]> git.proxmox.com Git - mirror_qemu.git/blob - target-arm/cpu.h
target-arm: Use dedicated CPU state fields for ARM946 access bit registers
[mirror_qemu.git] / target-arm / cpu.h
1 /*
2 * ARM virtual CPU header
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #ifndef CPU_ARM_H
20 #define CPU_ARM_H
21
22 #include "config.h"
23
24 #include "kvm-consts.h"
25
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 # define ELF_MACHINE EM_AARCH64
30 #else
31 # define TARGET_LONG_BITS 32
32 # define ELF_MACHINE EM_ARM
33 #endif
34
35 #define CPUArchState struct CPUARMState
36
37 #include "qemu-common.h"
38 #include "exec/cpu-defs.h"
39
40 #include "fpu/softfloat.h"
41
42 #define TARGET_HAS_ICE 1
43
44 #define EXCP_UDEF 1 /* undefined instruction */
45 #define EXCP_SWI 2 /* software interrupt */
46 #define EXCP_PREFETCH_ABORT 3
47 #define EXCP_DATA_ABORT 4
48 #define EXCP_IRQ 5
49 #define EXCP_FIQ 6
50 #define EXCP_BKPT 7
51 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
52 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
53 #define EXCP_STREX 10
54
55 #define ARMV7M_EXCP_RESET 1
56 #define ARMV7M_EXCP_NMI 2
57 #define ARMV7M_EXCP_HARD 3
58 #define ARMV7M_EXCP_MEM 4
59 #define ARMV7M_EXCP_BUS 5
60 #define ARMV7M_EXCP_USAGE 6
61 #define ARMV7M_EXCP_SVC 11
62 #define ARMV7M_EXCP_DEBUG 12
63 #define ARMV7M_EXCP_PENDSV 14
64 #define ARMV7M_EXCP_SYSTICK 15
65
66 /* ARM-specific interrupt pending bits. */
67 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
68
69 /* The usual mapping for an AArch64 system register to its AArch32
70 * counterpart is for the 32 bit world to have access to the lower
71 * half only (with writes leaving the upper half untouched). It's
72 * therefore useful to be able to pass TCG the offset of the least
73 * significant half of a uint64_t struct member.
74 */
75 #ifdef HOST_WORDS_BIGENDIAN
76 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
77 #define offsetofhigh32(S, M) offsetof(S, M)
78 #else
79 #define offsetoflow32(S, M) offsetof(S, M)
80 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
81 #endif
82
83 /* Meanings of the ARMCPU object's two inbound GPIO lines */
84 #define ARM_CPU_IRQ 0
85 #define ARM_CPU_FIQ 1
86
87 typedef void ARMWriteCPFunc(void *opaque, int cp_info,
88 int srcreg, int operand, uint32_t value);
89 typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
90 int dstreg, int operand);
91
92 struct arm_boot_info;
93
94 #define NB_MMU_MODES 2
95
96 /* We currently assume float and double are IEEE single and double
97 precision respectively.
98 Doing runtime conversions is tricky because VFP registers may contain
99 integer values (eg. as the result of a FTOSI instruction).
100 s<2n> maps to the least significant half of d<n>
101 s<2n+1> maps to the most significant half of d<n>
102 */
103
104 /* CPU state for each instance of a generic timer (in cp15 c14) */
105 typedef struct ARMGenericTimer {
106 uint64_t cval; /* Timer CompareValue register */
107 uint64_t ctl; /* Timer Control register */
108 } ARMGenericTimer;
109
110 #define GTIMER_PHYS 0
111 #define GTIMER_VIRT 1
112 #define NUM_GTIMERS 2
113
114 typedef struct CPUARMState {
115 /* Regs for current mode. */
116 uint32_t regs[16];
117
118 /* 32/64 switch only happens when taking and returning from
119 * exceptions so the overlap semantics are taken care of then
120 * instead of having a complicated union.
121 */
122 /* Regs for A64 mode. */
123 uint64_t xregs[32];
124 uint64_t pc;
125 /* PSTATE isn't an architectural register for ARMv8. However, it is
126 * convenient for us to assemble the underlying state into a 32 bit format
127 * identical to the architectural format used for the SPSR. (This is also
128 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
129 * 'pstate' register are.) Of the PSTATE bits:
130 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
131 * semantics as for AArch32, as described in the comments on each field)
132 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
133 * DAIF (exception masks) are kept in env->daif
134 * all other bits are stored in their correct places in env->pstate
135 */
136 uint32_t pstate;
137 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
138
139 /* Frequently accessed CPSR bits are stored separately for efficiency.
