]> git.proxmox.com Git - mirror_qemu.git/blob - target-arm/cpu.h
target-arm: Define exception record for AArch64 exceptions
[mirror_qemu.git] / target-arm / cpu.h
1 /*
2 * ARM virtual CPU header
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #ifndef CPU_ARM_H
20 #define CPU_ARM_H
21
22 #include "config.h"
23
24 #include "kvm-consts.h"
25
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 # define ELF_MACHINE EM_AARCH64
30 #else
31 # define TARGET_LONG_BITS 32
32 # define ELF_MACHINE EM_ARM
33 #endif
34
35 #define CPUArchState struct CPUARMState
36
37 #include "qemu-common.h"
38 #include "exec/cpu-defs.h"
39
40 #include "fpu/softfloat.h"
41
42 #define TARGET_HAS_ICE 1
43
44 #define EXCP_UDEF 1 /* undefined instruction */
45 #define EXCP_SWI 2 /* software interrupt */
46 #define EXCP_PREFETCH_ABORT 3
47 #define EXCP_DATA_ABORT 4
48 #define EXCP_IRQ 5
49 #define EXCP_FIQ 6
50 #define EXCP_BKPT 7
51 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
52 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
53 #define EXCP_STREX 10
54
55 #define ARMV7M_EXCP_RESET 1
56 #define ARMV7M_EXCP_NMI 2
57 #define ARMV7M_EXCP_HARD 3
58 #define ARMV7M_EXCP_MEM 4
59 #define ARMV7M_EXCP_BUS 5
60 #define ARMV7M_EXCP_USAGE 6
61 #define ARMV7M_EXCP_SVC 11
62 #define ARMV7M_EXCP_DEBUG 12
63 #define ARMV7M_EXCP_PENDSV 14
64 #define ARMV7M_EXCP_SYSTICK 15
65
66 /* ARM-specific interrupt pending bits. */
67 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
68
69 /* The usual mapping for an AArch64 system register to its AArch32
70 * counterpart is for the 32 bit world to have access to the lower
71 * half only (with writes leaving the upper half untouched). It's
72 * therefore useful to be able to pass TCG the offset of the least
73 * significant half of a uint64_t struct member.
74 */
75 #ifdef HOST_WORDS_BIGENDIAN
76 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
77 #define offsetofhigh32(S, M) offsetof(S, M)
78 #else
79 #define offsetoflow32(S, M) offsetof(S, M)
80 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
81 #endif
82
83 /* Meanings of the ARMCPU object's two inbound GPIO lines */
84 #define ARM_CPU_IRQ 0
85 #define ARM_CPU_FIQ 1
86
87 typedef void ARMWriteCPFunc(void *opaque, int cp_info,
88 int srcreg, int operand, uint32_t value);
89 typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
90 int dstreg, int operand);
91
92 struct arm_boot_info;
93
94 #define NB_MMU_MODES 2
95
96 /* We currently assume float and double are IEEE single and double
97 precision respectively.
98 Doing runtime conversions is tricky because VFP registers may contain
99 integer values (eg. as the result of a FTOSI instruction).
100 s<2n> maps to the least significant half of d<n>
101 s<2n+1> maps to the most significant half of d<n>
102 */
103
104 /* CPU state for each instance of a generic timer (in cp15 c14) */
105 typedef struct ARMGenericTimer {
106 uint64_t cval; /* Timer CompareValue register */
107 uint64_t ctl; /* Timer Control register */
108 } ARMGenericTimer;
109
110 #define GTIMER_PHYS 0
111 #define GTIMER_VIRT 1
112 #define NUM_GTIMERS 2
113
114 typedef struct CPUARMState {
115 /* Regs for current mode. */
116 uint32_t regs[16];
117
118 /* 32/64 switch only happens when taking and returning from
119 * exceptions so the overlap semantics are taken care of then
120 * instead of having a complicated union.
121 */
122 /* Regs for A64 mode. */
123 uint64_t xregs[32];
124 uint64_t pc;
125 /* PSTATE isn't an architectural register for ARMv8. However, it is
126 * convenient for us to assemble the underlying state into a 32 bit format
127 * identical to the architectural format used for the SPSR. (This is also
128 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
129 * 'pstate' register are.) Of the PSTATE bits:
130 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
131 * semantics as for AArch32, as described in the comments on each field)
132 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
133 * DAIF (exception masks) are kept in env->daif
134 * all other bits are stored in their correct places in env->pstate
135 */
136 uint32_t pstate;
137 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
138
139 /* Frequently accessed CPSR bits are stored separately for efficiency.
