]> git.proxmox.com Git - mirror_qemu.git/blob - target-arm/helper.c
exec: move include files to include/exec/
[mirror_qemu.git] / target-arm / helper.c
1 #include "cpu.h"
2 #include "exec/gdbstub.h"
3 #include "helper.h"
4 #include "host-utils.h"
5 #include "sysemu.h"
6 #include "bitops.h"
7
8 #ifndef CONFIG_USER_ONLY
9 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
10 int access_type, int is_user,
11 hwaddr *phys_ptr, int *prot,
12 target_ulong *page_size);
13 #endif
14
15 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
16 {
17 int nregs;
18
19 /* VFP data registers are always little-endian. */
20 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
21 if (reg < nregs) {
22 stfq_le_p(buf, env->vfp.regs[reg]);
23 return 8;
24 }
25 if (arm_feature(env, ARM_FEATURE_NEON)) {
26 /* Aliases for Q regs. */
27 nregs += 16;
28 if (reg < nregs) {
29 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
30 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
31 return 16;
32 }
33 }
34 switch (reg - nregs) {
35 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
36 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
37 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
38 }
39 return 0;
40 }
41
42 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
43 {
44 int nregs;
45
46 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
47 if (reg < nregs) {
48 env->vfp.regs[reg] = ldfq_le_p(buf);
49 return 8;
50 }
51 if (arm_feature(env, ARM_FEATURE_NEON)) {
52 nregs += 16;
53 if (reg < nregs) {
54 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
55 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
56 return 16;
57 }
58 }
59 switch (reg - nregs) {
60 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
61 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
62 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
63 }
64 return 0;
65 }
66
67 static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
68 {
69 env->cp15.c3 = value;
70 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
71 return 0;
72 }
73
74 static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
75 {
76 if (env->cp15.c13_fcse != value) {
77 /* Unlike real hardware the qemu TLB uses virtual addresses,
78 * not modified virtual addresses, so this causes a TLB flush.
79 */
80 tlb_flush(env, 1);
81 env->cp15.c13_fcse = value;
82 }
83 return 0;
84 }
85 static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
86 uint64_t value)
87 {
88 if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
89 /* For VMSA (when not using the LPAE long descriptor page table
90 * format) this register includes the ASID, so do a TLB flush.
91 * For PMSA it is purely a process ID and no action is needed.
92 */
93 tlb_flush(env, 1);
94 }
95 env->cp15.c13_context = value;
96 return 0;
97 }
98
99 static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
100 uint64_t value)
101 {
102 /* Invalidate all (TLBIALL) */
103 tlb_flush(env, 1);
104 return 0;
105 }
106
107 static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
108 uint64_t value)
109 {
110 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
111 tlb_flush_page(env, value & TARGET_PAGE_MASK);
112 return 0;
113 }
114
115 static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
116 uint64_t value)
117 {
118 /* Invalidate by ASID (TLBIASID) */
119 tlb_flush(env, value == 0);
120 return 0;
121 }
122
123 static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
124 uint64_t value)
125 {
126 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
127 tlb_flush_page(env, value & TARGET_PAGE_MASK);
128 return 0;
129 }
130
131 static const ARMCPRegInfo cp_reginfo[] = {
132 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
133 * version" bits will read as a reserved value, which should cause
134 * Linux to not try to use the debug hardware.
135 */
136 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
137 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
138 /* MMU Domain access control / MPU write buffer control */
139 { .name = "DACR", .cp = 15,
140 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
141 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
142 .resetvalue = 0, .writefn = dacr_write },
143 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
144 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
145 .resetvalue = 0, .writefn = fcse_write },
146 { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
147 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
148 .resetvalue = 0, .writefn = contextidr_write },
149 /* ??? This covers not just the impdef TLB lockdown registers but also
150 * some v7VMSA registers relating to TEX remap, so it is overly broad.
151 */
152 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
153 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
154 /* MMU TLB control. Note that the wildcarding means we cover not just
155 * the unified TLB ops but also the dside/iside/inner-shareable variants.
156 */
157 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
158 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, },
159 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
160 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, },
161 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
162 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, },
163 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
164 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, },
165 /* Cache maintenance ops; some of this space may be overridden later. */
166 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
167 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
168 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
169 REGINFO_SENTINEL
170 };
171
172 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
173 /* Not all pre-v6 cores implemented this WFI, so this is slightly
174 * over-broad.
175 */
176 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
177 .access = PL1_W, .type = ARM_CP_WFI },
178 REGINFO_SENTINEL
179 };
180
181 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
182 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
183 * is UNPREDICTABLE; we choose to NOP as most implementations do).
184 */
185 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
186 .access = PL1_W, .type = ARM_CP_WFI },
187 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
188 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
189 * OMAPCP will override this space.
