]> git.proxmox.com Git - mirror_qemu.git/blob - target-arm/cpu.h
target-arm: Add a feature flag for EL2
[mirror_qemu.git] / target-arm / cpu.h
1 /*
2 * ARM virtual CPU header
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #ifndef CPU_ARM_H
20 #define CPU_ARM_H
21
22 #include "config.h"
23
24 #include "kvm-consts.h"
25
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 # define ELF_MACHINE EM_AARCH64
30 #else
31 # define TARGET_LONG_BITS 32
32 # define ELF_MACHINE EM_ARM
33 #endif
34
35 #define CPUArchState struct CPUARMState
36
37 #include "qemu-common.h"
38 #include "exec/cpu-defs.h"
39
40 #include "fpu/softfloat.h"
41
42 #define TARGET_HAS_ICE 1
43
44 #define EXCP_UDEF 1 /* undefined instruction */
45 #define EXCP_SWI 2 /* software interrupt */
46 #define EXCP_PREFETCH_ABORT 3
47 #define EXCP_DATA_ABORT 4
48 #define EXCP_IRQ 5
49 #define EXCP_FIQ 6
50 #define EXCP_BKPT 7
51 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
52 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
53 #define EXCP_STREX 10
54
55 #define ARMV7M_EXCP_RESET 1
56 #define ARMV7M_EXCP_NMI 2
57 #define ARMV7M_EXCP_HARD 3
58 #define ARMV7M_EXCP_MEM 4
59 #define ARMV7M_EXCP_BUS 5
60 #define ARMV7M_EXCP_USAGE 6
61 #define ARMV7M_EXCP_SVC 11
62 #define ARMV7M_EXCP_DEBUG 12
63 #define ARMV7M_EXCP_PENDSV 14
64 #define ARMV7M_EXCP_SYSTICK 15
65
66 /* ARM-specific interrupt pending bits. */
67 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
68
69 /* The usual mapping for an AArch64 system register to its AArch32
70 * counterpart is for the 32 bit world to have access to the lower
71 * half only (with writes leaving the upper half untouched). It's
72 * therefore useful to be able to pass TCG the offset of the least
73 * significant half of a uint64_t struct member.
74 */
75 #ifdef HOST_WORDS_BIGENDIAN
76 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
77 #define offsetofhigh32(S, M) offsetof(S, M)
78 #else
79 #define offsetoflow32(S, M) offsetof(S, M)
80 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
81 #endif
82
83 /* Meanings of the ARMCPU object's two inbound GPIO lines */
84 #define ARM_CPU_IRQ 0
85 #define ARM_CPU_FIQ 1
86
87 typedef void ARMWriteCPFunc(void *opaque, int cp_info,
88 int srcreg, int operand, uint32_t value);
89 typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
90 int dstreg, int operand);
91
92 struct arm_boot_info;
93
94 #define NB_MMU_MODES 2
95
96 /* We currently assume float and double are IEEE single and double
97 precision respectively.
98 Doing runtime conversions is tricky because VFP registers may contain
99 integer values (eg. as the result of a FTOSI instruction).
100 s<2n> maps to the least significant half of d<n>
101 s<2n+1> maps to the most significant half of d<n>
102 */
103
104 /* CPU state for each instance of a generic timer (in cp15 c14) */
105 typedef struct ARMGenericTimer {
106 uint64_t cval; /* Timer CompareValue register */
107 uint64_t ctl; /* Timer Control register */
108 } ARMGenericTimer;
109
110 #define GTIMER_PHYS 0
111 #define GTIMER_VIRT 1
112 #define NUM_GTIMERS 2
113
114 typedef struct CPUARMState {
115 /* Regs for current mode. */
116 uint32_t regs[16];
117
118 /* 32/64 switch only happens when taking and returning from
119 * exceptions so the overlap semantics are taken care of then
120 * instead of having a complicated union.
121 */
122 /* Regs for A64 mode. */
123 uint64_t xregs[32];
124 uint64_t pc;
125 /* PSTATE isn't an architectural register for ARMv8. However, it is
126 * convenient for us to assemble the underlying state into a 32 bit format
127 * identical to the architectural format used for the SPSR. (This is also
128 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
129 * 'pstate' register are.) Of the PSTATE bits:
130 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
131 * semantics as for AArch32, as described in the comments on each field)
132 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
133 * DAIF (exception masks) are kept in env->daif
134 * all other bits are stored in their correct places in env->pstate
135 */
136 uint32_t pstate;
137 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
138
139 /* Frequently accessed CPSR bits are stored separately for efficiency.