140 This contains all the other bits. Use cpsr_{read,write} to access
141 the whole CPSR. */
142 uint32_t uncached_cpsr;
143 uint32_t spsr;
144
145 /* Banked registers. */
146 uint32_t banked_spsr[6];
147 uint32_t banked_r13[6];
148 uint32_t banked_r14[6];
149
150 /* These hold r8-r12. */
151 uint32_t usr_regs[5];
152 uint32_t fiq_regs[5];
153
154 /* cpsr flag cache for faster execution */
155 uint32_t CF; /* 0 or 1 */
156 uint32_t VF; /* V is the bit 31. All other bits are undefined */
157 uint32_t NF; /* N is bit 31. All other bits are undefined. */
158 uint32_t ZF; /* Z set if zero. */
159 uint32_t QF; /* 0 or 1 */
160 uint32_t GE; /* cpsr[19:16] */
161 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
162 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
163 uint64_t daif; /* exception masks, in the bits they are in in PSTATE */
164
165 /* System control coprocessor (cp15) */
166 struct {
167 uint32_t c0_cpuid;
168 uint64_t c0_cssel; /* Cache size selection. */
169 uint64_t c1_sys; /* System control register. */
170 uint64_t c1_coproc; /* Coprocessor access register. */
171 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
172 uint32_t c1_scr; /* secure config register. */
173 uint64_t ttbr0_el1; /* MMU translation table base 0. */
174 uint64_t ttbr1_el1; /* MMU translation table base 1. */
175 uint64_t c2_control; /* MMU translation table base control. */
176 uint32_t c2_mask; /* MMU translation table base selection mask. */
177 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
178 uint32_t c2_data; /* MPU data cachable bits. */
179 uint32_t c2_insn; /* MPU instruction cachable bits. */
180 uint32_t c3; /* MMU domain access control register
181 MPU write buffer control. */
182 uint32_t c5_insn; /* Fault status registers. */
183 uint32_t c5_data;
184 uint32_t c6_region[8]; /* MPU base/size registers. */
185 uint32_t c6_insn; /* Fault address registers. */
186 uint32_t c6_data;
187 uint32_t c7_par; /* Translation result. */
188 uint32_t c7_par_hi; /* Translation result, high 32 bits */
189 uint32_t c9_insn; /* Cache lockdown registers. */
190 uint32_t c9_data;
191 uint32_t c9_pmcr; /* performance monitor control register */
192 uint32_t c9_pmcnten; /* perf monitor counter enables */
193 uint32_t c9_pmovsr; /* perf monitor overflow status */
194 uint32_t c9_pmxevtyper; /* perf monitor event type */
195 uint32_t c9_pmuserenr; /* perf monitor user enable */
196 uint32_t c9_pminten; /* perf monitor interrupt enables */
197 uint64_t mair_el1;
198 uint64_t c12_vbar; /* vector base address register */
199 uint32_t c13_fcse; /* FCSE PID. */
200 uint32_t c13_context; /* Context ID. */
201 uint64_t tpidr_el0; /* User RW Thread register. */
202 uint64_t tpidrro_el0; /* User RO Thread register. */
203 uint64_t tpidr_el1; /* Privileged Thread register. */
204 uint64_t c14_cntfrq; /* Counter Frequency register */
205 uint64_t c14_cntkctl; /* Timer Control register */
206 ARMGenericTimer c14_timer[NUM_GTIMERS];
207 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
208 uint32_t c15_ticonfig; /* TI925T configuration byte. */
209 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
210 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
211 uint32_t c15_threadid; /* TI debugger thread-ID. */
212 uint32_t c15_config_base_address; /* SCU base address. */
213 uint32_t c15_diagnostic; /* diagnostic register */
214 uint32_t c15_power_diagnostic;
215 uint32_t c15_power_control; /* power control */
216 uint64_t dbgbvr[16]; /* breakpoint value registers */
217 uint64_t dbgbcr[16]; /* breakpoint control registers */
218 uint64_t dbgwvr[16]; /* watchpoint value registers */
219 uint64_t dbgwcr[16]; /* watchpoint control registers */
220 /* If the counter is enabled, this stores the last time the counter
221 * was reset. Otherwise it stores the counter value
222 */
223 uint32_t c15_ccnt;
224 } cp15;
225
226 struct {
227 uint32_t other_sp;
228 uint32_t vecbase;
229 uint32_t basepri;
230 uint32_t control;
231 int current_sp;
232 int exception;
233 int pending_exception;
234 } v7m;
235
236 /* Information associated with an exception about to be taken:
237 * code which raises an exception must set cs->exception_index and
238 * the relevant parts of this structure; the cpu_do_interrupt function
239 * will then set the guest-visible registers as part of the exception
240 * entry process.
241 */
242 struct {
243 uint32_t syndrome; /* AArch64 format syndrome register */
244 uint32_t fsr; /* AArch32 format fault status register info */
245 uint64_t vaddress; /* virtual addr associated with exception, if any */
246 /* If we implement EL2 we will also need to store information
247 * about the intermediate physical address for stage 2 faults.
248 */
249 } exception;
250
251 /* Thumb-2 EE state. */
252 uint32_t teecr;
253 uint32_t teehbr;
254
255 /* VFP coprocessor state. */
256 struct {
257 /* VFP/Neon register state. Note that the mapping between S, D and Q
258 * views of the register bank differs between AArch64 and AArch32:
259 * In AArch32:
260 * Qn = regs[2n+1]:regs[2n]
261 * Dn = regs[n]
262 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
263 * (and regs[32] to regs[63] are inaccessible)
264 * In AArch64:
265 * Qn = regs[2n+1]:regs[2n]
266 * Dn = regs[2n]
267 * Sn = regs[2n] bits 31..0
268 * This corresponds to the architecturally defined mapping between
269 * the two execution states, and means we do not need to explicitly
270 * map these registers when changing states.