190 */
191 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
192 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
193 .resetvalue = 0 },
194 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
195 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
196 .resetvalue = 0 },
197 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
198 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
199 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
200 REGINFO_SENTINEL
201 };
202
203 static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
204 {
205 if (env->cp15.c1_coproc != value) {
206 env->cp15.c1_coproc = value;
207 /* ??? Is this safe when called from within a TB? */
208 tb_flush(env);
209 }
210 return 0;
211 }
212
213 static const ARMCPRegInfo v6_cp_reginfo[] = {
214 /* prefetch by MVA in v6, NOP in v7 */
215 { .name = "MVA_prefetch",
216 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
217 .access = PL1_W, .type = ARM_CP_NOP },
218 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
219 .access = PL0_W, .type = ARM_CP_NOP },
220 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
221 .access = PL0_W, .type = ARM_CP_NOP },
222 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
223 .access = PL0_W, .type = ARM_CP_NOP },
224 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
225 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
226 .resetvalue = 0, },
227 /* Watchpoint Fault Address Register : should actually only be present
228 * for 1136, 1176, 11MPCore.
229 */
230 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
231 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
232 { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
233 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
234 .resetvalue = 0, .writefn = cpacr_write },
235 REGINFO_SENTINEL
236 };
237
238 static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri,
239 uint64_t *value)
240 {
241 /* Generic performance monitor register read function for where
242 * user access may be allowed by PMUSERENR.
243 */
244 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
245 return EXCP_UDEF;
246 }
247 *value = CPREG_FIELD32(env, ri);
248 return 0;
249 }
250
251 static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
252 uint64_t value)
253 {
254 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
255 return EXCP_UDEF;
256 }
257 /* only the DP, X, D and E bits are writable */
258 env->cp15.c9_pmcr &= ~0x39;
259 env->cp15.c9_pmcr |= (value & 0x39);
260 return 0;
261 }
262
263 static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
264 uint64_t value)
265 {
266 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
267 return EXCP_UDEF;
268 }
269 value &= (1 << 31);
270 env->cp15.c9_pmcnten |= value;
271 return 0;
272 }
273
274 static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
275 uint64_t value)
276 {
277 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
278 return EXCP_UDEF;
279 }
280 value &= (1 << 31);
281 env->cp15.c9_pmcnten &= ~value;
282 return 0;
283 }
284
285 static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
286 uint64_t value)
287 {
288 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
289 return EXCP_UDEF;
290 }
291 env->cp15.c9_pmovsr &= ~value;
292 return 0;
293 }
294
295 static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
296 uint64_t value)
297 {
298 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
299 return EXCP_UDEF;
300 }
301 env->cp15.c9_pmxevtyper = value & 0xff;
302 return 0;
303 }
304
305 static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
306 uint64_t value)
307 {
308 env->cp15.c9_pmuserenr = value & 1;
309 return 0;
310 }
311
312 static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
313 uint64_t value)
314 {
315 /* We have no event counters so only the C bit can be changed */
316 value &= (1 << 31);
317 env->cp15.c9_pminten |= value;
318 return 0;
319 }
320
321 static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
322 uint64_t value)
323 {
324 value &= (1 << 31);
325 env->cp15.c9_pminten &= ~value;
326 return 0;
327 }
328
329 static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
330 uint64_t *value)
331 {
332 ARMCPU *cpu = arm_env_get_cpu(env);
333 *value = cpu->ccsidr[env->cp15.c0_cssel];
334 return 0;
335 }
336
337 static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
338 uint64_t value)
339 {
340 env->cp15.c0_cssel = value & 0xf;
341 return 0;
342 }
343
344 static const ARMCPRegInfo v7_cp_reginfo[] = {
345 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
346 * debug components
347 */
348 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
349 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
350 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
351 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
352 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
353 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
354 .access = PL1_W, .type = ARM_CP_NOP },
355 /* Performance monitors are implementation defined in v7,
356 * but with an ARM recommended set of registers, which we
357 * follow (although we don't actually implement any counters)
358 *
359 * Performance registers fall into three categories:
360 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
361 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
362 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
363 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
364 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
365 */
366 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
367 .access = PL0_RW, .resetvalue = 0,
368 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
369 .readfn = pmreg_read, .writefn = pmcntenset_write },
370 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
371 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
372 .readfn = pmreg_read, .writefn = pmcntenclr_write },
373 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
374 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
375 .readfn = pmreg_read, .writefn = pmovsr_write },
376 /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
377 * respect PMUSERENR.
378 */
379 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
380 .access = PL0_W, .type = ARM_CP_NOP },
381 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
382 * We choose to RAZ/WI. XXX should respect PMUSERENR.