140 This contains all the other bits. Use cpsr_{read,write} to access
141 the whole CPSR. */
142 uint32_t uncached_cpsr;
143 uint32_t spsr;
144
145 /* Banked registers. */
146 uint64_t banked_spsr[8];
147 uint32_t banked_r13[6];
148 uint32_t banked_r14[6];
149
150 /* These hold r8-r12. */
151 uint32_t usr_regs[5];
152 uint32_t fiq_regs[5];
153
154 /* cpsr flag cache for faster execution */
155 uint32_t CF; /* 0 or 1 */
156 uint32_t VF; /* V is the bit 31. All other bits are undefined */
157 uint32_t NF; /* N is bit 31. All other bits are undefined. */
158 uint32_t ZF; /* Z set if zero. */
159 uint32_t QF; /* 0 or 1 */
160 uint32_t GE; /* cpsr[19:16] */
161 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
162 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
163 uint64_t daif; /* exception masks, in the bits they are in in PSTATE */
164
165 uint64_t elr_el[4]; /* AArch64 exception link regs */
166 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
167
168 /* System control coprocessor (cp15) */
169 struct {
170 uint32_t c0_cpuid;
171 uint64_t c0_cssel; /* Cache size selection. */
172 uint64_t c1_sys; /* System control register. */
173 uint64_t c1_coproc; /* Coprocessor access register. */
174 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
175 uint32_t c1_scr; /* secure config register. */
176 uint64_t ttbr0_el1; /* MMU translation table base 0. */
177 uint64_t ttbr1_el1; /* MMU translation table base 1. */
178 uint64_t c2_control; /* MMU translation table base control. */
179 uint32_t c2_mask; /* MMU translation table base selection mask. */
180 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
181 uint32_t c2_data; /* MPU data cachable bits. */
182 uint32_t c2_insn; /* MPU instruction cachable bits. */
183 uint32_t c3; /* MMU domain access control register
184 MPU write buffer control. */
185 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
186 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
187 uint32_t ifsr_el2; /* Fault status registers. */
188 uint64_t esr_el[2];
189 uint32_t c6_region[8]; /* MPU base/size registers. */
190 uint64_t far_el1; /* Fault address registers. */
191 uint64_t par_el1; /* Translation result. */
192 uint32_t c9_insn; /* Cache lockdown registers. */
193 uint32_t c9_data;
194 uint32_t c9_pmcr; /* performance monitor control register */
195 uint32_t c9_pmcnten; /* perf monitor counter enables */
196 uint32_t c9_pmovsr; /* perf monitor overflow status */
197 uint32_t c9_pmxevtyper; /* perf monitor event type */
198 uint32_t c9_pmuserenr; /* perf monitor user enable */
199 uint32_t c9_pminten; /* perf monitor interrupt enables */
200 uint64_t mair_el1;
201 uint64_t vbar_el[2]; /* vector base address register */
202 uint32_t c13_fcse; /* FCSE PID. */
203 uint64_t contextidr_el1; /* Context ID. */
204 uint64_t tpidr_el0; /* User RW Thread register. */
205 uint64_t tpidrro_el0; /* User RO Thread register. */
206 uint64_t tpidr_el1; /* Privileged Thread register. */
207 uint64_t c14_cntfrq; /* Counter Frequency register */
208 uint64_t c14_cntkctl; /* Timer Control register */
209 ARMGenericTimer c14_timer[NUM_GTIMERS];
210 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
211 uint32_t c15_ticonfig; /* TI925T configuration byte. */
212 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
213 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
214 uint32_t c15_threadid; /* TI debugger thread-ID. */
215 uint32_t c15_config_base_address; /* SCU base address. */
216 uint32_t c15_diagnostic; /* diagnostic register */
217 uint32_t c15_power_diagnostic;
218 uint32_t c15_power_control; /* power control */
219 uint64_t dbgbvr[16]; /* breakpoint value registers */
220 uint64_t dbgbcr[16]; /* breakpoint control registers */
221 uint64_t dbgwvr[16]; /* watchpoint value registers */
222 uint64_t dbgwcr[16]; /* watchpoint control registers */
223 /* If the counter is enabled, this stores the last time the counter
224 * was reset. Otherwise it stores the counter value
225 */
226 uint32_t c15_ccnt;
227 } cp15;
228
229 struct {
230 uint32_t other_sp;
231 uint32_t vecbase;
232 uint32_t basepri;
233 uint32_t control;
234 int current_sp;
235 int exception;
236 int pending_exception;
237 } v7m;
238
239 /* Information associated with an exception about to be taken:
240 * code which raises an exception must set cs->exception_index and
241 * the relevant parts of this structure; the cpu_do_interrupt function
242 * will then set the guest-visible registers as part of the exception
243 * entry process.
244 */
245 struct {
246 uint32_t syndrome; /* AArch64 format syndrome register */
247 uint32_t fsr; /* AArch32 format fault status register info */
248 uint64_t vaddress; /* virtual addr associated with exception, if any */
249 /* If we implement EL2 we will also need to store information
250 * about the intermediate physical address for stage 2 faults.
251 */
252 } exception;
253
254 /* Thumb-2 EE state. */
255 uint32_t teecr;
256 uint32_t teehbr;
257
258 /* VFP coprocessor state. */
259 struct {
260 /* VFP/Neon register state. Note that the mapping between S, D and Q
261 * views of the register bank differs between AArch64 and AArch32:
262 * In AArch32:
263 * Qn = regs[2n+1]:regs[2n]
264 * Dn = regs[n]
265 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
266 * (and regs[32] to regs[63] are inaccessible)
267 * In AArch64:
268 * Qn = regs[2n+1]:regs[2n]
269 * Dn = regs[2n]
270 * Sn = regs[2n] bits 31..0
271 * This corresponds to the architecturally defined mapping between
272 * the two execution states, and means we do not need to explicitly
273 * map these registers when changing states.
274 */
275 float64 regs[64];
276
277 uint32_t xregs[16];
278 /* We store these fpcsr fields separately for convenience. */
279 int vec_len;
280 int vec_stride;
281
282 /* scratch space when Tn are not sufficient. */
283 uint32_t scratch[8];
284
285 /* fp_status is the "normal" fp status. standard_fp_status retains
286 * values corresponding to the ARM "Standard FPSCR Value", ie
287 * default-NaN, flush-to-zero, round-to-nearest and is used by
288 * any operations (generally Neon) which the architecture defines
289 * as controlled by the standard FPSCR value rather than the FPSCR.