271 */
272 float64 regs[64];
273
274 uint32_t xregs[16];
275 /* We store these fpcsr fields separately for convenience. */
276 int vec_len;
277 int vec_stride;
278
279 /* scratch space when Tn are not sufficient. */
280 uint32_t scratch[8];
281
282 /* fp_status is the "normal" fp status. standard_fp_status retains
283 * values corresponding to the ARM "Standard FPSCR Value", ie
284 * default-NaN, flush-to-zero, round-to-nearest and is used by
285 * any operations (generally Neon) which the architecture defines
286 * as controlled by the standard FPSCR value rather than the FPSCR.
287 *
288 * To avoid having to transfer exception bits around, we simply
289 * say that the FPSCR cumulative exception flags are the logical
290 * OR of the flags in the two fp statuses. This relies on the
291 * only thing which needs to read the exception flags being
292 * an explicit FPSCR read.
293 */
294 float_status fp_status;
295 float_status standard_fp_status;
296 } vfp;
297 uint64_t exclusive_addr;
298 uint64_t exclusive_val;
299 uint64_t exclusive_high;
300 #if defined(CONFIG_USER_ONLY)
301 uint64_t exclusive_test;
302 uint32_t exclusive_info;
303 #endif
304
305 /* iwMMXt coprocessor state. */
306 struct {
307 uint64_t regs[16];
308 uint64_t val;
309
310 uint32_t cregs[16];
311 } iwmmxt;
312
313 /* For mixed endian mode. */
314 bool bswap_code;
315
316 #if defined(CONFIG_USER_ONLY)
317 /* For usermode syscall translation. */
318 int eabi;
319 #endif
320
321 CPU_COMMON
322
323 /* These fields after the common ones so they are preserved on reset. */
324
325 /* Internal CPU feature flags. */
326 uint64_t features;
327
328 void *nvic;
329 const struct arm_boot_info *boot_info;
330 } CPUARMState;
331
332 #include "cpu-qom.h"
333
334 ARMCPU *cpu_arm_init(const char *cpu_model);
335 int cpu_arm_exec(CPUARMState *s);
336 uint32_t do_arm_semihosting(CPUARMState *env);
337
338 static inline bool is_a64(CPUARMState *env)
339 {
340 return env->aarch64;
341 }
342
343 /* you can call this signal handler from your SIGBUS and SIGSEGV
344 signal handlers to inform the virtual CPU of exceptions. non zero
345 is returned if the signal was handled by the virtual CPU. */
346 int cpu_arm_signal_handler(int host_signum, void *pinfo,
347 void *puc);
348 int arm_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int rw,
349 int mmu_idx);
350
351 /* SCTLR bit meanings. Several bits have been reused in newer
352 * versions of the architecture; in that case we define constants
353 * for both old and new bit meanings. Code which tests against those
354 * bits should probably check or otherwise arrange that the CPU
355 * is the architectural version it expects.
356 */
357 #define SCTLR_M (1U << 0)
358 #define SCTLR_A (1U << 1)
359 #define SCTLR_C (1U << 2)
360 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
361 #define SCTLR_SA (1U << 3)
362 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
363 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
364 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
365 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
366 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
367 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
368 #define SCTLR_ITD (1U << 7) /* v8 onward */
369 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
370 #define SCTLR_SED (1U << 8) /* v8 onward */
371 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
372 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
373 #define SCTLR_F (1U << 10) /* up to v6 */
374 #define SCTLR_SW (1U << 10) /* v7 onward */
375 #define SCTLR_Z (1U << 11)
376 #define SCTLR_I (1U << 12)
377 #define SCTLR_V (1U << 13)
378 #define SCTLR_RR (1U << 14) /* up to v7 */
379 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
380 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
381 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
382 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
383 #define SCTLR_nTWI (1U << 16) /* v8 onward */
384 #define SCTLR_HA (1U << 17)
385 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
386 #define SCTLR_nTWE (1U << 18) /* v8 onward */
387 #define SCTLR_WXN (1U << 19)
388 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
389 #define SCTLR_UWXN (1U << 20) /* v7 onward */
390 #define SCTLR_FI (1U << 21)
391 #define SCTLR_U (1U << 22)
392 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
393 #define SCTLR_VE (1U << 24) /* up to v7 */
394 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
395 #define SCTLR_EE (1U << 25)
396 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
397 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
398 #define SCTLR_NMFI (1U << 27)
399 #define SCTLR_TRE (1U << 28)
400 #define SCTLR_AFE (1U << 29)
401 #define SCTLR_TE (1U << 30)
402
403 #define CPSR_M (0x1fU)
404 #define CPSR_T (1U << 5)
405 #define CPSR_F (1U << 6)
406 #define CPSR_I (1U << 7)
407 #define CPSR_A (1U << 8)
408 #define CPSR_E (1U << 9)
409 #define CPSR_IT_2_7 (0xfc00U)
410 #define CPSR_GE (0xfU << 16)
411 #define CPSR_RESERVED (0xfU << 20)
412 #define CPSR_J (1U << 24)
413 #define CPSR_IT_0_1 (3U << 25)
414 #define CPSR_Q (1U << 27)
415 #define CPSR_V (1U << 28)
416 #define CPSR_C (1U << 29)
417 #define CPSR_Z (1U << 30)
418 #define CPSR_N (1U << 31)
419 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
420 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
421
422 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
423 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
424 | CPSR_NZCV)
425 /* Bits writable in user mode. */
426 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
427 /* Execution state bits. MRS read as zero, MSR writes ignored. */
428 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
429
430 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
431 * Only these are valid when in AArch64 mode; in
432 * AArch32 mode SPSRs are basically CPSR-format.
