag bits in a type field */
1162 #define ARM_CP_FLAG_MASK 0xff
1163
1164 /* Valid values for ARMCPRegInfo state field, indicating which of
1165 * the AArch32 and AArch64 execution states this register is visible in.
1166 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1167 * If the reginfo is declared to be visible in both states then a second
1168 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1169 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1170 * Note that we rely on the values of these enums as we iterate through
1171 * the various states in some places.
1172 */
1173 enum {
1174 ARM_CP_STATE_AA32 = 0,
1175 ARM_CP_STATE_AA64 = 1,
1176 ARM_CP_STATE_BOTH = 2,
1177 };
1178
1179 /* ARM CP register secure state flags. These flags identify security state
1180 * attributes for a given CP register entry.
1181 * The existence of both or neither secure and non-secure flags indicates that
1182 * the register has both a secure and non-secure hash entry. A single one of
1183 * these flags causes the register to only be hashed for the specified
1184 * security state.
1185 * Although definitions may have any combination of the S/NS bits, each
1186 * registered entry will only have one to identify whether the entry is secure
1187 * or non-secure.
1188 */
1189 enum {
1190 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
1191 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
1192 };
1193
1194 /* Return true if cptype is a valid type field. This is used to try to
1195 * catch errors where the sentinel has been accidentally left off the end
1196 * of a list of registers.
1197 */
1198 static inline bool cptype_valid(int cptype)
1199 {
1200 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1201 || ((cptype & ARM_CP_SPECIAL) &&
1202 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1203 }
1204
1205 /* Access rights:
1206 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1207 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1208 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1209 * (ie any of the privileged modes in Secure state, or Monitor mode).
1210 * If a register is accessible in one privilege level it's always accessible
1211 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1212 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1213 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1214 * terminology a little and call this PL3.
1215 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1216 * with the ELx exception levels.
1217 *
1218 * If access permissions for a register are more complex than can be
1219 * described with these bits, then use a laxer set of restrictions, and
1220 * do the more restrictive/complex check inside a helper function.
1221 */
1222 #define PL3_R 0x80
1223 #define PL3_W 0x40
1224 #define PL2_R (0x20 | PL3_R)
1225 #define PL2_W (0x10 | PL3_W)
1226 #define PL1_R (0x08 | PL2_R)
1227 #define PL1_W (0x04 | PL2_W)
1228 #define PL0_R (0x02 | PL1_R)
1229 #define PL0_W (0x01 | PL1_W)
1230
1231 #define PL3_RW (PL3_R | PL3_W)
1232 #define PL2_RW (PL2_R | PL2_W)
1233 #define PL1_RW (PL1_R | PL1_W)
1234 #define PL0_RW (PL0_R | PL0_W)
1235
1236 /* Return the current Exception Level (as per ARMv8; note that this differs
1237 * from the ARMv7 Privilege Level).
1238 */
1239 static inline int arm_current_el(CPUARMState *env)
1240 {
1241 if (arm_feature(env, ARM_FEATURE_M)) {
1242 return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1243 }
1244
1245 if (is_a64(env)) {
1246 return extract32(env->pstate, 2, 2);
1247 }
1248
1249 switch (env->uncached_cpsr & 0x1f) {
1250 case ARM_CPU_MODE_USR:
1251 return 0;
1252 case ARM_CPU_MODE_HYP:
1253 return 2;
1254 case ARM_CPU_MODE_MON:
1255 return 3;
1256 default:
1257 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1258 /* If EL3 is 32-bit then all secure privileged modes run in
1259 * EL3
1260 */
1261 return 3;
1262 }
1263
1264 return 1;
1265 }
1266 }
1267
1268 typedef struct ARMCPRegInfo ARMCPRegInfo;
1269
1270 typedef enum CPAccessResult {
1271 /* Access is permitted */
1272 CP_ACCESS_OK = 0,
1273 /* Access fails due to a configurable trap or enable which would
1274 * result in a categorized exception syndrome giving information about
1275 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1276 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1277 * PL1 if in EL0, otherwise to the current EL).