290 *
291 * To avoid having to transfer exception bits around, we simply
292 * say that the FPSCR cumulative exception flags are the logical
293 * OR of the flags in the two fp statuses. This relies on the
294 * only thing which needs to read the exception flags being
295 * an explicit FPSCR read.
296 */
297 float_status fp_status;
298 float_status standard_fp_status;
299 } vfp;
300 uint64_t exclusive_addr;
301 uint64_t exclusive_val;
302 uint64_t exclusive_high;
303 #if defined(CONFIG_USER_ONLY)
304 uint64_t exclusive_test;
305 uint32_t exclusive_info;
306 #endif
307
308 /* iwMMXt coprocessor state. */
309 struct {
310 uint64_t regs[16];
311 uint64_t val;
312
313 uint32_t cregs[16];
314 } iwmmxt;
315
316 /* For mixed endian mode. */
317 bool bswap_code;
318
319 #if defined(CONFIG_USER_ONLY)
320 /* For usermode syscall translation. */
321 int eabi;
322 #endif
323
324 CPU_COMMON
325
326 /* These fields after the common ones so they are preserved on reset. */
327
328 /* Internal CPU feature flags. */
329 uint64_t features;
330
331 void *nvic;
332 const struct arm_boot_info *boot_info;
333 } CPUARMState;
334
335 #include "cpu-qom.h"
336
337 ARMCPU *cpu_arm_init(const char *cpu_model);
338 int cpu_arm_exec(CPUARMState *s);
339 uint32_t do_arm_semihosting(CPUARMState *env);
340
341 static inline bool is_a64(CPUARMState *env)
342 {
343 return env->aarch64;
344 }
345
346 /* you can call this signal handler from your SIGBUS and SIGSEGV
347 signal handlers to inform the virtual CPU of exceptions. non zero
348 is returned if the signal was handled by the virtual CPU. */
349 int cpu_arm_signal_handler(int host_signum, void *pinfo,
350 void *puc);
351 int arm_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int rw,
352 int mmu_idx);
353
354 /* SCTLR bit meanings. Several bits have been reused in newer
355 * versions of the architecture; in that case we define constants
356 * for both old and new bit meanings. Code which tests against those
357 * bits should probably check or otherwise arrange that the CPU
358 * is the architectural version it expects.
359 */
360 #define SCTLR_M (1U << 0)
361 #define SCTLR_A (1U << 1)
362 #define SCTLR_C (1U << 2)
363 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
364 #define SCTLR_SA (1U << 3)
365 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
366 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
367 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
368 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
369 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
370 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
371 #define SCTLR_ITD (1U << 7) /* v8 onward */
372 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
373 #define SCTLR_SED (1U << 8) /* v8 onward */
374 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
375 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
376 #define SCTLR_F (1U << 10) /* up to v6 */
377 #define SCTLR_SW (1U << 10) /* v7 onward */
378 #define SCTLR_Z (1U << 11)
379 #define SCTLR_I (1U << 12)
380 #define SCTLR_V (1U << 13)
381 #define SCTLR_RR (1U << 14) /* up to v7 */
382 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
383 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
384 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
385 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
386 #define SCTLR_nTWI (1U << 16) /* v8 onward */
387 #define SCTLR_HA (1U << 17)
388 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
389 #define SCTLR_nTWE (1U << 18) /* v8 onward */
390 #define SCTLR_WXN (1U << 19)
391 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
392 #define SCTLR_UWXN (1U << 20) /* v7 onward */
393 #define SCTLR_FI (1U << 21)
394 #define SCTLR_U (1U << 22)
395 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
396 #define SCTLR_VE (1U << 24) /* up to v7 */
397 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
398 #define SCTLR_EE (1U << 25)
399 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
400 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
401 #define SCTLR_NMFI (1U << 27)
402 #define SCTLR_TRE (1U << 28)
403 #define SCTLR_AFE (1U << 29)
404 #define SCTLR_TE (1U << 30)
405
406 #define CPSR_M (0x1fU)
407 #define CPSR_T (1U << 5)
408 #define CPSR_F (1U << 6)
409 #define CPSR_I (1U << 7)
410 #define CPSR_A (1U << 8)
411 #define CPSR_E (1U << 9)
412 #define CPSR_IT_2_7 (0xfc00U)
413 #define CPSR_GE (0xfU << 16)
414 #define CPSR_RESERVED (0xfU << 20)
415 #define CPSR_J (1U << 24)
416 #define CPSR_IT_0_1 (3U << 25)
417 #define CPSR_Q (1U << 27)
418 #define CPSR_V (1U << 28)
419 #define CPSR_C (1U << 29)
420 #define CPSR_Z (1U << 30)
421 #define CPSR_N (1U << 31)
422 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
423 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
424
425 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
426 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
427 | CPSR_NZCV)
428 /* Bits writable in user mode. */
429 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
430 /* Execution state bits. MRS read as zero, MSR writes ignored. */
431 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
432
433 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
434 * Only these are valid when in AArch64 mode; in
435 * AArch32 mode SPSRs are basically CPSR-format.