140 This contains all the other bits. Use cpsr_{read,write} to access
141 the whole CPSR. */
142 uint32_t uncached_cpsr;
143 uint32_t spsr;
144
145 /* Banked registers. */
146 uint32_t banked_spsr[6];
147 uint32_t banked_r13[6];
148 uint32_t banked_r14[6];
149
150 /* These hold r8-r12. */
151 uint32_t usr_regs[5];
152 uint32_t fiq_regs[5];
153
154 /* cpsr flag cache for faster execution */
155 uint32_t CF; /* 0 or 1 */
156 uint32_t VF; /* V is the bit 31. All other bits are undefined */
157 uint32_t NF; /* N is bit 31. All other bits are undefined. */
158 uint32_t ZF; /* Z set if zero. */
159 uint32_t QF; /* 0 or 1 */
160 uint32_t GE; /* cpsr[19:16] */
161 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
162 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
163 uint64_t daif; /* exception masks, in the bits they are in in PSTATE */
164
165 /* System control coprocessor (cp15) */
166 struct {
167 uint32_t c0_cpuid;
168 uint64_t c0_cssel; /* Cache size selection. */
169 uint64_t c1_sys; /* System control register. */
170 uint64_t c1_coproc; /* Coprocessor access register. */
171 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
172 uint32_t c1_scr; /* secure config register. */
173 uint64_t ttbr0_el1; /* MMU translation table base 0. */
174 uint64_t ttbr1_el1; /* MMU translation table base 1. */
175 uint64_t c2_control; /* MMU translation table base control. */
176 uint32_t c2_mask; /* MMU translation table base selection mask. */
177 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
178 uint32_t c2_data; /* MPU data cachable bits. */
179 uint32_t c2_insn; /* MPU instruction cachable bits. */
180 uint32_t c3; /* MMU domain access control register
181 MPU write buffer control. */
182 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
183 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
184 uint32_t c5_insn; /* Fault status registers. */
185 uint32_t c5_data;
186 uint32_t c6_region[8]; /* MPU base/size registers. */
187 uint32_t c6_insn; /* Fault address registers. */
188 uint32_t c6_data;
189 uint32_t c7_par; /* Translation result. */
190 uint32_t c7_par_hi; /* Translation result, high 32 bits */
191 uint32_t c9_insn; /* Cache lockdown registers. */
192 uint32_t c9_data;
193 uint32_t c9_pmcr; /* performance monitor control register */
194 uint32_t c9_pmcnten; /* perf monitor counter enables */
195 uint32_t c9_pmovsr; /* perf monitor overflow status */
196 uint32_t c9_pmxevtyper; /* perf monitor event type */
197 uint32_t c9_pmuserenr; /* perf monitor user enable */
198 uint32_t c9_pminten; /* perf monitor interrupt enables */
199 uint64_t mair_el1;
200 uint64_t c12_vbar; /* vector base address register */
201 uint32_t c13_fcse; /* FCSE PID. */
202 uint32_t c13_context; /* Context ID. */
203 uint64_t tpidr_el0; /* User RW Thread register. */
204 uint64_t tpidrro_el0; /* User RO Thread register. */
205 uint64_t tpidr_el1; /* Privileged Thread register. */
206 uint64_t c14_cntfrq; /* Counter Frequency register */
207 uint64_t c14_cntkctl; /* Timer Control register */
208 ARMGenericTimer c14_timer[NUM_GTIMERS];
209 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
210 uint32_t c15_ticonfig; /* TI925T configuration byte. */
211 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
212 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
213 uint32_t c15_threadid; /* TI debugger thread-ID. */
214 uint32_t c15_config_base_address; /* SCU base address. */
215 uint32_t c15_diagnostic; /* diagnostic register */
216 uint32_t c15_power_diagnostic;
217 uint32_t c15_power_control; /* power control */
218 uint64_t dbgbvr[16]; /* breakpoint value registers */
219 uint64_t dbgbcr[16]; /* breakpoint control registers */
220 uint64_t dbgwvr[16]; /* watchpoint value registers */
221 uint64_t dbgwcr[16]; /* watchpoint control registers */
222 /* If the counter is enabled, this stores the last time the counter
223 * was reset. Otherwise it stores the counter value
224 */
225 uint32_t c15_ccnt;
226 } cp15;
227
228 struct {
229 uint32_t other_sp;
230 uint32_t vecbase;
231 uint32_t basepri;
232 uint32_t control;
233 int current_sp;
234 int exception;
235 int pending_exception;
236 } v7m;
237
238 /* Information associated with an exception about to be taken:
239 * code which raises an exception must set cs->exception_index and
240 * the relevant parts of this structure; the cpu_do_interrupt function
241 * will then set the guest-visible registers as part of the exception
242 * entry process.
243 */
244 struct {
245 uint32_t syndrome; /* AArch64 format syndrome register */
246 uint32_t fsr; /* AArch32 format fault status register info */
247 uint64_t vaddress; /* virtual addr associated with exception, if any */
248 /* If we implement EL2 we will also need to store information
249 * about the intermediate physical address for stage 2 faults.
250 */
251 } exception;
252
253 /* Thumb-2 EE state. */
254 uint32_t teecr;
255 uint32_t teehbr;
256
257 /* VFP coprocessor state. */
258 struct {
259 /* VFP/Neon register state. Note that the mapping between S, D and Q
260 * views of the register bank differs between AArch64 and AArch32:
261 * In AArch32:
262 * Qn = regs[2n+1]:regs[2n]
263 * Dn = regs[n]
264 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
265 * (and regs[32] to regs[63] are inaccessible)
266 * In AArch64:
267 * Qn = regs[2n+1]:regs[2n]
268 * Dn = regs[2n]
269 * Sn = regs[2n] bits 31..0
270 * This corresponds to the architecturally defined mapping between
271 * the two execution states, and means we do not need to explicitly
272 * map these registers when changing states.
273 */
274 float64 regs[64];
275
276 uint32_t xregs[16];
277 /* We store these fpcsr fields separately for convenience. */
278 int vec_len;
279 int vec_stride;
280
281 /* scratch space when Tn are not sufficient. */
282 uint32_t scratch[8];
283
284 /* fp_status is the "normal" fp status. standard_fp_status retains
285 * values corresponding to the ARM "Standard FPSCR Value", ie
286 * default-NaN, flush-to-zero, round-to-nearest and is used by
287 * any operations (generally Neon) which the architecture defines
288 * as controlled by the standard FPSCR value rather than the FPSCR.