1278 */
1279 CP_ACCESS_TRAP = 1,
1280 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1281 * Note that this is not a catch-all case -- the set of cases which may
1282 * result in this failure is specifically defined by the architecture.
1283 */
1284 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1285 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1286 CP_ACCESS_TRAP_EL2 = 3,
1287 CP_ACCESS_TRAP_EL3 = 4,
1288 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1289 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1290 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1291 } CPAccessResult;
1292
1293 /* Access functions for coprocessor registers. These cannot fail and
1294 * may not raise exceptions.
1295 */
1296 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1297 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1298 uint64_t value);
1299 /* Access permission check functions for coprocessor registers. */
1300 typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1301 /* Hook function for register reset */
1302 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1303
1304 #define CP_ANY 0xff
1305
1306 /* Definition of an ARM coprocessor register */
1307 struct ARMCPRegInfo {
1308 /* Name of register (useful mainly for debugging, need not be unique) */
1309 const char *name;
1310 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1311 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1312 * 'wildcard' field -- any value of that field in the MRC/MCR insn
1313 * will be decoded to this register. The register read and write
1314 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1315 * used by the program, so it is possible to register a wildcard and
1316 * then behave differently on read/write if necessary.
1317 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1318 * must both be zero.
1319 * For AArch64-visible registers, opc0 is also used.
1320 * Since there are no "coprocessors" in AArch64, cp is purely used as a
1321 * way to distinguish (for KVM's benefit) guest-visible system registers
1322 * from demuxed ones provided to preserve the "no side effects on
1323 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1324 * visible (to match KVM's encoding); cp==0 will be converted to
1325 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1326 */
1327 uint8_t cp;
1328 uint8_t crn;
1329 uint8_t crm;
1330 uint8_t opc0;
1331 uint8_t opc1;
1332 uint8_t opc2;
1333 /* Execution state in which this register is visible: ARM_CP_STATE_* */
1334 int state;
1335 /* Register type: ARM_CP_* bits/values */
1336 int type;
1337 /* Access rights: PL*_[RW] */
1338 int access;
1339 /* Security state: ARM_CP_SECSTATE_* bits/values */
1340 int secure;
1341 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1342 * this register was defined: can be used to hand data through to the
1343 * register read/write functions, since they are passed the ARMCPRegInfo*.
1344 */
1345 void *opaque;
1346 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1347 * fieldoffset is non-zero, the reset value of the register.
1348 */
1349 uint64_t resetvalue;
1350 /* Offset of the field in CPUARMState for this register.
1351 *
1352 * This is not needed if either:
1353 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1354 * 2. both readfn and writefn are specified
1355 */
1356 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1357
1358 /* Offsets of the secure and non-secure fields in CPUARMState for the
1359 * register if it is banked. These fields are only used during the static
1360 * registration of a register. During hashing the bank associated
1361 * with a given security state is copied to fieldoffset which is used from
1362 * there on out.
1363 *
1364 * It is expected that register definitions use either fieldoffset or
1365 * bank_fieldoffsets in the definition but not both. It is also expected
1366 * that both bank offsets are set when defining a banked register. This
1367 * use indicates that a register is banked.
1368 */
1369 ptrdiff_t bank_fieldoffsets[2];
1370
1371 /* Function for making any access checks for this register in addition to
1372 * those specified by the 'access' permissions bits. If NULL, no extra
1373 * checks required. The access check is performed at runtime, not at
1374 * translate time.
1375 */
1376 CPAccessFn *accessfn;
1377 /* Function for handling reads of this register. If NULL, then reads
1378 * will be done by loading from the offset into CPUARMState specified
1379 * by fieldoffset.
1380 */
1381 CPReadFn *readfn;
1382 /* Function for handling writes of this register. If NULL, then writes
1383 * will be done by writing to the offset into CPUARMState specified
1384 * by fieldoffset.