436 */
437 #define PSTATE_SP (1U)
438 #define PSTATE_M (0xFU)
439 #define PSTATE_nRW (1U << 4)
440 #define PSTATE_F (1U << 6)
441 #define PSTATE_I (1U << 7)
442 #define PSTATE_A (1U << 8)
443 #define PSTATE_D (1U << 9)
444 #define PSTATE_IL (1U << 20)
445 #define PSTATE_SS (1U << 21)
446 #define PSTATE_V (1U << 28)
447 #define PSTATE_C (1U << 29)
448 #define PSTATE_Z (1U << 30)
449 #define PSTATE_N (1U << 31)
450 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
451 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
452 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
453 /* Mode values for AArch64 */
454 #define PSTATE_MODE_EL3h 13
455 #define PSTATE_MODE_EL3t 12
456 #define PSTATE_MODE_EL2h 9
457 #define PSTATE_MODE_EL2t 8
458 #define PSTATE_MODE_EL1h 5
459 #define PSTATE_MODE_EL1t 4
460 #define PSTATE_MODE_EL0t 0
461
462 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
463 * interprocessing, so we don't attempt to sync with the cpsr state used by
464 * the 32 bit decoder.
465 */
466 static inline uint32_t pstate_read(CPUARMState *env)
467 {
468 int ZF;
469
470 ZF = (env->ZF == 0);
471 return (env->NF & 0x80000000) | (ZF << 30)
472 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
473 | env->pstate | env->daif;
474 }
475
476 static inline void pstate_write(CPUARMState *env, uint32_t val)
477 {
478 env->ZF = (~val) & PSTATE_Z;
479 env->NF = val;
480 env->CF = (val >> 29) & 1;
481 env->VF = (val << 3) & 0x80000000;
482 env->daif = val & PSTATE_DAIF;
483 env->pstate = val & ~CACHED_PSTATE_BITS;
484 }
485
486 /* Return the current CPSR value. */
487 uint32_t cpsr_read(CPUARMState *env);
488 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
489 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
490
491 /* Return the current xPSR value. */
492 static inline uint32_t xpsr_read(CPUARMState *env)
493 {
494 int ZF;
495 ZF = (env->ZF == 0);
496 return (env->NF & 0x80000000) | (ZF << 30)
497 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
498 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
499 | ((env->condexec_bits & 0xfc) << 8)
500 | env->v7m.exception;
501 }
502
503 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
504 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
505 {
506 if (mask & CPSR_NZCV) {
507 env->ZF = (~val) & CPSR_Z;
508 env->NF = val;
509 env->CF = (val >> 29) & 1;
510 env->VF = (val << 3) & 0x80000000;
511 }
512 if (mask & CPSR_Q)
513 env->QF = ((val & CPSR_Q) != 0);
514 if (mask & (1 << 24))
515 env->thumb = ((val & (1 << 24)) != 0);
516 if (mask & CPSR_IT_0_1) {
517 env->condexec_bits &= ~3;
518 env->condexec_bits |= (val >> 25) & 3;
519 }
520 if (mask & CPSR_IT_2_7) {
521 env->condexec_bits &= 3;
522 env->condexec_bits |= (val >> 8) & 0xfc;
523 }
524 if (mask & 0x1ff) {
525 env->v7m.exception = val & 0x1ff;
526 }
527 }
528
529 /* Return the current FPSCR value. */
530 uint32_t vfp_get_fpscr(CPUARMState *env);
531 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
532
533 /* For A64 the FPSCR is split into two logically distinct registers,
534 * FPCR and FPSR. However since they still use non-overlapping bits
535 * we store the underlying state in fpscr and just mask on read/write.
536 */
537 #define FPSR_MASK 0xf800009f
538 #define FPCR_MASK 0x07f79f00
539 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
540 {
541 return vfp_get_fpscr(env) & FPSR_MASK;
542 }
543
544 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
545 {
546 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
547 vfp_set_fpscr(env, new_fpscr);
548 }
549
550 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
551 {
552 return vfp_get_fpscr(env) & FPCR_MASK;
553 }
554
555 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
556 {
557 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
558 vfp_set_fpscr(env, new_fpscr);
559 }
560
561 enum arm_cpu_mode {
562 ARM_CPU_MODE_USR = 0x10,
563 ARM_CPU_MODE_FIQ = 0x11,
564 ARM_CPU_MODE_IRQ = 0x12,
565 ARM_CPU_MODE_SVC = 0x13,
566 ARM_CPU_MODE_MON = 0x16,
567 ARM_CPU_MODE_ABT = 0x17,
568 ARM_CPU_MODE_HYP = 0x1a,
569 ARM_CPU_MODE_UND = 0x1b,
570 ARM_CPU_MODE_SYS = 0x1f
571 };
572
573 /* VFP system registers. */
574 #define ARM_VFP_FPSID 0
575 #define ARM_VFP_FPSCR 1
576 #define ARM_VFP_MVFR2 5
577 #define ARM_VFP_MVFR1 6
578 #define ARM_VFP_MVFR0 7
579 #define ARM_VFP_FPEXC 8
580 #define ARM_VFP_FPINST 9
581 #define ARM_VFP_FPINST2 10
582
583 /* iwMMXt coprocessor control registers. */
584 #define ARM_IWMMXT_wCID 0
585 #define ARM_IWMMXT_wCon 1
586 #define ARM_IWMMXT_wCSSF 2
587 #define ARM_IWMMXT_wCASF 3
588 #define ARM_IWMMXT_wCGR0 8
589 #define ARM_IWMMXT_wCGR1 9
590 #define ARM_IWMMXT_wCGR2 10
591 #define ARM_IWMMXT_wCGR3 11
592
593 /* If adding a feature bit which corresponds to a Linux ELF
594 * HWCAP bit, remember to update the feature-bit-to-hwcap
595 * mapping in linux-user/elfload.c:get_elf_hwcap().