383 */
384 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
385 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
386 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
387 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
388 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
389 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
390 .access = PL0_RW,
391 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
392 .readfn = pmreg_read, .writefn = pmxevtyper_write },
393 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
394 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
395 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
396 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
397 .access = PL0_R | PL1_RW,
398 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
399 .resetvalue = 0,
400 .writefn = pmuserenr_write },
401 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
402 .access = PL1_RW,
403 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
404 .resetvalue = 0,
405 .writefn = pmintenset_write },
406 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
407 .access = PL1_RW,
408 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
409 .resetvalue = 0,
410 .writefn = pmintenclr_write },
411 { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
412 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
413 .resetvalue = 0, },
414 { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
415 .access = PL1_R, .readfn = ccsidr_read },
416 { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
417 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
418 .writefn = csselr_write, .resetvalue = 0 },
419 /* Auxiliary ID register: this actually has an IMPDEF value but for now
420 * just RAZ for all cores:
421 */
422 { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
423 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
424 REGINFO_SENTINEL
425 };
426
427 static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
428 {
429 value &= 1;
430 env->teecr = value;
431 return 0;
432 }
433
434 static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri,
435 uint64_t *value)
436 {
437 /* This is a helper function because the user access rights
438 * depend on the value of the TEECR.
439 */
440 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
441 return EXCP_UDEF;
442 }
443 *value = env->teehbr;
444 return 0;
445 }
446
447 static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
448 uint64_t value)
449 {
450 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
451 return EXCP_UDEF;
452 }
453 env->teehbr = value;
454 return 0;
455 }
456
457 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
458 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
459 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
460 .resetvalue = 0,
461 .writefn = teecr_write },
462 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
463 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
464 .resetvalue = 0,
465 .readfn = teehbr_read, .writefn = teehbr_write },
466 REGINFO_SENTINEL
467 };
468
469 static const ARMCPRegInfo v6k_cp_reginfo[] = {
470 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
471 .access = PL0_RW,
472 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1),
473 .resetvalue = 0 },
474 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
475 .access = PL0_R|PL1_W,
476 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2),
477 .resetvalue = 0 },
478 { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4,
479 .access = PL1_RW,
480 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3),
481 .resetvalue = 0 },
482 REGINFO_SENTINEL
483 };
484
485 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
486 /* Dummy implementation: RAZ/WI the whole crn=14 space */
487 { .name = "GENERIC_TIMER", .cp = 15, .crn = 14,
488 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
489 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
490 REGINFO_SENTINEL
491 };
492
493 static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
494 {
495 if (arm_feature(env, ARM_FEATURE_LPAE)) {
496 env->cp15.c7_par = value;
497 } else if (arm_feature(env, ARM_FEATURE_V7)) {
498 env->cp15.c7_par = value & 0xfffff6ff;
499 } else {
500 env->cp15.c7_par = value & 0xfffff1ff;
501 }
502 return 0;
503 }
504
505 #ifndef CONFIG_USER_ONLY
506 /* get_phys_addr() isn't present for user-mode-only targets */
507
508 /* Return true if extended addresses are enabled, ie this is an
509 * LPAE implementation and we are using the long-descriptor translation
510 * table format because the TTBCR EAE bit is set.
511 */
512 static inline bool extended_addresses_enabled(CPUARMState *env)
513 {
514 return arm_feature(env, ARM_FEATURE_LPAE)
515 && (env->cp15.c2_control & (1 << 31));
516 }
517
518 static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
519 {
520 hwaddr phys_addr;
521 target_ulong page_size;
522 int prot;
523 int ret, is_user = ri->opc2 & 2;
524 int access_type = ri->opc2 & 1;
525
526 if (ri->opc2 & 4) {
527 /* Other states are only available with TrustZone */
528 return EXCP_UDEF;
529 }
530 ret = get_phys_addr(env, value, access_type, is_user,
531 &phys_addr, &prot, &page_size);
532 if (extended_addresses_enabled(env)) {
533 /* ret is a DFSR/IFSR value for the long descriptor
534 * translation table format, but with WnR always clear.
535 * Convert it to a 64-bit PAR.
536 */
537 uint64_t par64 = (1 << 11); /* LPAE bit always set */
538 if (ret == 0) {
539 par64 |= phys_addr & ~0xfffULL;
540 /* We don't set the ATTR or SH fields in the PAR. */
541 } else {
542 par64 |= 1; /* F */
543 par64 |= (ret & 0x3f) << 1; /* FS */
544 /* Note that S2WLK and FSTAGE are always zero, because we don't
545 * implement virtualization and therefore there can't be a stage 2
546 * fault.
547 */
548 }
549 env->cp15.c7_par = par64;
550 env->cp15.c7_par_hi = par64 >> 32;
551 } else {
552 /* ret is a DFSR/IFSR value for the short descriptor
553 * translation table format (with WnR always clear).