1385 */
1386 CPWriteFn *writefn;
1387 /* Function for doing a "raw" read; used when we need to copy
1388 * coprocessor state to the kernel for KVM or out for
1389 * migration. This only needs to be provided if there is also a
1390 * readfn and it has side effects (for instance clear-on-read bits).
1391 */
1392 CPReadFn *raw_readfn;
1393 /* Function for doing a "raw" write; used when we need to copy KVM
1394 * kernel coprocessor state into userspace, or for inbound
1395 * migration. This only needs to be provided if there is also a
1396 * writefn and it masks out "unwritable" bits or has write-one-to-clear
1397 * or similar behaviour.
1398 */
1399 CPWriteFn *raw_writefn;
1400 /* Function for resetting the register. If NULL, then reset will be done
1401 * by writing resetvalue to the field specified in fieldoffset. If
1402 * fieldoffset is 0 then no reset will be done.
1403 */
1404 CPResetFn *resetfn;
1405 };
1406
1407 /* Macros which are lvalues for the field in CPUARMState for the
1408 * ARMCPRegInfo *ri.
1409 */
1410 #define CPREG_FIELD32(env, ri) \
1411 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1412 #define CPREG_FIELD64(env, ri) \
1413 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1414
1415 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1416
1417 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1418 const ARMCPRegInfo *regs, void *opaque);
1419 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1420 const ARMCPRegInfo *regs, void *opaque);
1421 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1422 {
1423 define_arm_cp_regs_with_opaque(cpu, regs, 0);
1424 }
1425 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1426 {
1427 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1428 }
1429 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1430
1431 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1432 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1433 uint64_t value);
1434 /* CPReadFn that can be used for read-as-zero behaviour */
1435 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1436
1437 /* CPResetFn that does nothing, for use if no reset is required even
1438 * if fieldoffset is non zero.
1439 */
1440 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1441
1442 /* Return true if this reginfo struct's field in the cpu state struct
1443 * is 64 bits wide.
1444 */
1445 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1446 {
1447 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1448 }
1449
1450 static inline bool cp_access_ok(int current_el,
1451 const ARMCPRegInfo *ri, int isread)
1452 {
1453 return (ri->access >> ((current_el * 2) + isread)) & 1;
1454 }
1455
1456 /* Raw read of a coprocessor register (as needed for migration, etc) */
1457 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1458
1459 /**
1460 * write_list_to_cpustate
1461 * @cpu: ARMCPU
1462 *
1463 * For each register listed in the ARMCPU cpreg_indexes list, write
1464 * its value from the cpreg_values list into the ARMCPUState structure.
1465 * This updates TCG's working data structures from KVM data or
1466 * from incoming migration state.
1467 *
1468 * Returns: true if all register values were updated correctly,
1469 * false if some register was unknown or could not be written.
1470 * Note that we do not stop early on failure -- we will attempt
1471 * writing all registers in the list.
1472 */
1473 bool write_list_to_cpustate(ARMCPU *cpu);
1474
1475 /**
1476 * write_cpustate_to_list:
1477 * @cpu: ARMCPU
1478 *
1479 * For each register listed in the ARMCPU cpreg_indexes list, write
1480 * its value from the ARMCPUState structure into the cpreg_values list.
1481 * This is used to copy info from TCG's working data structures into
1482 * KVM or for outbound migration.
1483 *
1484 * Returns: true if all register values were read correctly,
1485 * false if some register was unknown or could not be read.
1486 * Note that we do not stop early on failure -- we will attempt
1487 * reading all registers in the list.
1488 */
1489 bool write_cpustate_to_list(ARMCPU *cpu);
1490
1491 /* Does the core conform to the "MicroController" profile. e.g. Cortex-M3.