596 */
597 enum arm_features {
598 ARM_FEATURE_VFP,
599 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
600 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
601 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
602 ARM_FEATURE_V6,
603 ARM_FEATURE_V6K,
604 ARM_FEATURE_V7,
605 ARM_FEATURE_THUMB2,
606 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
607 ARM_FEATURE_VFP3,
608 ARM_FEATURE_VFP_FP16,
609 ARM_FEATURE_NEON,
610 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
611 ARM_FEATURE_M, /* Microcontroller profile. */
612 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
613 ARM_FEATURE_THUMB2EE,
614 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
615 ARM_FEATURE_V4T,
616 ARM_FEATURE_V5,
617 ARM_FEATURE_STRONGARM,
618 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
619 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
620 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
621 ARM_FEATURE_GENERIC_TIMER,
622 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
623 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
624 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
625 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
626 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
627 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
628 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
629 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
630 ARM_FEATURE_V8,
631 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
632 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
633 ARM_FEATURE_CBAR, /* has cp15 CBAR */
634 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
635 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
636 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
637 };
638
639 static inline int arm_feature(CPUARMState *env, int feature)
640 {
641 return (env->features & (1ULL << feature)) != 0;
642 }
643
644 /* Return true if the specified exception level is running in AArch64 state. */
645 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
646 {
647 /* We don't currently support EL2 or EL3, and this isn't valid for EL0
648 * (if we're in EL0, is_a64() is what you want, and if we're not in EL0
649 * then the state of EL0 isn't well defined.)
650 */
651 assert(el == 1);
652 /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
653 * is a QEMU-imposed simplification which we may wish to change later.
654 * If we in future support EL2 and/or EL3, then the state of lower
655 * exception levels is controlled by the HCR.RW and SCR.RW bits.
656 */
657 return arm_feature(env, ARM_FEATURE_AARCH64);
658 }
659
660 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
661
662 /* Interface between CPU and Interrupt controller. */
663 void armv7m_nvic_set_pending(void *opaque, int irq);
664 int armv7m_nvic_acknowledge_irq(void *opaque);
665 void armv7m_nvic_complete_irq(void *opaque, int irq);
666
667 /* Interface for defining coprocessor registers.
668 * Registers are defined in tables of arm_cp_reginfo structs
669 * which are passed to define_arm_cp_regs().
670 */
671
672 /* When looking up a coprocessor register we look for it
673 * via an integer which encodes all of:
674 * coprocessor number
675 * Crn, Crm, opc1, opc2 fields
676 * 32 or 64 bit register (ie is it accessed via MRC/MCR
677 * or via MRRC/MCRR?)
678 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
679 * (In this case crn and opc2 should be zero.)
680 * For AArch64, there is no 32/64 bit size distinction;
681 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
682 * and 4 bit CRn and CRm. The encoding patterns are chosen
683 * to be easy to convert to and from the KVM encodings, and also
684 * so that the hashtable can contain both AArch32 and AArch64
685 * registers (to allow for interprocessing where we might run
686 * 32 bit code on a 64 bit core).
687 */
688 /* This bit is private to our hashtable cpreg; in KVM register
689 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
690 * in the upper bits of the 64 bit ID.
691 */
692 #define CP_REG_AA64_SHIFT 28
693 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
694
695 #define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
696 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
697 ((crm) << 7) | ((opc1) << 3) | (opc2))
698
699 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
700 (CP_REG_AA64_MASK | \
701 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
702 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
703 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
704 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
705 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
706 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
707
708 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
709 * version used as a key for the coprocessor register hashtable
710 */
711 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
712 {
713 uint32_t cpregid = kvmid;
714 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
715 cpregid |= CP_REG_AA64_MASK;
716 } else if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
717 cpregid |= (1 << 15);
718 }
719 return cpregid;
720 }
721
722 /* Convert a truncated 32 bit hashtable key into the full
723 * 64 bit KVM register ID.
724 */
725 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
726 {
727 uint64_t kvmid;
728
729 if (cpregid & CP_REG_AA64_MASK) {
730 kvmid = cpregid & ~CP_REG_AA64_MASK;
731 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
732 } else {
733 kvmid = cpregid & ~(1 << 15);
734 if (cpregid & (1 << 15)) {
735 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
736 } else {
737 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
738 }
739 }
740 return kvmid;
741 }
742
743 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
744 * special-behaviour cp reg and bits [15..8] indicate what behaviour
745 * it has. Otherwise it is a simple cp reg, where CONST indicates that
746 * TCG can assume the value to be constant (ie load at translate time)
747 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
748 * indicates that the TB should not be ended after a write to this register
749 * (the default is that the TB ends after cp writes). OVERRIDE permits
750 * a register definition to override a previous definition for the
751 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
752 * old must have the OVERRIDE bit set.
753 * NO_MIGRATE indicates that this register should be ignored for migration;
754 * (eg because any state is accessed via some other coprocessor register).
755 * IO indicates that this register does I/O and therefore its accesses
756 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
757 * registers which implement clocks or timers require this.
758 */
759 #define ARM_CP_SPECIAL 1
760 #define ARM_CP_CONST 2
761 #define ARM_CP_64BIT 4
762 #define ARM_CP_SUPPRESS_TB_END 8
763 #define ARM_CP_OVERRIDE 16
764 #define ARM_CP_NO_MIGRATE 32
765 #define ARM_CP_IO 64
766 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
767 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
768 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
769 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
770 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
771 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
772 /* Used only as a terminator for ARMCPRegInfo lists */
773 #define ARM_CP_SENTINEL 0xffff
774 /* Mask of only the flag bits in a type field */
775 #define ARM_CP_FLAG_MASK 0x7f
776
777 /* Valid values for ARMCPRegInfo state field, indicating which of
778 * the AArch32 and AArch64 execution states this register is visible in.