433 */
434 #define PSTATE_M (0xFU)
435 #define PSTATE_nRW (1U << 4)
436 #define PSTATE_F (1U << 6)
437 #define PSTATE_I (1U << 7)
438 #define PSTATE_A (1U << 8)
439 #define PSTATE_D (1U << 9)
440 #define PSTATE_IL (1U << 20)
441 #define PSTATE_SS (1U << 21)
442 #define PSTATE_V (1U << 28)
443 #define PSTATE_C (1U << 29)
444 #define PSTATE_Z (1U << 30)
445 #define PSTATE_N (1U << 31)
446 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
447 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
448 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
449 /* Mode values for AArch64 */
450 #define PSTATE_MODE_EL3h 13
451 #define PSTATE_MODE_EL3t 12
452 #define PSTATE_MODE_EL2h 9
453 #define PSTATE_MODE_EL2t 8
454 #define PSTATE_MODE_EL1h 5
455 #define PSTATE_MODE_EL1t 4
456 #define PSTATE_MODE_EL0t 0
457
458 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
459 * interprocessing, so we don't attempt to sync with the cpsr state used by
460 * the 32 bit decoder.
461 */
462 static inline uint32_t pstate_read(CPUARMState *env)
463 {
464 int ZF;
465
466 ZF = (env->ZF == 0);
467 return (env->NF & 0x80000000) | (ZF << 30)
468 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
469 | env->pstate | env->daif;
470 }
471
472 static inline void pstate_write(CPUARMState *env, uint32_t val)
473 {
474 env->ZF = (~val) & PSTATE_Z;
475 env->NF = val;
476 env->CF = (val >> 29) & 1;
477 env->VF = (val << 3) & 0x80000000;
478 env->daif = val & PSTATE_DAIF;
479 env->pstate = val & ~CACHED_PSTATE_BITS;
480 }
481
482 /* Return the current CPSR value. */
483 uint32_t cpsr_read(CPUARMState *env);
484 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
485 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
486
487 /* Return the current xPSR value. */
488 static inline uint32_t xpsr_read(CPUARMState *env)
489 {
490 int ZF;
491 ZF = (env->ZF == 0);
492 return (env->NF & 0x80000000) | (ZF << 30)
493 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
494 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
495 | ((env->condexec_bits & 0xfc) << 8)
496 | env->v7m.exception;
497 }
498
499 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
500 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
501 {
502 if (mask & CPSR_NZCV) {
503 env->ZF = (~val) & CPSR_Z;
504 env->NF = val;
505 env->CF = (val >> 29) & 1;
506 env->VF = (val << 3) & 0x80000000;
507 }
508 if (mask & CPSR_Q)
509 env->QF = ((val & CPSR_Q) != 0);
510 if (mask & (1 << 24))
511 env->thumb = ((val & (1 << 24)) != 0);
512 if (mask & CPSR_IT_0_1) {
513 env->condexec_bits &= ~3;
514 env->condexec_bits |= (val >> 25) & 3;
515 }
516 if (mask & CPSR_IT_2_7) {
517 env->condexec_bits &= 3;
518 env->condexec_bits |= (val >> 8) & 0xfc;
519 }
520 if (mask & 0x1ff) {
521 env->v7m.exception = val & 0x1ff;
522 }
523 }
524
525 /* Return the current FPSCR value. */
526 uint32_t vfp_get_fpscr(CPUARMState *env);
527 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
528
529 /* For A64 the FPSCR is split into two logically distinct registers,
530 * FPCR and FPSR. However since they still use non-overlapping bits
531 * we store the underlying state in fpscr and just mask on read/write.
532 */
533 #define FPSR_MASK 0xf800009f
534 #define FPCR_MASK 0x07f79f00
535 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
536 {
537 return vfp_get_fpscr(env) & FPSR_MASK;
538 }
539
540 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
541 {
542 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
543 vfp_set_fpscr(env, new_fpscr);
544 }
545
546 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
547 {
548 return vfp_get_fpscr(env) & FPCR_MASK;
549 }
550
551 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
552 {
553 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
554 vfp_set_fpscr(env, new_fpscr);
555 }
556
557 enum arm_cpu_mode {
558 ARM_CPU_MODE_USR = 0x10,
559 ARM_CPU_MODE_FIQ = 0x11,
560 ARM_CPU_MODE_IRQ = 0x12,
561 ARM_CPU_MODE_SVC = 0x13,
562 ARM_CPU_MODE_ABT = 0x17,
563 ARM_CPU_MODE_UND = 0x1b,
564 ARM_CPU_MODE_SYS = 0x1f
565 };
566
567 /* VFP system registers. */
568 #define ARM_VFP_FPSID 0
569 #define ARM_VFP_FPSCR 1
570 #define ARM_VFP_MVFR1 6
571 #define ARM_VFP_MVFR0 7
572 #define ARM_VFP_FPEXC 8
573 #define ARM_VFP_FPINST 9
574 #define ARM_VFP_FPINST2 10
575
576 /* iwMMXt coprocessor control registers. */
577 #define ARM_IWMMXT_wCID 0
578 #define ARM_IWMMXT_wCon 1
579 #define ARM_IWMMXT_wCSSF 2
580 #define ARM_IWMMXT_wCASF 3
581 #define ARM_IWMMXT_wCGR0 8
582 #define ARM_IWMMXT_wCGR1 9
583 #define ARM_IWMMXT_wCGR2 10
584 #define ARM_IWMMXT_wCGR3 11
585
586 /* If adding a feature bit which corresponds to a Linux ELF
587 * HWCAP bit, remember to update the feature-bit-to-hwcap
588 * mapping in linux-user/elfload.c:get_elf_hwcap().