1492 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1493 conventional cores (ie. Application or Realtime profile). */
1494
1495 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
1496
1497 #define ARM_CPUID_TI915T 0x54029152
1498 #define ARM_CPUID_TI925T 0x54029252
1499
1500 #if defined(CONFIG_USER_ONLY)
1501 #define TARGET_PAGE_BITS 12
1502 #else
1503 /* The ARM MMU allows 1k pages. */
1504 /* ??? Linux doesn't actually use these, and they're deprecated in recent
1505 architecture revisions. Maybe a configure option to disable them. */
1506 #define TARGET_PAGE_BITS 10
1507 #endif
1508
1509 #if defined(TARGET_AARCH64)
1510 # define TARGET_PHYS_ADDR_SPACE_BITS 48
1511 # define TARGET_VIRT_ADDR_SPACE_BITS 64
1512 #else
1513 # define TARGET_PHYS_ADDR_SPACE_BITS 40
1514 # define TARGET_VIRT_ADDR_SPACE_BITS 32
1515 #endif
1516
1517 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1518 unsigned int target_el)
1519 {
1520 CPUARMState *env = cs->env_ptr;
1521 unsigned int cur_el = arm_current_el(env);
1522 bool secure = arm_is_secure(env);
1523 bool scr;
1524 bool hcr;
1525 bool pstate_unmasked;
1526 int8_t unmasked = 0;
1527
1528 /* Don't take exceptions if they target a lower EL.
1529 * This check should catch any exceptions that would not be taken but left
1530 * pending.
1531 */
1532 if (cur_el > target_el) {
1533 return false;
1534 }
1535
1536 switch (excp_idx) {
1537 case EXCP_FIQ:
1538 /* If FIQs are routed to EL3 or EL2 then there are cases where we
1539 * override the CPSR.F in determining if the exception is masked or
1540 * not. If neither of these are set then we fall back to the CPSR.F
1541 * setting otherwise we further assess the state below.
1542 */
1543 hcr = (env->cp15.hcr_el2 & HCR_FMO);
1544 scr = (env->cp15.scr_el3 & SCR_FIQ);
1545
1546 /* When EL3 is 32-bit, the SCR.FW bit controls whether the CPSR.F bit
1547 * masks FIQ interrupts when taken in non-secure state. If SCR.FW is
1548 * set then FIQs can be masked by CPSR.F when non-secure but only
1549 * when FIQs are only routed to EL3.
1550 */
1551 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1552 pstate_unmasked = !(env->daif & PSTATE_F);
1553 break;
1554
1555 case EXCP_IRQ:
1556 /* When EL3 execution state is 32-bit, if HCR.IMO is set then we may
1557 * override the CPSR.I masking when in non-secure state. The SCR.IRQ
1558 * setting has already been taken into consideration when setting the
1559 * target EL, so it does not have a further affect here.
1560 */
1561 hcr = (env->cp15.hcr_el2 & HCR_IMO);
1562 scr = false;
1563 pstate_unmasked = !(env->daif & PSTATE_I);
1564 break;
1565
1566 case EXCP_VFIQ:
1567 if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1568 /* VFIQs are only taken when hypervized and non-secure. */
1569 return false;
1570 }
1571 return !(env->daif & PSTATE_F);
1572 case EXCP_VIRQ:
1573 if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
1574 /* VIRQs are only taken when hypervized and non-secure. */
1575 return false;
1576 }
1577 return !(env->daif & PSTATE_I);
1578 default:
1579 g_assert_not_reached();
1580 }
1581
1582 /* Use the target EL, current execution state and SCR/HCR settings to
1583 * determine whether the corresponding CPSR bit is used to mask the
1584 * interrupt.
1585 */
1586 if ((target_el > cur_el) && (target_el != 1)) {
1587 if (arm_el_is_aa64(env, 3) || ((scr || hcr) && (!secure))) {
1588 unmasked = 1;
1589 }
1590 }
1591
1592 /* The PSTATE bits only mask the interrupt if we have not overriden the
1593 * ability above.