779 * If the reginfo doesn't explicitly specify then it is AArch32 only.
780 * If the reginfo is declared to be visible in both states then a second
781 * reginfo is synthesised for the AArch32 view of the AArch64 register,
782 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
783 * Note that we rely on the values of these enums as we iterate through
784 * the various states in some places.
785 */
786 enum {
787 ARM_CP_STATE_AA32 = 0,
788 ARM_CP_STATE_AA64 = 1,
789 ARM_CP_STATE_BOTH = 2,
790 };
791
792 /* Return true if cptype is a valid type field. This is used to try to
793 * catch errors where the sentinel has been accidentally left off the end
794 * of a list of registers.
795 */
796 static inline bool cptype_valid(int cptype)
797 {
798 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
799 || ((cptype & ARM_CP_SPECIAL) &&
800 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
801 }
802
803 /* Access rights:
804 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
805 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
806 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
807 * (ie any of the privileged modes in Secure state, or Monitor mode).
808 * If a register is accessible in one privilege level it's always accessible
809 * in higher privilege levels too. Since "Secure PL1" also follows this rule
810 * (ie anything visible in PL2 is visible in S-PL1, some things are only
811 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
812 * terminology a little and call this PL3.
813 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
814 * with the ELx exception levels.
815 *
816 * If access permissions for a register are more complex than can be
817 * described with these bits, then use a laxer set of restrictions, and
818 * do the more restrictive/complex check inside a helper function.
819 */
820 #define PL3_R 0x80
821 #define PL3_W 0x40
822 #define PL2_R (0x20 | PL3_R)
823 #define PL2_W (0x10 | PL3_W)
824 #define PL1_R (0x08 | PL2_R)
825 #define PL1_W (0x04 | PL2_W)
826 #define PL0_R (0x02 | PL1_R)
827 #define PL0_W (0x01 | PL1_W)
828
829 #define PL3_RW (PL3_R | PL3_W)
830 #define PL2_RW (PL2_R | PL2_W)
831 #define PL1_RW (PL1_R | PL1_W)
832 #define PL0_RW (PL0_R | PL0_W)
833
834 static inline int arm_current_pl(CPUARMState *env)
835 {
836 if (env->aarch64) {
837 return extract32(env->pstate, 2, 2);
838 }
839
840 if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
841 return 0;
842 }
843 /* We don't currently implement the Virtualization or TrustZone
844 * extensions, so PL2 and PL3 don't exist for us.
845 */
846 return 1;
847 }
848
849 typedef struct ARMCPRegInfo ARMCPRegInfo;
850
851 typedef enum CPAccessResult {
852 /* Access is permitted */
853 CP_ACCESS_OK = 0,
854 /* Access fails due to a configurable trap or enable which would
855 * result in a categorized exception syndrome giving information about
856 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
857 * 0xc or 0x18).
858 */
859 CP_ACCESS_TRAP = 1,
860 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
861 * Note that this is not a catch-all case -- the set of cases which may
862 * result in this failure is specifically defined by the architecture.
863 */
864 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
865 } CPAccessResult;
866
867 /* Access functions for coprocessor registers. These cannot fail and
868 * may not raise exceptions.
869 */
870 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
871 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
872 uint64_t value);
873 /* Access permission check functions for coprocessor registers. */
874 typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
875 /* Hook function for register reset */
876 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
877
878 #define CP_ANY 0xff
879
880 /* Definition of an ARM coprocessor register */
881 struct ARMCPRegInfo {
882 /* Name of register (useful mainly for debugging, need not be unique) */
883 const char *name;
884 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
885 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
886 * 'wildcard' field -- any value of that field in the MRC/MCR insn
887 * will be decoded to this register. The register read and write
888 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
889 * used by the program, so it is possible to register a wildcard and
890 * then behave differently on read/write if necessary.
891 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
892 * must both be zero.
893 * For AArch64-visible registers, opc0 is also used.
894 * Since there are no "coprocessors" in AArch64, cp is purely used as a
895 * way to distinguish (for KVM's benefit) guest-visible system registers
896 * from demuxed ones provided to preserve the "no side effects on
897 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
898 * visible (to match KVM's encoding); cp==0 will be converted to
899 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
900 */
901 uint8_t cp;
902 uint8_t crn;
903 uint8_t crm;
904 uint8_t opc0;
905 uint8_t opc1;
906 uint8_t opc2;
907 /* Execution state in which this register is visible: ARM_CP_STATE_* */
908 int state;
909 /* Register type: ARM_CP_* bits/values */
910 int type;
911 /* Access rights: PL*_[RW] */
912 int access;
913 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
914 * this register was defined: can be used to hand data through to the
915 * register read/write functions, since they are passed the ARMCPRegInfo*.
916 */
917 void *opaque;
918 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
919 * fieldoffset is non-zero, the reset value of the register.
920 */
921 uint64_t resetvalue;
922 /* Offset of the field in CPUARMState for this register. This is not
923 * needed if either:
924 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
925 * 2. both readfn and writefn are specified
926 */
927 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
928 /* Function for making any access checks for this register in addition to
929 * those specified by the 'access' permissions bits. If NULL, no extra
930 * checks required. The access check is performed at runtime, not at
931 * translate time.