554 * Convert it to a 32-bit PAR.
555 */
556 if (ret == 0) {
557 /* We do not set any attribute bits in the PAR */
558 if (page_size == (1 << 24)
559 && arm_feature(env, ARM_FEATURE_V7)) {
560 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
561 } else {
562 env->cp15.c7_par = phys_addr & 0xfffff000;
563 }
564 } else {
565 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
566 ((ret & (12 << 1)) >> 6) |
567 ((ret & 0xf) << 1) | 1;
568 }
569 env->cp15.c7_par_hi = 0;
570 }
571 return 0;
572 }
573 #endif
574
575 static const ARMCPRegInfo vapa_cp_reginfo[] = {
576 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
577 .access = PL1_RW, .resetvalue = 0,
578 .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
579 .writefn = par_write },
580 #ifndef CONFIG_USER_ONLY
581 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
582 .access = PL1_W, .writefn = ats_write },
583 #endif
584 REGINFO_SENTINEL
585 };
586
587 /* Return basic MPU access permission bits. */
588 static uint32_t simple_mpu_ap_bits(uint32_t val)
589 {
590 uint32_t ret;
591 uint32_t mask;
592 int i;
593 ret = 0;
594 mask = 3;
595 for (i = 0; i < 16; i += 2) {
596 ret |= (val >> i) & mask;
597 mask <<= 2;
598 }
599 return ret;
600 }
601
602 /* Pad basic MPU access permission bits to extended format. */
603 static uint32_t extended_mpu_ap_bits(uint32_t val)
604 {
605 uint32_t ret;
606 uint32_t mask;
607 int i;
608 ret = 0;
609 mask = 3;
610 for (i = 0; i < 16; i += 2) {
611 ret |= (val & mask) << i;
612 mask <<= 2;
613 }
614 return ret;
615 }
616
617 static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
618 uint64_t value)
619 {
620 env->cp15.c5_data = extended_mpu_ap_bits(value);
621 return 0;
622 }
623
624 static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
625 uint64_t *value)
626 {
627 *value = simple_mpu_ap_bits(env->cp15.c5_data);
628 return 0;
629 }
630
631 static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
632 uint64_t value)
633 {
634 env->cp15.c5_insn = extended_mpu_ap_bits(value);
635 return 0;
636 }
637
638 static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
639 uint64_t *value)
640 {
641 *value = simple_mpu_ap_bits(env->cp15.c5_insn);
642 return 0;
643 }
644
645 static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri,
646 uint64_t *value)
647 {
648 if (ri->crm >= 8) {
649 return EXCP_UDEF;
650 }
651 *value = env->cp15.c6_region[ri->crm];
652 return 0;
653 }
654
655 static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
656 uint64_t value)
657 {
658 if (ri->crm >= 8) {
659 return EXCP_UDEF;
660 }
661 env->cp15.c6_region[ri->crm] = value;
662 return 0;
663 }
664
665 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
666 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
667 .access = PL1_RW,
668 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
669 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
670 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
671 .access = PL1_RW,
672 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
673 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
674 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
675 .access = PL1_RW,
676 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
677 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
678 .access = PL1_RW,
679 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
680 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
681 .access = PL1_RW,
682 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
683 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
684 .access = PL1_RW,
685 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
686 /* Protection region base and size registers */
687 { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0,
688 .opc2 = CP_ANY, .access = PL1_RW,
689 .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, },
690 REGINFO_SENTINEL
691 };
692
693 static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
694 uint64_t value)
695 {
696 if (arm_feature(env, ARM_FEATURE_LPAE)) {
697 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
698 /* With LPAE the TTBCR could result in a change of ASID
699 * via the TTBCR.A1 bit, so do a TLB flush.
700 */
701 tlb_flush(env, 1);
702 } else {
703 value &= 7;
704 }
705 /* Note that we always calculate c2_mask and c2_base_mask, but
706 * they are only used for short-descriptor tables (ie if EAE is 0);
707 * for long-descriptor tables the TTBCR fields are used differently
708 * and the c2_mask and c2_base_mask values are meaningless.
709 */
710 env->cp15.c2_control = value;
711 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> value);
712 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> value);
713 return 0;
714 }
715
716 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
717 {
718 env->cp15.c2_base_mask = 0xffffc000u;
719 env->cp15.c2_control = 0;
720 env->cp15.c2_mask = 0;
721 }
722
723 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
724 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
725 .access = PL1_RW,
726 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
727 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
728 .access = PL1_RW,
729 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
730 { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
731 .access = PL1_RW,
732 .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
733 { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
734 .access = PL1_RW,
735 .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, },
736 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
737 .access = PL1_RW, .writefn = vmsa_ttbcr_write,
738 .resetfn = vmsa_ttbcr_reset,
739 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
740 { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
741 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
742 .resetvalue = 0, },
743 REGINFO_SENTINEL
744 };
745
746 static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
747 uint64_t value)
748 {
749 env->cp15.c15_ticonfig = value & 0xe7;
750 /* The OS_TYPE bit in this register changes the reported CPUID! */
751 env->cp15.c0_cpuid = (value & (1 << 5)) ?