1594 */
1595 return unmasked || pstate_unmasked;
1596 }
1597
1598 #define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
1599
1600 #define cpu_exec cpu_arm_exec
1601 #define cpu_gen_code cpu_arm_gen_code
1602 #define cpu_signal_handler cpu_arm_signal_handler
1603 #define cpu_list arm_cpu_list
1604
1605 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
1606 *
1607 * If EL3 is 64-bit:
1608 * + NonSecure EL1 & 0 stage 1
1609 * + NonSecure EL1 & 0 stage 2
1610 * + NonSecure EL2
1611 * + Secure EL1 & EL0
1612 * + Secure EL3
1613 * If EL3 is 32-bit:
1614 * + NonSecure PL1 & 0 stage 1
1615 * + NonSecure PL1 & 0 stage 2
1616 * + NonSecure PL2
1617 * + Secure PL0 & PL1
1618 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
1619 *
1620 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
1621 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
1622 * may differ in access permissions even if the VA->PA map is the same
1623 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
1624 * translation, which means that we have one mmu_idx that deals with two
1625 * concatenated translation regimes [this sort of combined s1+2 TLB is
1626 * architecturally permitted]
1627 * 3. we don't need to allocate an mmu_idx to translations that we won't be
1628 * handling via the TLB. The only way to do a stage 1 translation without
1629 * the immediate stage 2 translation is via the ATS or AT system insns,
1630 * which can be slow-pathed and always do a page table walk.
1631 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
1632 * translation regimes, because they map reasonably well to each other
1633 * and they can't both be active at the same time.
1634 * This gives us the following list of mmu_idx values:
1635 *
1636 * NS EL0 (aka NS PL0) stage 1+2
1637 * NS EL1 (aka NS PL1) stage 1+2
1638 * NS EL2 (aka NS PL2)
1639 * S EL3 (aka S PL1)
1640 * S EL0 (aka S PL0)
1641 * S EL1 (not used if EL3 is 32 bit)
1642 * NS EL0+1 stage 2
1643 *
1644 * (The last of these is an mmu_idx because we want to be able to use the TLB
1645 * for the accesses done as part of a stage 1 page table walk, rather than
1646 * having to walk the stage 2 page table over and over.)
1647 *
1648 * Our enumeration includes at the end some entries which are not "true"
1649 * mmu_idx values in that they don't have corresponding TLBs and are only
1650 * valid for doing slow path page table walks.
1651 *
1652 * The constant names here are patterned after the general style of the names
1653 * of the AT/ATS operations.
1654 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
1655 */
1656 typedef enum ARMMMUIdx {
1657 ARMMMUIdx_S12NSE0 = 0,
1658 ARMMMUIdx_S12NSE1 = 1,
1659 ARMMMUIdx_S1E2 = 2,
1660 ARMMMUIdx_S1E3 = 3,
1661 ARMMMUIdx_S1SE0 = 4,
1662 ARMMMUIdx_S1SE1 = 5,
1663 ARMMMUIdx_S2NS = 6,
1664 /* Indexes below here don't have TLBs and are used only for AT system
1665 * instructions or for the first stage of an S12 page table walk.
1666 */
1667 ARMMMUIdx_S1NSE0 = 7,
1668 ARMMMUIdx_S1NSE1 = 8,
1669 } ARMMMUIdx;
1670
1671 #define MMU_USER_IDX 0
1672
1673 /* Return the exception level we're running at if this is our mmu_idx */
1674 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
1675 {
1676 assert(mmu_idx < ARMMMUIdx_S2NS);
1677 return mmu_idx & 3;
1678 }
1679
1680 /* Determine the current mmu_idx to use for normal loads/stores */
1681 static inline int cpu_mmu_index(CPUARMState *env)
1682 {
1683 int el = arm_current_el(env);
1684
1685 if (el < 2 && arm_is_secure_below_el3(env)) {
1686 return ARMMMUIdx_S1SE0 + el;
1687 }
1688 return el;
1689 }
1690
1691 /* Return the Exception Level targeted by debug exceptions;
1692 * currently always EL1 since we don't implement EL2 or EL3.