289 *
290 * To avoid having to transfer exception bits around, we simply
291 * say that the FPSCR cumulative exception flags are the logical
292 * OR of the flags in the two fp statuses. This relies on the
293 * only thing which needs to read the exception flags being
294 * an explicit FPSCR read.
295 */
296 float_status fp_status;
297 float_status standard_fp_status;
298 } vfp;
299 uint64_t exclusive_addr;
300 uint64_t exclusive_val;
301 uint64_t exclusive_high;
302 #if defined(CONFIG_USER_ONLY)
303 uint64_t exclusive_test;
304 uint32_t exclusive_info;
305 #endif
306
307 /* iwMMXt coprocessor state. */
308 struct {
309 uint64_t regs[16];
310 uint64_t val;
311
312 uint32_t cregs[16];
313 } iwmmxt;
314
315 /* For mixed endian mode. */
316 bool bswap_code;
317
318 #if defined(CONFIG_USER_ONLY)
319 /* For usermode syscall translation. */
320 int eabi;
321 #endif
322
323 CPU_COMMON
324
325 /* These fields after the common ones so they are preserved on reset. */
326
327 /* Internal CPU feature flags. */
328 uint64_t features;
329
330 void *nvic;
331 const struct arm_boot_info *boot_info;
332 } CPUARMState;
333
334 #include "cpu-qom.h"
335
336 ARMCPU *cpu_arm_init(const char *cpu_model);
337 int cpu_arm_exec(CPUARMState *s);
338 uint32_t do_arm_semihosting(CPUARMState *env);
339
340 static inline bool is_a64(CPUARMState *env)
341 {
342 return env->aarch64;
343 }
344
345 /* you can call this signal handler from your SIGBUS and SIGSEGV
346 signal handlers to inform the virtual CPU of exceptions. non zero
347 is returned if the signal was handled by the virtual CPU. */
348 int cpu_arm_signal_handler(int host_signum, void *pinfo,
349 void *puc);
350 int arm_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int rw,
351 int mmu_idx);
352
353 /* SCTLR bit meanings. Several bits have been reused in newer
354 * versions of the architecture; in that case we define constants
355 * for both old and new bit meanings. Code which tests against those
356 * bits should probably check or otherwise arrange that the CPU
357 * is the architectural version it expects.
358 */
359 #define SCTLR_M (1U << 0)
360 #define SCTLR_A (1U << 1)
361 #define SCTLR_C (1U << 2)
362 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
363 #define SCTLR_SA (1U << 3)
364 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
365 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
366 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
367 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
368 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
369 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
370 #define SCTLR_ITD (1U << 7) /* v8 onward */
371 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
372 #define SCTLR_SED (1U << 8) /* v8 onward */
373 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
374 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
375 #define SCTLR_F (1U << 10) /* up to v6 */
376 #define SCTLR_SW (1U << 10) /* v7 onward */
377 #define SCTLR_Z (1U << 11)
378 #define SCTLR_I (1U << 12)
379 #define SCTLR_V (1U << 13)
380 #define SCTLR_RR (1U << 14) /* up to v7 */
381 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
382 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
383 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
384 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
385 #define SCTLR_nTWI (1U << 16) /* v8 onward */
386 #define SCTLR_HA (1U << 17)
387 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
388 #define SCTLR_nTWE (1U << 18) /* v8 onward */
389 #define SCTLR_WXN (1U << 19)
390 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
391 #define SCTLR_UWXN (1U << 20) /* v7 onward */
392 #define SCTLR_FI (1U << 21)
393 #define SCTLR_U (1U << 22)
394 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
395 #define SCTLR_VE (1U << 24) /* up to v7 */
396 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
397 #define SCTLR_EE (1U << 25)
398 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
399 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
400 #define SCTLR_NMFI (1U << 27)
401 #define SCTLR_TRE (1U << 28)
402 #define SCTLR_AFE (1U << 29)
403 #define SCTLR_TE (1U << 30)
404
405 #define CPSR_M (0x1fU)
406 #define CPSR_T (1U << 5)
407 #define CPSR_F (1U << 6)
408 #define CPSR_I (1U << 7)
409 #define CPSR_A (1U << 8)
410 #define CPSR_E (1U << 9)
411 #define CPSR_IT_2_7 (0xfc00U)
412 #define CPSR_GE (0xfU << 16)
413 #define CPSR_RESERVED (0xfU << 20)
414 #define CPSR_J (1U << 24)
415 #define CPSR_IT_0_1 (3U << 25)
416 #define CPSR_Q (1U << 27)
417 #define CPSR_V (1U << 28)
418 #define CPSR_C (1U << 29)
419 #define CPSR_Z (1U << 30)
420 #define CPSR_N (1U << 31)
421 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
422 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
423
424 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
425 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
426 | CPSR_NZCV)
427 /* Bits writable in user mode. */
428 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
429 /* Execution state bits. MRS read as zero, MSR writes ignored. */
430 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
431
432 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
433 * Only these are valid when in AArch64 mode; in
434 * AArch32 mode SPSRs are basically CPSR-format.