932 */
933 CPAccessFn *accessfn;
934 /* Function for handling reads of this register. If NULL, then reads
935 * will be done by loading from the offset into CPUARMState specified
936 * by fieldoffset.
937 */
938 CPReadFn *readfn;
939 /* Function for handling writes of this register. If NULL, then writes
940 * will be done by writing to the offset into CPUARMState specified
941 * by fieldoffset.
942 */
943 CPWriteFn *writefn;
944 /* Function for doing a "raw" read; used when we need to copy
945 * coprocessor state to the kernel for KVM or out for
946 * migration. This only needs to be provided if there is also a
947 * readfn and it has side effects (for instance clear-on-read bits).
948 */
949 CPReadFn *raw_readfn;
950 /* Function for doing a "raw" write; used when we need to copy KVM
951 * kernel coprocessor state into userspace, or for inbound
952 * migration. This only needs to be provided if there is also a
953 * writefn and it masks out "unwritable" bits or has write-one-to-clear
954 * or similar behaviour.
955 */
956 CPWriteFn *raw_writefn;
957 /* Function for resetting the register. If NULL, then reset will be done
958 * by writing resetvalue to the field specified in fieldoffset. If
959 * fieldoffset is 0 then no reset will be done.
960 */
961 CPResetFn *resetfn;
962 };
963
964 /* Macros which are lvalues for the field in CPUARMState for the
965 * ARMCPRegInfo *ri.
966 */
967 #define CPREG_FIELD32(env, ri) \
968 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
969 #define CPREG_FIELD64(env, ri) \
970 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
971
972 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
973
974 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
975 const ARMCPRegInfo *regs, void *opaque);
976 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
977 const ARMCPRegInfo *regs, void *opaque);
978 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
979 {
980 define_arm_cp_regs_with_opaque(cpu, regs, 0);
981 }
982 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
983 {
984 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
985 }
986 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
987
988 /* CPWriteFn that can be used to implement writes-ignored behaviour */
989 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
990 uint64_t value);
991 /* CPReadFn that can be used for read-as-zero behaviour */
992 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
993
994 /* CPResetFn that does nothing, for use if no reset is required even
995 * if fieldoffset is non zero.
996 */
997 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
998
999 /* Return true if this reginfo struct's field in the cpu state struct
1000 * is 64 bits wide.
1001 */
1002 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1003 {
1004 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1005 }
1006
1007 static inline bool cp_access_ok(int current_pl,
1008 const ARMCPRegInfo *ri, int isread)
1009 {
1010 return (ri->access >> ((current_pl * 2) + isread)) & 1;
1011 }
1012
1013 /**
1014 * write_list_to_cpustate
1015 * @cpu: ARMCPU
1016 *
1017 * For each register listed in the ARMCPU cpreg_indexes list, write
1018 * its value from the cpreg_values list into the ARMCPUState structure.
1019 * This updates TCG's working data structures from KVM data or
1020 * from incoming migration state.
1021 *
1022 * Returns: true if all register values were updated correctly,
1023 * false if some register was unknown or could not be written.
1024 * Note that we do not stop early on failure -- we will attempt
1025 * writing all registers in the list.
1026 */
1027 bool write_list_to_cpustate(ARMCPU *cpu);
1028
1029 /**
1030 * write_cpustate_to_list:
1031 * @cpu: ARMCPU
1032 *
1033 * For each register listed in the ARMCPU cpreg_indexes list, write
1034 * its value from the ARMCPUState structure into the cpreg_values list.
1035 * This is used to copy info from TCG's working data structures into
1036 * KVM or for outbound migration.
1037 *
1038 * Returns: true if all register values were read correctly,
1039 * false if some register was unknown or could not be read.
1040 * Note that we do not stop early on failure -- we will attempt
1041 * reading all registers in the list.
1042 */
1043 bool write_cpustate_to_list(ARMCPU *cpu);
1044
1045 /* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
1046 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1047 conventional cores (ie. Application or Realtime profile). */
1048
1049 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
1050
1051 #define ARM_CPUID_TI915T 0x54029152
1052 #define ARM_CPUID_TI925T 0x54029252
1053
1054 #if defined(CONFIG_USER_ONLY)
1055 #define TARGET_PAGE_BITS 12
1056 #else
1057 /* The ARM MMU allows 1k pages. */
1058 /* ??? Linux doesn't actually use these, and they're deprecated in recent
1059 architecture revisions. Maybe a configure option to disable them. */
1060 #define TARGET_PAGE_BITS 10
1061 #endif
1062
1063 #if defined(TARGET_AARCH64)
1064 # define TARGET_PHYS_ADDR_SPACE_BITS 48
1065 # define TARGET_VIRT_ADDR_SPACE_BITS 64
1066 #else
1067 # define TARGET_PHYS_ADDR_SPACE_BITS 40
1068 # define TARGET_VIRT_ADDR_SPACE_BITS 32
1069 #endif
1070
1071 static inline CPUARMState *cpu_init(const char *cpu_model)
1072 {
1073 ARMCPU *cpu = cpu_arm_init(cpu_model);