1693 */
1694 static inline int arm_debug_target_el(CPUARMState *env)
1695 {
1696 return 1;
1697 }
1698
1699 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
1700 {
1701 if (arm_current_el(env) == arm_debug_target_el(env)) {
1702 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
1703 || (env->daif & PSTATE_D)) {
1704 return false;
1705 }
1706 }
1707 return true;
1708 }
1709
1710 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
1711 {
1712 if (arm_current_el(env) == 0 && arm_el_is_aa64(env, 1)) {
1713 return aa64_generate_debug_exceptions(env);
1714 }
1715 return arm_current_el(env) != 2;
1716 }
1717
1718 /* Return true if debugging exceptions are currently enabled.
1719 * This corresponds to what in ARM ARM pseudocode would be
1720 * if UsingAArch32() then
1721 * return AArch32.GenerateDebugExceptions()
1722 * else
1723 * return AArch64.GenerateDebugExceptions()
1724 * We choose to push the if() down into this function for clarity,
1725 * since the pseudocode has it at all callsites except for the one in
1726 * CheckSoftwareStep(), where it is elided because both branches would
1727 * always return the same value.
1728 *
1729 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
1730 * don't yet implement those exception levels or their associated trap bits.
1731 */
1732 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
1733 {
1734 if (env->aarch64) {
1735 return aa64_generate_debug_exceptions(env);
1736 } else {
1737 return aa32_generate_debug_exceptions(env);
1738 }
1739 }
1740
1741 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
1742 * implicitly means this always returns false in pre-v8 CPUs.)
1743 */
1744 static inline bool arm_singlestep_active(CPUARMState *env)
1745 {
1746 return extract32(env->cp15.mdscr_el1, 0, 1)
1747 && arm_el_is_aa64(env, arm_debug_target_el(env))
1748 && arm_generate_debug_exceptions(env);
1749 }
1750
1751 #include "exec/cpu-all.h"
1752
1753 /* Bit usage in the TB flags field: bit 31 indicates whether we are
1754 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
1755 * We put flags which are shared between 32 and 64 bit mode at the top
1756 * of the word, and flags which apply to only one mode at the bottom.
1757 */
1758 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1759 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
1760 #define ARM_TBFLAG_MMUIDX_SHIFT 28
1761 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
1762 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
1763 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
1764 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
1765 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
1766 /* Target EL if we take a floating-point-disabled exception */
1767 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
1768 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
1769
1770 /* Bit usage when in AArch32 state: */
1771 #define ARM_TBFLAG_THUMB_SHIFT 0
1772 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
1773 #define ARM_TBFLAG_VECLEN_SHIFT 1
1774 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1775 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
1776 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
1777 #define ARM_TBFLAG_VFPEN_SHIFT 7
1778 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
1779 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
1780 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
1781 #define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1782 #define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
1783 /* We store the bottom two bits of the CPAR as TB flags and handle
1784 * checks on the other bits at runtime
1785 */
1786 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
1787 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
1788 /* Indicates whether cp register reads and writes by guest code should access
1789 * the secure or nonsecure bank of banked registers; note that this is not
1790 * the same thing as the current security state of the processor!
1791 */
1792 #define ARM_TBFLAG_NS_SHIFT 19
1793 #define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
1794
1795 /* Bit usage when in AArch64 state: currently we have no A64 specific bits */
1796
1797 /* some convenience accessor macros */
1798 #define ARM_TBFLAG_AARCH64_STATE(F) \
1799 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
1800 #define ARM_TBFLAG_MMUIDX(F) \
1801 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
1802 #define ARM_TBFLAG_SS_ACTIVE(F) \
1803 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
1804 #define ARM_TBFLAG_PSTATE_SS(F) \
1805 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
1806 #define ARM_TBFLAG_FPEXC_EL(F) \
1807 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
1808 #define ARM_TBFLAG_THUMB(F) \
1809 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1810 #define ARM_TBFLAG_VECLEN(F) \
1811 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1812 #define ARM_TBFLAG_VECSTRIDE(F) \
1813 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
1814 #define ARM_TBFLAG_VFPEN(F) \
1815 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1816 #define ARM_TBFLAG_CONDEXEC(F) \
1817 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
1818 #define ARM_TBFLAG_BSWAP_CODE(F) \
1819 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
1820 #define ARM_TBFLAG_XSCALE_CPAR(F) \
1821 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
1822 #define ARM_TBFLAG_NS(F) \
1823 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
1824
1825 /* Return the exception level to which FP-disabled exceptions should
1826 * be taken, or 0 if FP is enabled.