435 */
436 #define PSTATE_M (0xFU)
437 #define PSTATE_nRW (1U << 4)
438 #define PSTATE_F (1U << 6)
439 #define PSTATE_I (1U << 7)
440 #define PSTATE_A (1U << 8)
441 #define PSTATE_D (1U << 9)
442 #define PSTATE_IL (1U << 20)
443 #define PSTATE_SS (1U << 21)
444 #define PSTATE_V (1U << 28)
445 #define PSTATE_C (1U << 29)
446 #define PSTATE_Z (1U << 30)
447 #define PSTATE_N (1U << 31)
448 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
449 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
450 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
451 /* Mode values for AArch64 */
452 #define PSTATE_MODE_EL3h 13
453 #define PSTATE_MODE_EL3t 12
454 #define PSTATE_MODE_EL2h 9
455 #define PSTATE_MODE_EL2t 8
456 #define PSTATE_MODE_EL1h 5
457 #define PSTATE_MODE_EL1t 4
458 #define PSTATE_MODE_EL0t 0
459
460 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
461 * interprocessing, so we don't attempt to sync with the cpsr state used by
462 * the 32 bit decoder.
463 */
464 static inline uint32_t pstate_read(CPUARMState *env)
465 {
466 int ZF;
467
468 ZF = (env->ZF == 0);
469 return (env->NF & 0x80000000) | (ZF << 30)
470 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
471 | env->pstate | env->daif;
472 }
473
474 static inline void pstate_write(CPUARMState *env, uint32_t val)
475 {
476 env->ZF = (~val) & PSTATE_Z;
477 env->NF = val;
478 env->CF = (val >> 29) & 1;
479 env->VF = (val << 3) & 0x80000000;
480 env->daif = val & PSTATE_DAIF;
481 env->pstate = val & ~CACHED_PSTATE_BITS;
482 }
483
484 /* Return the current CPSR value. */
485 uint32_t cpsr_read(CPUARMState *env);
486 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
487 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
488
489 /* Return the current xPSR value. */
490 static inline uint32_t xpsr_read(CPUARMState *env)
491 {
492 int ZF;
493 ZF = (env->ZF == 0);
494 return (env->NF & 0x80000000) | (ZF << 30)
495 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
496 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
497 | ((env->condexec_bits & 0xfc) << 8)
498 | env->v7m.exception;
499 }
500
501 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
502 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
503 {
504 if (mask & CPSR_NZCV) {
505 env->ZF = (~val) & CPSR_Z;
506 env->NF = val;
507 env->CF = (val >> 29) & 1;
508 env->VF = (val << 3) & 0x80000000;
509 }
510 if (mask & CPSR_Q)
511 env->QF = ((val & CPSR_Q) != 0);
512 if (mask & (1 << 24))
513 env->thumb = ((val & (1 << 24)) != 0);
514 if (mask & CPSR_IT_0_1) {
515 env->condexec_bits &= ~3;
516 env->condexec_bits |= (val >> 25) & 3;
517 }
518 if (mask & CPSR_IT_2_7) {
519 env->condexec_bits &= 3;
520 env->condexec_bits |= (val >> 8) & 0xfc;
521 }
522 if (mask & 0x1ff) {
523 env->v7m.exception = val & 0x1ff;
524 }
525 }
526
527 /* Return the current FPSCR value. */
528 uint32_t vfp_get_fpscr(CPUARMState *env);
529 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
530
531 /* For A64 the FPSCR is split into two logically distinct registers,
532 * FPCR and FPSR. However since they still use non-overlapping bits
533 * we store the underlying state in fpscr and just mask on read/write.
534 */
535 #define FPSR_MASK 0xf800009f
536 #define FPCR_MASK 0x07f79f00
537 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
538 {
539 return vfp_get_fpscr(env) & FPSR_MASK;
540 }
541
542 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
543 {
544 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
545 vfp_set_fpscr(env, new_fpscr);
546 }
547
548 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
549 {
550 return vfp_get_fpscr(env) & FPCR_MASK;
551 }
552
553 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
554 {
555 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
556 vfp_set_fpscr(env, new_fpscr);
557 }
558
559 enum arm_cpu_mode {
560 ARM_CPU_MODE_USR = 0x10,
561 ARM_CPU_MODE_FIQ = 0x11,
562 ARM_CPU_MODE_IRQ = 0x12,
563 ARM_CPU_MODE_SVC = 0x13,
564 ARM_CPU_MODE_ABT = 0x17,
565 ARM_CPU_MODE_UND = 0x1b,
566 ARM_CPU_MODE_SYS = 0x1f
567 };
568
569 /* VFP system registers. */
570 #define ARM_VFP_FPSID 0
571 #define ARM_VFP_FPSCR 1
572 #define ARM_VFP_MVFR1 6
573 #define ARM_VFP_MVFR0 7
574 #define ARM_VFP_FPEXC 8
575 #define ARM_VFP_FPINST 9
576 #define ARM_VFP_FPINST2 10
577
578 /* iwMMXt coprocessor control registers. */
579 #define ARM_IWMMXT_wCID 0
580 #define ARM_IWMMXT_wCon 1
581 #define ARM_IWMMXT_wCSSF 2
582 #define ARM_IWMMXT_wCASF 3
583 #define ARM_IWMMXT_wCGR0 8
584 #define ARM_IWMMXT_wCGR1 9
585 #define ARM_IWMMXT_wCGR2 10
586 #define ARM_IWMMXT_wCGR3 11
587
588 /* If adding a feature bit which corresponds to a Linux ELF
589 * HWCAP bit, remember to update the feature-bit-to-hwcap
590 * mapping in linux-user/elfload.c:get_elf_hwcap().