589 */
590 enum arm_features {
591 ARM_FEATURE_VFP,
592 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
593 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
594 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
595 ARM_FEATURE_V6,
596 ARM_FEATURE_V6K,
597 ARM_FEATURE_V7,
598 ARM_FEATURE_THUMB2,
599 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
600 ARM_FEATURE_VFP3,
601 ARM_FEATURE_VFP_FP16,
602 ARM_FEATURE_NEON,
603 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
604 ARM_FEATURE_M, /* Microcontroller profile. */
605 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
606 ARM_FEATURE_THUMB2EE,
607 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
608 ARM_FEATURE_V4T,
609 ARM_FEATURE_V5,
610 ARM_FEATURE_STRONGARM,
611 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
612 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
613 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
614 ARM_FEATURE_GENERIC_TIMER,
615 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
616 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
617 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
618 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
619 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
620 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
621 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
622 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
623 ARM_FEATURE_V8,
624 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
625 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
626 ARM_FEATURE_CBAR, /* has cp15 CBAR */
627 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
628 };
629
630 static inline int arm_feature(CPUARMState *env, int feature)
631 {
632 return (env->features & (1ULL << feature)) != 0;
633 }
634
635 /* Return true if the specified exception level is running in AArch64 state. */
636 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
637 {
638 /* We don't currently support EL2 or EL3, and this isn't valid for EL0
639 * (if we're in EL0, is_a64() is what you want, and if we're not in EL0
640 * then the state of EL0 isn't well defined.)
641 */
642 assert(el == 1);
643 /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
644 * is a QEMU-imposed simplification which we may wish to change later.
645 * If we in future support EL2 and/or EL3, then the state of lower
646 * exception levels is controlled by the HCR.RW and SCR.RW bits.
647 */
648 return arm_feature(env, ARM_FEATURE_AARCH64);
649 }
650
651 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
652
653 /* Interface between CPU and Interrupt controller. */
654 void armv7m_nvic_set_pending(void *opaque, int irq);
655 int armv7m_nvic_acknowledge_irq(void *opaque);
656 void armv7m_nvic_complete_irq(void *opaque, int irq);
657
658 /* Interface for defining coprocessor registers.
659 * Registers are defined in tables of arm_cp_reginfo structs
660 * which are passed to define_arm_cp_regs().
661 */
662
663 /* When looking up a coprocessor register we look for it
664 * via an integer which encodes all of:
665 * coprocessor number
666 * Crn, Crm, opc1, opc2 fields
667 * 32 or 64 bit register (ie is it accessed via MRC/MCR
668 * or via MRRC/MCRR?)
669 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
670 * (In this case crn and opc2 should be zero.)
671 * For AArch64, there is no 32/64 bit size distinction;
672 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
673 * and 4 bit CRn and CRm. The encoding patterns are chosen
674 * to be easy to convert to and from the KVM encodings, and also
675 * so that the hashtable can contain both AArch32 and AArch64
676 * registers (to allow for interprocessing where we might run
677 * 32 bit code on a 64 bit core).
678 */
679 /* This bit is private to our hashtable cpreg; in KVM register
680 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
681 * in the upper bits of the 64 bit ID.
682 */
683 #define CP_REG_AA64_SHIFT 28
684 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
685
686 #define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
687 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
688 ((crm) << 7) | ((opc1) << 3) | (opc2))
689
690 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
691 (CP_REG_AA64_MASK | \
692 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
693 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
694 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
695 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
696 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
697 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
698
699 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
700 * version used as a key for the coprocessor register hashtable
701 */
702 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
703 {
704 uint32_t cpregid = kvmid;
705 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
706 cpregid |= CP_REG_AA64_MASK;
707 } else if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
708 cpregid |= (1 << 15);
709 }
710 return cpregid;
711 }
712
713 /* Convert a truncated 32 bit hashtable key into the full
714 * 64 bit KVM register ID.
715 */
716 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
717 {
718 uint64_t kvmid;
719
720 if (cpregid & CP_REG_AA64_MASK) {
721 kvmid = cpregid & ~CP_REG_AA64_MASK;
722 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
723 } else {
724 kvmid = cpregid & ~(1 << 15);
725 if (cpregid & (1 << 15)) {
726 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
727 } else {
728 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
729 }
730 }
731 return kvmid;
732 }
733
734 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
735 * special-behaviour cp reg and bits [15..8] indicate what behaviour
736 * it has. Otherwise it is a simple cp reg, where CONST indicates that
737 * TCG can assume the value to be constant (ie load at translate time)
738 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
739 * indicates that the TB should not be ended after a write to this register
740 * (the default is that the TB ends after cp writes). OVERRIDE permits
741 * a register definition to override a previous definition for the
742 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
743 * old must have the OVERRIDE bit set.