1074 if (cpu) {
1075 return &cpu->env;
1076 }
1077 return NULL;
1078 }
1079
1080 #define cpu_exec cpu_arm_exec
1081 #define cpu_gen_code cpu_arm_gen_code
1082 #define cpu_signal_handler cpu_arm_signal_handler
1083 #define cpu_list arm_cpu_list
1084
1085 /* MMU modes definitions */
1086 #define MMU_MODE0_SUFFIX _user
1087 #define MMU_MODE1_SUFFIX _kernel
1088 #define MMU_USER_IDX 0
1089 static inline int cpu_mmu_index (CPUARMState *env)
1090 {
1091 return arm_current_pl(env);
1092 }
1093
1094 #include "exec/cpu-all.h"
1095
1096 /* Bit usage in the TB flags field: bit 31 indicates whether we are
1097 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
1098 */
1099 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1100 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
1101
1102 /* Bit usage when in AArch32 state: */
1103 #define ARM_TBFLAG_THUMB_SHIFT 0
1104 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
1105 #define ARM_TBFLAG_VECLEN_SHIFT 1
1106 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1107 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
1108 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
1109 #define ARM_TBFLAG_PRIV_SHIFT 6
1110 #define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
1111 #define ARM_TBFLAG_VFPEN_SHIFT 7
1112 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
1113 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
1114 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
1115 #define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1116 #define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
1117 #define ARM_TBFLAG_CPACR_FPEN_SHIFT 17
1118 #define ARM_TBFLAG_CPACR_FPEN_MASK (1 << ARM_TBFLAG_CPACR_FPEN_SHIFT)
1119
1120 /* Bit usage when in AArch64 state */
1121 #define ARM_TBFLAG_AA64_EL_SHIFT 0
1122 #define ARM_TBFLAG_AA64_EL_MASK (0x3 << ARM_TBFLAG_AA64_EL_SHIFT)
1123 #define ARM_TBFLAG_AA64_FPEN_SHIFT 2
1124 #define ARM_TBFLAG_AA64_FPEN_MASK (1 << ARM_TBFLAG_AA64_FPEN_SHIFT)
1125
1126 /* some convenience accessor macros */
1127 #define ARM_TBFLAG_AARCH64_STATE(F) \
1128 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
1129 #define ARM_TBFLAG_THUMB(F) \
1130 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1131 #define ARM_TBFLAG_VECLEN(F) \
1132 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1133 #define ARM_TBFLAG_VECSTRIDE(F) \
1134 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
1135 #define ARM_TBFLAG_PRIV(F) \
1136 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
1137 #define ARM_TBFLAG_VFPEN(F) \
1138 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1139 #define ARM_TBFLAG_CONDEXEC(F) \
1140 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
1141 #define ARM_TBFLAG_BSWAP_CODE(F) \
1142 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
1143 #define ARM_TBFLAG_CPACR_FPEN(F) \
1144 (((F) & ARM_TBFLAG_CPACR_FPEN_MASK) >> ARM_TBFLAG_CPACR_FPEN_SHIFT)
1145 #define ARM_TBFLAG_AA64_EL(F) \
1146 (((F) & ARM_TBFLAG_AA64_EL_MASK) >> ARM_TBFLAG_AA64_EL_SHIFT)
1147 #define ARM_TBFLAG_AA64_FPEN(F) \
1148 (((F) & ARM_TBFLAG_AA64_FPEN_MASK) >> ARM_TBFLAG_AA64_FPEN_SHIFT)
1149
1150 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
1151 target_ulong *cs_base, int *flags)
1152 {
1153 int fpen = extract32(env->cp15.c1_coproc, 20, 2);
1154
1155 if (is_a64(env)) {
1156 *pc = env->pc;
1157 *flags = ARM_TBFLAG_AARCH64_STATE_MASK
1158 | (arm_current_pl(env) << ARM_TBFLAG_AA64_EL_SHIFT);
1159 if (fpen == 3 || (fpen == 1 && arm_current_pl(env) != 0)) {
1160 *flags |= ARM_TBFLAG_AA64_FPEN_MASK;
1161 }
1162 } else {
1163 int privmode;
1164 *pc = env->regs[15];
1165 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1166 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1167 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1168 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1169 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
1170 if (arm_feature(env, ARM_FEATURE_M)) {
1171 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
1172 } else {
1173 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
1174 }
1175 if (privmode) {
1176 *flags |= ARM_TBFLAG_PRIV_MASK;
1177 }
1178 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
1179 || arm_el_is_aa64(env, 1)) {
1180 *flags |= ARM_TBFLAG_VFPEN_MASK;
1181 }
1182 if (fpen == 3 || (fpen == 1 && arm_current_pl(env) != 0)) {
1183 *flags |= ARM_TBFLAG_CPACR_FPEN_MASK;
1184 }
1185 }
1186
1187 *cs_base = 0;
1188 }
1189
1190 #include "exec/exec-all.h"
1191
1192 static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
1193 {
1194 if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
1195 env->pc = tb->pc;
1196 } else {
1197 env->regs[15] = tb->pc;
1198 }
1199 }
1200
1201 /* Load an instruction and return it in the standard little-endian order */
1202 static inline uint32_t arm_ldl_code(CPUARMState *env, target_ulong addr,
1203 bool do_swap)
1204 {
1205 uint32_t insn = cpu_ldl_code(env, addr);
1206 if (do_swap) {
1207 return bswap32(insn);
1208 }
1209 return insn;
1210 }
1211
1212 /* Ditto, for a halfword (Thumb) instruction */
1213 static inline uint16_t arm_lduw_code(CPUARMState *env, target_ulong addr,
1214 bool do_swap)
1215 {
1216 uint16_t insn = cpu_lduw_code(env, addr);
1217 if (do_swap) {
1218 return bswap16(insn);
1219 }
1220 return insn;
1221 }
1222
1223 #endif