591 */
592 enum arm_features {
593 ARM_FEATURE_VFP,
594 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
595 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
596 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
597 ARM_FEATURE_V6,
598 ARM_FEATURE_V6K,
599 ARM_FEATURE_V7,
600 ARM_FEATURE_THUMB2,
601 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
602 ARM_FEATURE_VFP3,
603 ARM_FEATURE_VFP_FP16,
604 ARM_FEATURE_NEON,
605 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
606 ARM_FEATURE_M, /* Microcontroller profile. */
607 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
608 ARM_FEATURE_THUMB2EE,
609 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
610 ARM_FEATURE_V4T,
611 ARM_FEATURE_V5,
612 ARM_FEATURE_STRONGARM,
613 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
614 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
615 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
616 ARM_FEATURE_GENERIC_TIMER,
617 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
618 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
619 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
620 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
621 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
622 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
623 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
624 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
625 ARM_FEATURE_V8,
626 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
627 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
628 ARM_FEATURE_CBAR, /* has cp15 CBAR */
629 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
630 };
631
632 static inline int arm_feature(CPUARMState *env, int feature)
633 {
634 return (env->features & (1ULL << feature)) != 0;
635 }
636
637 /* Return true if the specified exception level is running in AArch64 state. */
638 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
639 {
640 /* We don't currently support EL2 or EL3, and this isn't valid for EL0
641 * (if we're in EL0, is_a64() is what you want, and if we're not in EL0
642 * then the state of EL0 isn't well defined.)
643 */
644 assert(el == 1);
645 /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
646 * is a QEMU-imposed simplification which we may wish to change later.
647 * If we in future support EL2 and/or EL3, then the state of lower
648 * exception levels is controlled by the HCR.RW and SCR.RW bits.
649 */
650 return arm_feature(env, ARM_FEATURE_AARCH64);
651 }
652
653 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
654
655 /* Interface between CPU and Interrupt controller. */
656 void armv7m_nvic_set_pending(void *opaque, int irq);
657 int armv7m_nvic_acknowledge_irq(void *opaque);
658 void armv7m_nvic_complete_irq(void *opaque, int irq);
659
660 /* Interface for defining coprocessor registers.
661 * Registers are defined in tables of arm_cp_reginfo structs
662 * which are passed to define_arm_cp_regs().
663 */
664
665 /* When looking up a coprocessor register we look for it
666 * via an integer which encodes all of:
667 * coprocessor number
668 * Crn, Crm, opc1, opc2 fields
669 * 32 or 64 bit register (ie is it accessed via MRC/MCR
670 * or via MRRC/MCRR?)
671 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
672 * (In this case crn and opc2 should be zero.)
673 * For AArch64, there is no 32/64 bit size distinction;
674 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
675 * and 4 bit CRn and CRm. The encoding patterns are chosen
676 * to be easy to convert to and from the KVM encodings, and also
677 * so that the hashtable can contain both AArch32 and AArch64
678 * registers (to allow for interprocessing where we might run
679 * 32 bit code on a 64 bit core).
680 */
681 /* This bit is private to our hashtable cpreg; in KVM register
682 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
683 * in the upper bits of the 64 bit ID.
684 */
685 #define CP_REG_AA64_SHIFT 28
686 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
687
688 #define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
689 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
690 ((crm) << 7) | ((opc1) << 3) | (opc2))
691
692 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
693 (CP_REG_AA64_MASK | \
694 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
695 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
696 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
697 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
698 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
699 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
700
701 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
702 * version used as a key for the coprocessor register hashtable
703 */
704 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
705 {
706 uint32_t cpregid = kvmid;
707 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
708 cpregid |= CP_REG_AA64_MASK;
709 } else if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
710 cpregid |= (1 << 15);
711 }
712 return cpregid;
713 }
714
715 /* Convert a truncated 32 bit hashtable key into the full
716 * 64 bit KVM register ID.
717 */
718 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
719 {
720 uint64_t kvmid;
721
722 if (cpregid & CP_REG_AA64_MASK) {
723 kvmid = cpregid & ~CP_REG_AA64_MASK;
724 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
725 } else {
726 kvmid = cpregid & ~(1 << 15);
727 if (cpregid & (1 << 15)) {
728 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
729 } else {
730 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
731 }
732 }
733 return kvmid;
734 }
735
736 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
737 * special-behaviour cp reg and bits [15..8] indicate what behaviour
738 * it has. Otherwise it is a simple cp reg, where CONST indicates that
739 * TCG can assume the value to be constant (ie load at translate time)
740 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
741 * indicates that the TB should not be ended after a write to this register
742 * (the default is that the TB ends after cp writes). OVERRIDE permits
743 * a register definition to override a previous definition for the
744 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
745 * old must have the OVERRIDE bit set.
746 * NO_MIGRATE indicates that this register should be ignored for migration;
747 * (eg because any state is accessed via some other coprocessor register).
748 * IO indicates that this register does I/O and therefore its accesses
749 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
750 * registers which implement clocks or timers require this.
751 */
752 #define ARM_CP_SPECIAL 1
753 #define ARM_CP_CONST 2
754 #define ARM_CP_64BIT 4
755 #define ARM_CP_SUPPRESS_TB_END 8
756 #define ARM_CP_OVERRIDE 16
757 #define ARM_CP_NO_MIGRATE 32
758 #define ARM_CP_IO 64
759 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
760 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
761 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
762 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
763 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
764 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
765 /* Used only as a terminator for ARMCPRegInfo lists */
766 #define ARM_CP_SENTINEL 0xffff
767 /* Mask of only the flag bits in a type field */
768 #define ARM_CP_FLAG_MASK 0x7f
769
770 /* Valid values for ARMCPRegInfo state field, indicating which of
771 * the AArch32 and AArch64 execution states this register is visible in.