1827 */
1828 static inline int fp_exception_el(CPUARMState *env)
1829 {
1830 int fpen;
1831 int cur_el = arm_current_el(env);
1832
1833 /* CPACR and the CPTR registers don't exist before v6, so FP is
1834 * always accessible
1835 */
1836 if (!arm_feature(env, ARM_FEATURE_V6)) {
1837 return 0;
1838 }
1839
1840 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
1841 * 0, 2 : trap EL0 and EL1/PL1 accesses
1842 * 1 : trap only EL0 accesses
1843 * 3 : trap no accesses
1844 */
1845 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
1846 switch (fpen) {
1847 case 0:
1848 case 2:
1849 if (cur_el == 0 || cur_el == 1) {
1850 /* Trap to PL1, which might be EL1 or EL3 */
1851 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1852 return 3;
1853 }
1854 return 1;
1855 }
1856 if (cur_el == 3 && !is_a64(env)) {
1857 /* Secure PL1 running at EL3 */
1858 return 3;
1859 }
1860 break;
1861 case 1:
1862 if (cur_el == 0) {
1863 return 1;
1864 }
1865 break;
1866 case 3:
1867 break;
1868 }
1869
1870 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
1871 * check because zero bits in the registers mean "don't trap".
1872 */
1873
1874 /* CPTR_EL2 : present in v7VE or v8 */
1875 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
1876 && !arm_is_secure_below_el3(env)) {
1877 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
1878 return 2;
1879 }
1880
1881 /* CPTR_EL3 : present in v8 */
1882 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
1883 /* Trap all FP ops to EL3 */
1884 return 3;
1885 }
1886
1887 return 0;
1888 }
1889
1890 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
1891 target_ulong *cs_base, int *flags)
1892 {
1893 if (is_a64(env)) {
1894 *pc = env->pc;
1895 *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
1896 } else {
1897 *pc = env->regs[15];
1898 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1899 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1900 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1901 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1902 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
1903 if (!(access_secure_reg(env))) {
1904 *flags |= ARM_TBFLAG_NS_MASK;
1905 }
1906 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
1907 || arm_el_is_aa64(env, 1)) {
1908 *flags |= ARM_TBFLAG_VFPEN_MASK;
1909 }
1910 *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
1911 << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
1912 }
1913
1914 *flags |= (cpu_mmu_index(env) << ARM_TBFLAG_MMUIDX_SHIFT);
1915 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
1916 * states defined in the ARM ARM for software singlestep:
1917 * SS_ACTIVE PSTATE.SS State
1918 * 0 x Inactive (the TB flag for SS is always 0)
1919 * 1 0 Active-pending
1920 * 1 1 Active-not-pending
1921 */
1922 if (arm_singlestep_active(env)) {
1923 *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
1924 if (is_a64(env)) {
1925 if (env->pstate & PSTATE_SS) {
1926 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
1927 }
1928 } else {
1929 if (env->uncached_cpsr & PSTATE_SS) {
1930 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
1931 }
1932 }
1933 }
1934 *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
1935
1936 *cs_base = 0;
1937 }
1938
1939 #include "exec/exec-all.h"
1940
1941 enum {
1942 QEMU_PSCI_CONDUIT_DISABLED = 0,
1943 QEMU_PSCI_CONDUIT_SMC = 1,
1944 QEMU_PSCI_CONDUIT_HVC = 2,
1945 };
1946
1947 #endif