744 * NO_MIGRATE indicates that this register should be ignored for migration;
745 * (eg because any state is accessed via some other coprocessor register).
746 * IO indicates that this register does I/O and therefore its accesses
747 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
748 * registers which implement clocks or timers require this.
749 */
750 #define ARM_CP_SPECIAL 1
751 #define ARM_CP_CONST 2
752 #define ARM_CP_64BIT 4
753 #define ARM_CP_SUPPRESS_TB_END 8
754 #define ARM_CP_OVERRIDE 16
755 #define ARM_CP_NO_MIGRATE 32
756 #define ARM_CP_IO 64
757 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
758 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
759 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
760 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
761 #define ARM_LAST_SPECIAL ARM_CP_CURRENTEL
762 /* Used only as a terminator for ARMCPRegInfo lists */
763 #define ARM_CP_SENTINEL 0xffff
764 /* Mask of only the flag bits in a type field */
765 #define ARM_CP_FLAG_MASK 0x7f
766
767 /* Valid values for ARMCPRegInfo state field, indicating which of
768 * the AArch32 and AArch64 execution states this register is visible in.
769 * If the reginfo doesn't explicitly specify then it is AArch32 only.
770 * If the reginfo is declared to be visible in both states then a second
771 * reginfo is synthesised for the AArch32 view of the AArch64 register,
772 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
773 * Note that we rely on the values of these enums as we iterate through
774 * the various states in some places.
775 */
776 enum {
777 ARM_CP_STATE_AA32 = 0,
778 ARM_CP_STATE_AA64 = 1,
779 ARM_CP_STATE_BOTH = 2,
780 };
781
782 /* Return true if cptype is a valid type field. This is used to try to
783 * catch errors where the sentinel has been accidentally left off the end
784 * of a list of registers.
785 */
786 static inline bool cptype_valid(int cptype)
787 {
788 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
789 || ((cptype & ARM_CP_SPECIAL) &&
790 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
791 }
792
793 /* Access rights:
794 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
795 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
796 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
797 * (ie any of the privileged modes in Secure state, or Monitor mode).
798 * If a register is accessible in one privilege level it's always accessible
799 * in higher privilege levels too. Since "Secure PL1" also follows this rule
800 * (ie anything visible in PL2 is visible in S-PL1, some things are only
801 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
802 * terminology a little and call this PL3.
803 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
804 * with the ELx exception levels.
805 *
806 * If access permissions for a register are more complex than can be
807 * described with these bits, then use a laxer set of restrictions, and
808 * do the more restrictive/complex check inside a helper function.
809 */
810 #define PL3_R 0x80
811 #define PL3_W 0x40
812 #define PL2_R (0x20 | PL3_R)
813 #define PL2_W (0x10 | PL3_W)
814 #define PL1_R (0x08 | PL2_R)
815 #define PL1_W (0x04 | PL2_W)
816 #define PL0_R (0x02 | PL1_R)
817 #define PL0_W (0x01 | PL1_W)
818
819 #define PL3_RW (PL3_R | PL3_W)
820 #define PL2_RW (PL2_R | PL2_W)
821 #define PL1_RW (PL1_R | PL1_W)
822 #define PL0_RW (PL0_R | PL0_W)
823
824 static inline int arm_current_pl(CPUARMState *env)
825 {
826 if (env->aarch64) {
827 return extract32(env->pstate, 2, 2);
828 }
829
830 if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
831 return 0;
832 }
833 /* We don't currently implement the Virtualization or TrustZone
834 * extensions, so PL2 and PL3 don't exist for us.
835 */
836 return 1;
837 }
838
839 typedef struct ARMCPRegInfo ARMCPRegInfo;
840
841 typedef enum CPAccessResult {
842 /* Access is permitted */
843 CP_ACCESS_OK = 0,
844 /* Access fails due to a configurable trap or enable which would
845 * result in a categorized exception syndrome giving information about
846 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
847 * 0xc or 0x18).
848 */
849 CP_ACCESS_TRAP = 1,
850 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
851 * Note that this is not a catch-all case -- the set of cases which may
852 * result in this failure is specifically defined by the architecture.
853 */
854 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
855 } CPAccessResult;
856
857 /* Access functions for coprocessor registers. These cannot fail and
858 * may not raise exceptions.
859 */
860 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
861 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
862 uint64_t value);
863 /* Access permission check functions for coprocessor registers. */
864 typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
865 /* Hook function for register reset */
866 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
867
868 #define CP_ANY 0xff
869
870 /* Definition of an ARM coprocessor register */
871 struct ARMCPRegInfo {
872 /* Name of register (useful mainly for debugging, need not be unique) */
873 const char *name;
874 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
875 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
876 * 'wildcard' field -- any value of that field in the MRC/MCR insn
877 * will be decoded to this register. The register read and write
878 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
879 * used by the program, so it is possible to register a wildcard and
880 * then behave differently on read/write if necessary.
881 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
882 * must both be zero.
883 * For AArch64-visible registers, opc0 is also used.