752 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
753 return 0;
754 }
755
756 static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
757 uint64_t value)
758 {
759 env->cp15.c15_threadid = value & 0xffff;
760 return 0;
761 }
762
763 static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
764 uint64_t value)
765 {
766 /* Wait-for-interrupt (deprecated) */
767 cpu_interrupt(env, CPU_INTERRUPT_HALT);
768 return 0;
769 }
770
771 static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
772 uint64_t value)
773 {
774 /* On OMAP there are registers indicating the max/min index of dcache lines
775 * containing a dirty line; cache flush operations have to reset these.
776 */
777 env->cp15.c15_i_max = 0x000;
778 env->cp15.c15_i_min = 0xff0;
779 return 0;
780 }
781
782 static const ARMCPRegInfo omap_cp_reginfo[] = {
783 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
784 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
785 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
786 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
787 .access = PL1_RW, .type = ARM_CP_NOP },
788 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
789 .access = PL1_RW,
790 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
791 .writefn = omap_ticonfig_write },
792 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
793 .access = PL1_RW,
794 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
795 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
796 .access = PL1_RW, .resetvalue = 0xff0,
797 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
798 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
799 .access = PL1_RW,
800 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
801 .writefn = omap_threadid_write },
802 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
803 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
804 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
805 /* TODO: Peripheral port remap register:
806 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
807 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
808 * when MMU is off.
809 */
810 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
811 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, .type = ARM_CP_OVERRIDE,
812 .writefn = omap_cachemaint_write },
813 { .name = "C9", .cp = 15, .crn = 9,
814 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
815 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
816 REGINFO_SENTINEL
817 };
818
819 static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
820 uint64_t value)
821 {
822 value &= 0x3fff;
823 if (env->cp15.c15_cpar != value) {
824 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
825 tb_flush(env);
826 env->cp15.c15_cpar = value;
827 }
828 return 0;
829 }
830
831 static const ARMCPRegInfo xscale_cp_reginfo[] = {
832 { .name = "XSCALE_CPAR",
833 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
834 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
835 .writefn = xscale_cpar_write, },
836 { .name = "XSCALE_AUXCR",
837 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
838 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
839 .resetvalue = 0, },
840 REGINFO_SENTINEL
841 };
842
843 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
844 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
845 * implementation of this implementation-defined space.
846 * Ideally this should eventually disappear in favour of actually
847 * implementing the correct behaviour for all cores.
848 */
849 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
850 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
851 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
852 REGINFO_SENTINEL
853 };
854
855 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
856 /* Cache status: RAZ because we have no cache so it's always clean */
857 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
858 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
859 REGINFO_SENTINEL
860 };
861
862 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
863 /* We never have a a block transfer operation in progress */
864 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
865 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
866 /* The cache ops themselves: these all NOP for QEMU */
867 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
868 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
869 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
870 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
871 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
872 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
873 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
874 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
875 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
876 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
877 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
878 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
879 REGINFO_SENTINEL
880 };
881
882 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
883 /* The cache test-and-clean instructions always return (1 << 30)
884 * to indicate that there are no dirty cache lines.
885 */
886 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
887 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) },
888 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
889 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) },
890 REGINFO_SENTINEL
891 };
892
893 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
894 /* Ignore ReadBuffer accesses */
895 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
896 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
897 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
898 .resetvalue = 0 },
899 REGINFO_SENTINEL
900 };
901
902 static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
903 uint64_t *value)
904 {
905 uint32_t mpidr = env->cpu_index;
906 /* We don't support setting cluster ID ([8..11])
907 * so these bits always RAZ.
908 */
909 if (arm_feature(env, ARM_FEATURE_V7MP)) {
910 mpidr |= (1 << 31);
911 /* Cores which are uniprocessor (non-coherent)
912 * but still implement the MP extensions set
913 * bit 30. (For instance, A9UP.) However we do
914 * not currently model any of those cores.