772 * If the reginfo doesn't explicitly specify then it is AArch32 only.
773 * If the reginfo is declared to be visible in both states then a second
774 * reginfo is synthesised for the AArch32 view of the AArch64 register,
775 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
776 * Note that we rely on the values of these enums as we iterate through
777 * the various states in some places.
778 */
779 enum {
780 ARM_CP_STATE_AA32 = 0,
781 ARM_CP_STATE_AA64 = 1,
782 ARM_CP_STATE_BOTH = 2,
783 };
784
785 /* Return true if cptype is a valid type field. This is used to try to
786 * catch errors where the sentinel has been accidentally left off the end
787 * of a list of registers.
788 */
789 static inline bool cptype_valid(int cptype)
790 {
791 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
792 || ((cptype & ARM_CP_SPECIAL) &&
793 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
794 }
795
796 /* Access rights:
797 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
798 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
799 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
800 * (ie any of the privileged modes in Secure state, or Monitor mode).
801 * If a register is accessible in one privilege level it's always accessible
802 * in higher privilege levels too. Since "Secure PL1" also follows this rule
803 * (ie anything visible in PL2 is visible in S-PL1, some things are only
804 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
805 * terminology a little and call this PL3.
806 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
807 * with the ELx exception levels.
808 *
809 * If access permissions for a register are more complex than can be
810 * described with these bits, then use a laxer set of restrictions, and
811 * do the more restrictive/complex check inside a helper function.
812 */
813 #define PL3_R 0x80
814 #define PL3_W 0x40
815 #define PL2_R (0x20 | PL3_R)
816 #define PL2_W (0x10 | PL3_W)
817 #define PL1_R (0x08 | PL2_R)
818 #define PL1_W (0x04 | PL2_W)
819 #define PL0_R (0x02 | PL1_R)
820 #define PL0_W (0x01 | PL1_W)
821
822 #define PL3_RW (PL3_R | PL3_W)
823 #define PL2_RW (PL2_R | PL2_W)
824 #define PL1_RW (PL1_R | PL1_W)
825 #define PL0_RW (PL0_R | PL0_W)
826
827 static inline int arm_current_pl(CPUARMState *env)
828 {
829 if (env->aarch64) {
830 return extract32(env->pstate, 2, 2);
831 }
832
833 if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
834 return 0;
835 }
836 /* We don't currently implement the Virtualization or TrustZone
837 * extensions, so PL2 and PL3 don't exist for us.
838 */
839 return 1;
840 }
841
842 typedef struct ARMCPRegInfo ARMCPRegInfo;
843
844 typedef enum CPAccessResult {
845 /* Access is permitted */
846 CP_ACCESS_OK = 0,
847 /* Access fails due to a configurable trap or enable which would
848 * result in a categorized exception syndrome giving information about
849 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
850 * 0xc or 0x18).
851 */
852 CP_ACCESS_TRAP = 1,
853 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
854 * Note that this is not a catch-all case -- the set of cases which may
855 * result in this failure is specifically defined by the architecture.
856 */
857 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
858 } CPAccessResult;
859
860 /* Access functions for coprocessor registers. These cannot fail and
861 * may not raise exceptions.
862 */
863 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
864 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
865 uint64_t value);
866 /* Access permission check functions for coprocessor registers. */
867 typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
868 /* Hook function for register reset */
869 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
870
871 #define CP_ANY 0xff
872
873 /* Definition of an ARM coprocessor register */
874 struct ARMCPRegInfo {
875 /* Name of register (useful mainly for debugging, need not be unique) */
876 const char *name;
877 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
878 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
879 * 'wildcard' field -- any value of that field in the MRC/MCR insn
880 * will be decoded to this register. The register read and write
881 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
882 * used by the program, so it is possible to register a wildcard and
883 * then behave differently on read/write if necessary.
884 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
885 * must both be zero.
886 * For AArch64-visible registers, opc0 is also used.
887 * Since there are no "coprocessors" in AArch64, cp is purely used as a
888 * way to distinguish (for KVM's benefit) guest-visible system registers
889 * from demuxed ones provided to preserve the "no side effects on
890 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
891 * visible (to match KVM's encoding); cp==0 will be converted to
892 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
893 */
894 uint8_t cp;
895 uint8_t crn;
896 uint8_t crm;
897 uint8_t opc0;
898 uint8_t opc1;
899 uint8_t opc2;
900 /* Execution state in which this register is visible: ARM_CP_STATE_* */
901 int state;
902 /* Register type: ARM_CP_* bits/values */
903 int type;
904 /* Access rights: PL*_[RW] */
905 int access;
906 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
907 * this register was defined: can be used to hand data through to the
908 * register read/write functions, since they are passed the ARMCPRegInfo*.
909 */
910 void *opaque;
911 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
912 * fieldoffset is non-zero, the reset value of the register.
913 */
914 uint64_t resetvalue;
915 /* Offset of the field in CPUARMState for this register. This is not
916 * needed if either:
917 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
918 * 2. both readfn and writefn are specified
919 */
920 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
921 /* Function for making any access checks for this register in addition to
922 * those specified by the 'access' permissions bits. If NULL, no extra
923 * checks required. The access check is performed at runtime, not at
924 * translate time.