884 * Since there are no "coprocessors" in AArch64, cp is purely used as a
885 * way to distinguish (for KVM's benefit) guest-visible system registers
886 * from demuxed ones provided to preserve the "no side effects on
887 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
888 * visible (to match KVM's encoding); cp==0 will be converted to
889 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
890 */
891 uint8_t cp;
892 uint8_t crn;
893 uint8_t crm;
894 uint8_t opc0;
895 uint8_t opc1;
896 uint8_t opc2;
897 /* Execution state in which this register is visible: ARM_CP_STATE_* */
898 int state;
899 /* Register type: ARM_CP_* bits/values */
900 int type;
901 /* Access rights: PL*_[RW] */
902 int access;
903 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
904 * this register was defined: can be used to hand data through to the
905 * register read/write functions, since they are passed the ARMCPRegInfo*.
906 */
907 void *opaque;
908 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
909 * fieldoffset is non-zero, the reset value of the register.
910 */
911 uint64_t resetvalue;
912 /* Offset of the field in CPUARMState for this register. This is not
913 * needed if either:
914 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
915 * 2. both readfn and writefn are specified
916 */
917 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
918 /* Function for making any access checks for this register in addition to
919 * those specified by the 'access' permissions bits. If NULL, no extra
920 * checks required. The access check is performed at runtime, not at
921 * translate time.
922 */
923 CPAccessFn *accessfn;
924 /* Function for handling reads of this register. If NULL, then reads
925 * will be done by loading from the offset into CPUARMState specified
926 * by fieldoffset.
927 */
928 CPReadFn *readfn;
929 /* Function for handling writes of this register. If NULL, then writes
930 * will be done by writing to the offset into CPUARMState specified
931 * by fieldoffset.
932 */
933 CPWriteFn *writefn;
934 /* Function for doing a "raw" read; used when we need to copy
935 * coprocessor state to the kernel for KVM or out for
936 * migration. This only needs to be provided if there is also a
937 * readfn and it has side effects (for instance clear-on-read bits).
938 */
939 CPReadFn *raw_readfn;
940 /* Function for doing a "raw" write; used when we need to copy KVM
941 * kernel coprocessor state into userspace, or for inbound
942 * migration. This only needs to be provided if there is also a
943 * writefn and it masks out "unwritable" bits or has write-one-to-clear
944 * or similar behaviour.
945 */
946 CPWriteFn *raw_writefn;
947 /* Function for resetting the register. If NULL, then reset will be done
948 * by writing resetvalue to the field specified in fieldoffset. If
949 * fieldoffset is 0 then no reset will be done.
950 */
951 CPResetFn *resetfn;
952 };
953
954 /* Macros which are lvalues for the field in CPUARMState for the
955 * ARMCPRegInfo *ri.
956 */
957 #define CPREG_FIELD32(env, ri) \
958 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
959 #define CPREG_FIELD64(env, ri) \
960 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
961
962 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
963
964 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
965 const ARMCPRegInfo *regs, void *opaque);
966 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
967 const ARMCPRegInfo *regs, void *opaque);
968 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
969 {
970 define_arm_cp_regs_with_opaque(cpu, regs, 0);
971 }
972 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
973 {
974 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
975 }
976 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
977
978 /* CPWriteFn that can be used to implement writes-ignored behaviour */
979 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
980 uint64_t value);
981 /* CPReadFn that can be used for read-as-zero behaviour */
982 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
983
984 /* CPResetFn that does nothing, for use if no reset is required even
985 * if fieldoffset is non zero.
986 */
987 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
988
989 /* Return true if this reginfo struct's field in the cpu state struct
990 * is 64 bits wide.
991 */
992 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
993 {
994 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
995 }
996
997 static inline bool cp_access_ok(int current_pl,
998 const ARMCPRegInfo *ri, int isread)
999 {
1000 return (ri->access >> ((current_pl * 2) + isread)) & 1;
1001 }
1002
1003 /**
1004 * write_list_to_cpustate
1005 * @cpu: ARMCPU
1006 *
1007 * For each register listed in the ARMCPU cpreg_indexes list, write
1008 * its value from the cpreg_values list into the ARMCPUState structure.
1009 * This updates TCG's working data structures from KVM data or
1010 * from incoming migration state.
1011 *
1012 * Returns: true if all register values were updated correctly,
1013 * false if some register was unknown or could not be written.
1014 * Note that we do not stop early on failure -- we will attempt
1015 * writing all registers in the list.
1016 */
1017 bool write_list_to_cpustate(ARMCPU *cpu);
1018
1019 /**
1020 * write_cpustate_to_list:
1021 * @cpu: ARMCPU
1022 *
1023 * For each register listed in the ARMCPU cpreg_indexes list, write
1024 * its value from the ARMCPUState structure into the cpreg_values list.
1025 * This is used to copy info from TCG's working data structures into
1026 * KVM or for outbound migration.
1027 *
1028 * Returns: true if all register values were read correctly,
1029 * false if some register was unknown or could not be read.
1030 * Note that we do not stop early on failure -- we will attempt
1031 * reading all registers in the list.