915 */
916 }
917 *value = mpidr;
918 return 0;
919 }
920
921 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
922 { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
923 .access = PL1_R, .readfn = mpidr_read },
924 REGINFO_SENTINEL
925 };
926
927 static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
928 {
929 *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
930 return 0;
931 }
932
933 static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
934 {
935 env->cp15.c7_par_hi = value >> 32;
936 env->cp15.c7_par = value;
937 return 0;
938 }
939
940 static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
941 {
942 env->cp15.c7_par_hi = 0;
943 env->cp15.c7_par = 0;
944 }
945
946 static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri,
947 uint64_t *value)
948 {
949 *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
950 return 0;
951 }
952
953 static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri,
954 uint64_t value)
955 {
956 env->cp15.c2_base0_hi = value >> 32;
957 env->cp15.c2_base0 = value;
958 /* Writes to the 64 bit format TTBRs may change the ASID */
959 tlb_flush(env, 1);
960 return 0;
961 }
962
963 static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri)
964 {
965 env->cp15.c2_base0_hi = 0;
966 env->cp15.c2_base0 = 0;
967 }
968
969 static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri,
970 uint64_t *value)
971 {
972 *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
973 return 0;
974 }
975
976 static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri,
977 uint64_t value)
978 {
979 env->cp15.c2_base1_hi = value >> 32;
980 env->cp15.c2_base1 = value;
981 return 0;
982 }
983
984 static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri)
985 {
986 env->cp15.c2_base1_hi = 0;
987 env->cp15.c2_base1 = 0;
988 }
989
990 static const ARMCPRegInfo lpae_cp_reginfo[] = {
991 /* NOP AMAIR0/1: the override is because these clash with the rather
992 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
993 */
994 { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
995 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
996 .resetvalue = 0 },
997 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
998 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
999 .resetvalue = 0 },
1000 /* 64 bit access versions of the (dummy) debug registers */
1001 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1002 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1003 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1004 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1005 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
1006 .access = PL1_RW, .type = ARM_CP_64BIT,
1007 .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
1008 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1009 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read,
1010 .writefn = ttbr064_write, .resetfn = ttbr064_reset },
1011 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1012 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read,
1013 .writefn = ttbr164_write, .resetfn = ttbr164_reset },
1014 REGINFO_SENTINEL
1015 };
1016
1017 static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1018 {
1019 env->cp15.c1_sys = value;
1020 /* ??? Lots of these bits are not implemented. */
1021 /* This may enable/disable the MMU, so do a TLB flush. */
1022 tlb_flush(env, 1);
1023 return 0;
1024 }
1025
1026 void register_cp_regs_for_features(ARMCPU *cpu)
1027 {
1028 /* Register all the coprocessor registers based on feature bits */
1029 CPUARMState *env = &cpu->env;
1030 if (arm_feature(env, ARM_FEATURE_M)) {
1031 /* M profile has no coprocessor registers */
1032 return;
1033 }
1034
1035 define_arm_cp_regs(cpu, cp_reginfo);
1036 if (arm_feature(env, ARM_FEATURE_V6)) {
1037 /* The ID registers all have impdef reset values */
1038 ARMCPRegInfo v6_idregs[] = {
1039 { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
1040 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1041 .resetvalue = cpu->id_pfr0 },
1042 { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
1043 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1044 .resetvalue = cpu->id_pfr1 },
1045 { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
1046 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1047 .resetvalue = cpu->id_dfr0 },
1048 { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
1049 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1050 .resetvalue = cpu->id_afr0 },
1051 { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
1052 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1053 .resetvalue = cpu->id_mmfr0 },
1054 { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
1055 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1056 .resetvalue = cpu->id_mmfr1 },
1057 { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
1058 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1059 .resetvalue = cpu->id_mmfr2 },
1060 { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
1061 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1062 .resetvalue = cpu->id_mmfr3 },
1063 { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
1064 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1065 .resetvalue = cpu->id_isar0 },
1066 { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
1067 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1068 .resetvalue = cpu->id_isar1 },
1069 { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
1070 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1071 .resetvalue = cpu->id_isar2 },
1072 { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
1073 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1074 .resetvalue = cpu->id_isar3 },
1075 { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
1076 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1077 .resetvalue = cpu->id_isar4 },
1078 { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
1079 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1080 .resetvalue = cpu->id_isar5 },
1081 /* 6..7 are as yet unallocated and must RAZ */
1082 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
1083 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1084 .resetvalue = 0 },
1085 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
1086 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1087 .resetvalue = 0 },
1088 REGINFO_SENTINEL
1089 };
1090 define_arm_cp_regs(cpu, v6_idregs);
1091 define_arm_cp_regs(cpu, v6_cp_reginfo);
1092 } else {
1093 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
1094 }
1095 if (arm_feature(env, ARM_FEATURE_V6K)) {
1096 define_arm_cp_regs(cpu, v6k_cp_reginfo);
1097 }
1098 if (arm_feature(env, ARM_FEATURE_V7)) {
1099 /* v7 performance monitor control register: same implementor
1100 * field as main ID register, and we implement no event counters.