925 */
926 CPAccessFn *accessfn;
927 /* Function for handling reads of this register. If NULL, then reads
928 * will be done by loading from the offset into CPUARMState specified
929 * by fieldoffset.
930 */
931 CPReadFn *readfn;
932 /* Function for handling writes of this register. If NULL, then writes
933 * will be done by writing to the offset into CPUARMState specified
934 * by fieldoffset.
935 */
936 CPWriteFn *writefn;
937 /* Function for doing a "raw" read; used when we need to copy
938 * coprocessor state to the kernel for KVM or out for
939 * migration. This only needs to be provided if there is also a
940 * readfn and it has side effects (for instance clear-on-read bits).
941 */
942 CPReadFn *raw_readfn;
943 /* Function for doing a "raw" write; used when we need to copy KVM
944 * kernel coprocessor state into userspace, or for inbound
945 * migration. This only needs to be provided if there is also a
946 * writefn and it masks out "unwritable" bits or has write-one-to-clear
947 * or similar behaviour.
948 */
949 CPWriteFn *raw_writefn;
950 /* Function for resetting the register. If NULL, then reset will be done
951 * by writing resetvalue to the field specified in fieldoffset. If
952 * fieldoffset is 0 then no reset will be done.
953 */
954 CPResetFn *resetfn;
955 };
956
957 /* Macros which are lvalues for the field in CPUARMState for the
958 * ARMCPRegInfo *ri.
959 */
960 #define CPREG_FIELD32(env, ri) \
961 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
962 #define CPREG_FIELD64(env, ri) \
963 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
964
965 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
966
967 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
968 const ARMCPRegInfo *regs, void *opaque);
969 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
970 const ARMCPRegInfo *regs, void *opaque);
971 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
972 {
973 define_arm_cp_regs_with_opaque(cpu, regs, 0);
974 }
975 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
976 {
977 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
978 }
979 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
980
981 /* CPWriteFn that can be used to implement writes-ignored behaviour */
982 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
983 uint64_t value);
984 /* CPReadFn that can be used for read-as-zero behaviour */
985 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
986
987 /* CPResetFn that does nothing, for use if no reset is required even
988 * if fieldoffset is non zero.
989 */
990 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
991
992 /* Return true if this reginfo struct's field in the cpu state struct
993 * is 64 bits wide.
994 */
995 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
996 {
997 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
998 }
999
1000 static inline bool cp_access_ok(int current_pl,
1001 const ARMCPRegInfo *ri, int isread)
1002 {
1003 return (ri->access >> ((current_pl * 2) + isread)) & 1;
1004 }
1005
1006 /**
1007 * write_list_to_cpustate
1008 * @cpu: ARMCPU
1009 *
1010 * For each register listed in the ARMCPU cpreg_indexes list, write
1011 * its value from the cpreg_values list into the ARMCPUState structure.
1012 * This updates TCG's working data structures from KVM data or
1013 * from incoming migration state.
1014 *
1015 * Returns: true if all register values were updated correctly,
1016 * false if some register was unknown or could not be written.
1017 * Note that we do not stop early on failure -- we will attempt
1018 * writing all registers in the list.
1019 */
1020 bool write_list_to_cpustate(ARMCPU *cpu);
1021
1022 /**
1023 * write_cpustate_to_list:
1024 * @cpu: ARMCPU
1025 *
1026 * For each register listed in the ARMCPU cpreg_indexes list, write
1027 * its value from the ARMCPUState structure into the cpreg_values list.
1028 * This is used to copy info from TCG's working data structures into
1029 * KVM or for outbound migration.
1030 *
1031 * Returns: true if all register values were read correctly,
1032 * false if some register was unknown or could not be read.
1033 * Note that we do not stop early on failure -- we will attempt
1034 * reading all registers in the list.
1035 */
1036 bool write_cpustate_to_list(ARMCPU *cpu);
1037
1038 /* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
1039 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1040 conventional cores (ie. Application or Realtime profile). */
1041
1042 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
1043
1044 #define ARM_CPUID_TI915T 0x54029152
1045 #define ARM_CPUID_TI925T 0x54029252
1046
1047 #if defined(CONFIG_USER_ONLY)
1048 #define TARGET_PAGE_BITS 12
1049 #else
1050 /* The ARM MMU allows 1k pages. */
1051 /* ??? Linux doesn't actually use these, and they're deprecated in recent
1052 architecture revisions. Maybe a configure option to disable them. */
1053 #define TARGET_PAGE_BITS 10
1054 #endif
1055
1056 #if defined(TARGET_AARCH64)
1057 # define TARGET_PHYS_ADDR_SPACE_BITS 48
1058 # define TARGET_VIRT_ADDR_SPACE_BITS 64
1059 #else
1060 # define TARGET_PHYS_ADDR_SPACE_BITS 40
1061 # define TARGET_VIRT_ADDR_SPACE_BITS 32
1062 #endif
1063
1064 static inline CPUARMState *cpu_init(const char *cpu_model)
1065 {
1066 ARMCPU *cpu = cpu_arm_init(cpu_model);