1032 */
1033 bool write_cpustate_to_list(ARMCPU *cpu);
1034
1035 /* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
1036 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1037 conventional cores (ie. Application or Realtime profile). */
1038
1039 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
1040
1041 #define ARM_CPUID_TI915T 0x54029152
1042 #define ARM_CPUID_TI925T 0x54029252
1043
1044 #if defined(CONFIG_USER_ONLY)
1045 #define TARGET_PAGE_BITS 12
1046 #else
1047 /* The ARM MMU allows 1k pages. */
1048 /* ??? Linux doesn't actually use these, and they're deprecated in recent
1049 architecture revisions. Maybe a configure option to disable them. */
1050 #define TARGET_PAGE_BITS 10
1051 #endif
1052
1053 #if defined(TARGET_AARCH64)
1054 # define TARGET_PHYS_ADDR_SPACE_BITS 48
1055 # define TARGET_VIRT_ADDR_SPACE_BITS 64
1056 #else
1057 # define TARGET_PHYS_ADDR_SPACE_BITS 40
1058 # define TARGET_VIRT_ADDR_SPACE_BITS 32
1059 #endif
1060
1061 static inline CPUARMState *cpu_init(const char *cpu_model)
1062 {
1063 ARMCPU *cpu = cpu_arm_init(cpu_model);
1064 if (cpu) {
1065 return &cpu->env;
1066 }
1067 return NULL;
1068 }
1069
1070 #define cpu_exec cpu_arm_exec
1071 #define cpu_gen_code cpu_arm_gen_code
1072 #define cpu_signal_handler cpu_arm_signal_handler
1073 #define cpu_list arm_cpu_list
1074
1075 /* MMU modes definitions */
1076 #define MMU_MODE0_SUFFIX _kernel
1077 #define MMU_MODE1_SUFFIX _user
1078 #define MMU_USER_IDX 1
1079 static inline int cpu_mmu_index (CPUARMState *env)
1080 {
1081 return arm_current_pl(env) ? 0 : 1;
1082 }
1083
1084 #include "exec/cpu-all.h"
1085
1086 /* Bit usage in the TB flags field: bit 31 indicates whether we are
1087 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
1088 */
1089 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1090 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
1091
1092 /* Bit usage when in AArch32 state: */
1093 #define ARM_TBFLAG_THUMB_SHIFT 0
1094 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
1095 #define ARM_TBFLAG_VECLEN_SHIFT 1
1096 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1097 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
1098 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
1099 #define ARM_TBFLAG_PRIV_SHIFT 6
1100 #define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
1101 #define ARM_TBFLAG_VFPEN_SHIFT 7
1102 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
1103 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
1104 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
1105 #define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1106 #define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
1107
1108 /* Bit usage when in AArch64 state */
1109 #define ARM_TBFLAG_AA64_EL_SHIFT 0
1110 #define ARM_TBFLAG_AA64_EL_MASK (0x3 << ARM_TBFLAG_AA64_EL_SHIFT)
1111
1112 /* some convenience accessor macros */
1113 #define ARM_TBFLAG_AARCH64_STATE(F) \
1114 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
1115 #define ARM_TBFLAG_THUMB(F) \
1116 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1117 #define ARM_TBFLAG_VECLEN(F) \
1118 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1119 #define ARM_TBFLAG_VECSTRIDE(F) \
1120 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
1121 #define ARM_TBFLAG_PRIV(F) \
1122 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
1123 #define ARM_TBFLAG_VFPEN(F) \
1124 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1125 #define ARM_TBFLAG_CONDEXEC(F) \
1126 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
1127 #define ARM_TBFLAG_BSWAP_CODE(F) \
1128 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
1129 #define ARM_TBFLAG_AA64_EL(F) \
1130 (((F) & ARM_TBFLAG_AA64_EL_MASK) >> ARM_TBFLAG_AA64_EL_SHIFT)
1131
1132 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
1133 target_ulong *cs_base, int *flags)
1134 {
1135 if (is_a64(env)) {
1136 *pc = env->pc;
1137 *flags = ARM_TBFLAG_AARCH64_STATE_MASK
1138 | (arm_current_pl(env) << ARM_TBFLAG_AA64_EL_SHIFT);
1139 } else {
1140 int privmode;
1141 *pc = env->regs[15];
1142 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1143 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1144 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1145 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1146 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
1147 if (arm_feature(env, ARM_FEATURE_M)) {
1148 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
1149 } else {
1150 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
1151 }
1152 if (privmode) {
1153 *flags |= ARM_TBFLAG_PRIV_MASK;
1154 }
1155 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
1156 *flags |= ARM_TBFLAG_VFPEN_MASK;
1157 }
1158 }
1159
1160 *cs_base = 0;
1161 }
1162
1163 #include "exec/exec-all.h"
1164
1165 static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
1166 {
1167 if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
1168 env->pc = tb->pc;
1169 } else {
1170 env->regs[15] = tb->pc;
1171 }
1172 }
1173
1174 /* Load an instruction and return it in the standard little-endian order */
1175 static inline uint32_t arm_ldl_code(CPUARMState *env, target_ulong addr,
1176 bool do_swap)
1177 {
1178 uint32_t insn = cpu_ldl_code(env, addr);
1179 if (do_swap) {
1180 return bswap32(insn);
1181 }
1182 return insn;
1183 }
1184
1185 /* Ditto, for a halfword (Thumb) instruction */
1186 static inline uint16_t arm_lduw_code(CPUARMState *env, target_ulong addr,
1187 bool do_swap)
1188 {
1189 uint16_t insn = cpu_lduw_code(env, addr);
1190 if (do_swap) {
1191 return bswap16(insn);
1192 }
1193 return insn;
1194 }
1195
1196 #endif