1101 */
1102 ARMCPRegInfo pmcr = {
1103 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
1104 .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
1105 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
1106 .readfn = pmreg_read, .writefn = pmcr_write
1107 };
1108 ARMCPRegInfo clidr = {
1109 .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
1110 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
1111 };
1112 define_one_arm_cp_reg(cpu, &pmcr);
1113 define_one_arm_cp_reg(cpu, &clidr);
1114 define_arm_cp_regs(cpu, v7_cp_reginfo);
1115 } else {
1116 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
1117 }
1118 if (arm_feature(env, ARM_FEATURE_MPU)) {
1119 /* These are the MPU registers prior to PMSAv6. Any new
1120 * PMSA core later than the ARM946 will require that we
1121 * implement the PMSAv6 or PMSAv7 registers, which are
1122 * completely different.
1123 */
1124 assert(!arm_feature(env, ARM_FEATURE_V6));
1125 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
1126 } else {
1127 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
1128 }
1129 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
1130 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
1131 }
1132 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1133 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
1134 }
1135 if (arm_feature(env, ARM_FEATURE_VAPA)) {
1136 define_arm_cp_regs(cpu, vapa_cp_reginfo);
1137 }
1138 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
1139 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
1140 }
1141 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
1142 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
1143 }
1144 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
1145 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
1146 }
1147 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1148 define_arm_cp_regs(cpu, omap_cp_reginfo);
1149 }
1150 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
1151 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
1152 }
1153 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1154 define_arm_cp_regs(cpu, xscale_cp_reginfo);
1155 }
1156 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
1157 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
1158 }
1159 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
1160 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
1161 }
1162 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1163 define_arm_cp_regs(cpu, lpae_cp_reginfo);
1164 }
1165 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
1166 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
1167 * be read-only (ie write causes UNDEF exception).
1168 */
1169 {
1170 ARMCPRegInfo id_cp_reginfo[] = {
1171 /* Note that the MIDR isn't a simple constant register because
1172 * of the TI925 behaviour where writes to another register can
1173 * cause the MIDR value to change.
1174 */
1175 { .name = "MIDR",
1176 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
1177 .access = PL1_R, .resetvalue = cpu->midr,
1178 .writefn = arm_cp_write_ignore,
1179 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid) },
1180 { .name = "CTR",
1181 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
1182 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
1183 { .name = "TCMTR",
1184 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
1185 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1186 { .name = "TLBTR",
1187 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
1188 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1189 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
1190 { .name = "DUMMY",
1191 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
1192 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1193 { .name = "DUMMY",
1194 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
1195 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1196 { .name = "DUMMY",
1197 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
1198 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1199 { .name = "DUMMY",
1200 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
1201 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1202 { .name = "DUMMY",
1203 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
1204 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1205 REGINFO_SENTINEL
1206 };
1207 ARMCPRegInfo crn0_wi_reginfo = {
1208 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
1209 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
1210 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
1211 };
1212 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
1213 arm_feature(env, ARM_FEATURE_STRONGARM)) {
1214 ARMCPRegInfo *r;
1215 /* Register the blanket "writes ignored" value first to cover the
1216 * whole space. Then define the specific ID registers, but update
1217 * their access field to allow write access, so that they ignore
1218 * writes rather than causing them to UNDEF.
1219 */
1220 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
1221 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
1222 r->access = PL1_RW;
1223 define_one_arm_cp_reg(cpu, r);
1224 }
1225 } else {
1226 /* Just register the standard ID registers (read-only, meaning
1227 * that writes will UNDEF).
1228 */
1229 define_arm_cp_regs(cpu, id_cp_reginfo);
1230 }
1231 }
1232
1233 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
1234 ARMCPRegInfo auxcr = {
1235 .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
1236 .access = PL1_RW, .type = ARM_CP_CONST,
1237 .resetvalue = cpu->reset_auxcr
1238 };
1239 define_one_arm_cp_reg(cpu, &auxcr);
1240 }
1241
1242 /* Generic registers whose values depend on the implementation */
1243 {
1244 ARMCPRegInfo sctlr = {
1245 .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
1246 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
1247 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr
1248 };
1249 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1250 /* Normally we would always end the TB on an SCTLR write, but Linux
1251 * arch/arm/mach-pxa/sleep.S expects two instructions following
1252 * an MMU enable to execute from cache. Imitate this behaviour.