1067 if (cpu) {
1068 return &cpu->env;
1069 }
1070 return NULL;
1071 }
1072
1073 #define cpu_exec cpu_arm_exec
1074 #define cpu_gen_code cpu_arm_gen_code
1075 #define cpu_signal_handler cpu_arm_signal_handler
1076 #define cpu_list arm_cpu_list
1077
1078 /* MMU modes definitions */
1079 #define MMU_MODE0_SUFFIX _kernel
1080 #define MMU_MODE1_SUFFIX _user
1081 #define MMU_USER_IDX 1
1082 static inline int cpu_mmu_index (CPUARMState *env)
1083 {
1084 return arm_current_pl(env) ? 0 : 1;
1085 }
1086
1087 #include "exec/cpu-all.h"
1088
1089 /* Bit usage in the TB flags field: bit 31 indicates whether we are
1090 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
1091 */
1092 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1093 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
1094
1095 /* Bit usage when in AArch32 state: */
1096 #define ARM_TBFLAG_THUMB_SHIFT 0
1097 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
1098 #define ARM_TBFLAG_VECLEN_SHIFT 1
1099 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1100 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
1101 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
1102 #define ARM_TBFLAG_PRIV_SHIFT 6
1103 #define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
1104 #define ARM_TBFLAG_VFPEN_SHIFT 7
1105 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
1106 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
1107 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
1108 #define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1109 #define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
1110 #define ARM_TBFLAG_CPACR_FPEN_SHIFT 17
1111 #define ARM_TBFLAG_CPACR_FPEN_MASK (1 << ARM_TBFLAG_CPACR_FPEN_SHIFT)
1112
1113 /* Bit usage when in AArch64 state */
1114 #define ARM_TBFLAG_AA64_EL_SHIFT 0
1115 #define ARM_TBFLAG_AA64_EL_MASK (0x3 << ARM_TBFLAG_AA64_EL_SHIFT)
1116 #define ARM_TBFLAG_AA64_FPEN_SHIFT 2
1117 #define ARM_TBFLAG_AA64_FPEN_MASK (1 << ARM_TBFLAG_AA64_FPEN_SHIFT)
1118
1119 /* some convenience accessor macros */
1120 #define ARM_TBFLAG_AARCH64_STATE(F) \
1121 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
1122 #define ARM_TBFLAG_THUMB(F) \
1123 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1124 #define ARM_TBFLAG_VECLEN(F) \
1125 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1126 #define ARM_TBFLAG_VECSTRIDE(F) \
1127 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
1128 #define ARM_TBFLAG_PRIV(F) \
1129 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
1130 #define ARM_TBFLAG_VFPEN(F) \
1131 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1132 #define ARM_TBFLAG_CONDEXEC(F) \
1133 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
1134 #define ARM_TBFLAG_BSWAP_CODE(F) \
1135 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
1136 #define ARM_TBFLAG_CPACR_FPEN(F) \
1137 (((F) & ARM_TBFLAG_CPACR_FPEN_MASK) >> ARM_TBFLAG_CPACR_FPEN_SHIFT)
1138 #define ARM_TBFLAG_AA64_EL(F) \
1139 (((F) & ARM_TBFLAG_AA64_EL_MASK) >> ARM_TBFLAG_AA64_EL_SHIFT)
1140 #define ARM_TBFLAG_AA64_FPEN(F) \
1141 (((F) & ARM_TBFLAG_AA64_FPEN_MASK) >> ARM_TBFLAG_AA64_FPEN_SHIFT)
1142
1143 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
1144 target_ulong *cs_base, int *flags)
1145 {
1146 int fpen = extract32(env->cp15.c1_coproc, 20, 2);
1147
1148 if (is_a64(env)) {
1149 *pc = env->pc;
1150 *flags = ARM_TBFLAG_AARCH64_STATE_MASK
1151 | (arm_current_pl(env) << ARM_TBFLAG_AA64_EL_SHIFT);
1152 if (fpen == 3 || (fpen == 1 && arm_current_pl(env) != 0)) {
1153 *flags |= ARM_TBFLAG_AA64_FPEN_MASK;
1154 }
1155 } else {
1156 int privmode;
1157 *pc = env->regs[15];
1158 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1159 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1160 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1161 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1162 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
1163 if (arm_feature(env, ARM_FEATURE_M)) {
1164 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
1165 } else {
1166 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
1167 }
1168 if (privmode) {
1169 *flags |= ARM_TBFLAG_PRIV_MASK;
1170 }
1171 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
1172 || arm_el_is_aa64(env, 1)) {
1173 *flags |= ARM_TBFLAG_VFPEN_MASK;
1174 }
1175 if (fpen == 3 || (fpen == 1 && arm_current_pl(env) != 0)) {
1176 *flags |= ARM_TBFLAG_CPACR_FPEN_MASK;
1177 }
1178 }
1179
1180 *cs_base = 0;
1181 }
1182
1183 #include "exec/exec-all.h"
1184
1185 static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
1186 {
1187 if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
1188 env->pc = tb->pc;
1189 } else {
1190 env->regs[15] = tb->pc;
1191 }
1192 }
1193
1194 /* Load an instruction and return it in the standard little-endian order */
1195 static inline uint32_t arm_ldl_code(CPUARMState *env, target_ulong addr,
1196 bool do_swap)
1197 {
1198 uint32_t insn = cpu_ldl_code(env, addr);
1199 if (do_swap) {
1200 return bswap32(insn);
1201 }
1202 return insn;
1203 }
1204
1205 /* Ditto, for a halfword (Thumb) instruction */
1206 static inline uint16_t arm_lduw_code(CPUARMState *env, target_ulong addr,
1207 bool do_swap)
1208 {
1209 uint16_t insn = cpu_lduw_code(env, addr);
1210 if (do_swap) {
1211 return bswap16(insn);
1212 }
1213 return insn;
1214 }
1215
1216 #endif