1253 */
1254 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
1255 }
1256 define_one_arm_cp_reg(cpu, &sctlr);
1257 }
1258 }
1259
1260 ARMCPU *cpu_arm_init(const char *cpu_model)
1261 {
1262 ARMCPU *cpu;
1263 CPUARMState *env;
1264 static int inited = 0;
1265
1266 if (!object_class_by_name(cpu_model)) {
1267 return NULL;
1268 }
1269 cpu = ARM_CPU(object_new(cpu_model));
1270 env = &cpu->env;
1271 env->cpu_model_str = cpu_model;
1272 arm_cpu_realize(cpu);
1273
1274 if (tcg_enabled() && !inited) {
1275 inited = 1;
1276 arm_translate_init();
1277 }
1278
1279 cpu_reset(CPU(cpu));
1280 if (arm_feature(env, ARM_FEATURE_NEON)) {
1281 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1282 51, "arm-neon.xml", 0);
1283 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
1284 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1285 35, "arm-vfp3.xml", 0);
1286 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
1287 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1288 19, "arm-vfp.xml", 0);
1289 }
1290 qemu_init_vcpu(env);
1291 return cpu;
1292 }
1293
1294 typedef struct ARMCPUListState {
1295 fprintf_function cpu_fprintf;
1296 FILE *file;
1297 } ARMCPUListState;
1298
1299 /* Sort alphabetically by type name, except for "any". */
1300 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
1301 {
1302 ObjectClass *class_a = (ObjectClass *)a;
1303 ObjectClass *class_b = (ObjectClass *)b;
1304 const char *name_a, *name_b;
1305
1306 name_a = object_class_get_name(class_a);
1307 name_b = object_class_get_name(class_b);
1308 if (strcmp(name_a, "any") == 0) {
1309 return 1;
1310 } else if (strcmp(name_b, "any") == 0) {
1311 return -1;
1312 } else {
1313 return strcmp(name_a, name_b);
1314 }
1315 }
1316
1317 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
1318 {
1319 ObjectClass *oc = data;
1320 ARMCPUListState *s = user_data;
1321
1322 (*s->cpu_fprintf)(s->file, " %s\n",
1323 object_class_get_name(oc));
1324 }
1325
1326 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
1327 {
1328 ARMCPUListState s = {
1329 .file = f,
1330 .cpu_fprintf = cpu_fprintf,
1331 };
1332 GSList *list;
1333
1334 list = object_class_get_list(TYPE_ARM_CPU, false);
1335 list = g_slist_sort(list, arm_cpu_list_compare);
1336 (*cpu_fprintf)(f, "Available CPUs:\n");
1337 g_slist_foreach(list, arm_cpu_list_entry, &s);
1338 g_slist_free(list);
1339 }
1340
1341 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1342 const ARMCPRegInfo *r, void *opaque)
1343 {
1344 /* Define implementations of coprocessor registers.
1345 * We store these in a hashtable because typically
1346 * there are less than 150 registers in a space which
1347 * is 16*16*16*8*8 = 262144 in size.
1348 * Wildcarding is supported for the crm, opc1 and opc2 fields.
1349 * If a register is defined twice then the second definition is
1350 * used, so this can be used to define some generic registers and
1351 * then override them with implementation specific variations.
1352 * At least one of the original and the second definition should
1353 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
1354 * against accidental use.
1355 */
1356 int crm, opc1, opc2;
1357 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
1358 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
1359 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
1360 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
1361 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
1362 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
1363 /* 64 bit registers have only CRm and Opc1 fields */
1364 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
1365 /* Check that the register definition has enough info to handle
1366 * reads and writes if they are permitted.
1367 */
1368 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
1369 if (r->access & PL3_R) {
1370 assert(r->fieldoffset || r->readfn);
1371 }
1372 if (r->access & PL3_W) {
1373 assert(r->fieldoffset || r->writefn);
1374 }
1375 }
1376 /* Bad type field probably means missing sentinel at end of reg list */
1377 assert(cptype_valid(r->type));
1378 for (crm = crmmin; crm <= crmmax; crm++) {
1379 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
1380 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
1381 uint32_t *key = g_new(uint32_t, 1);
1382 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
1383 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
1384 *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2);
1385 r2->opaque = opaque;
1386 /* Make sure reginfo passed to helpers for wildcarded regs
1387 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
1388 */
1389 r2->crm = crm;
1390 r2->opc1 = opc1;
1391 r2->opc2 = opc2;
1392 /* Overriding of an existing definition must be explicitly
1393 * requested.
1394 */
1395 if (!(r->type & ARM_CP_OVERRIDE)) {
1396 ARMCPRegInfo *oldreg;
1397 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
1398 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
1399 fprintf(stderr, "Register redefined: cp=%d %d bit "
1400 "crn=%d crm=%d opc1=%d opc2=%d, "
1401 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
1402 r2->crn, r2->crm, r2->opc1, r2->opc2,
1403 oldreg->name, r2->name);
1404 assert(0);
1405 }
1406 }
1407 g_hash_table_insert(cpu->cp_regs, key, r2);
1408 }
1409 }
1410 }
1411 }
1412
1413 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1414 const ARMCPRegInfo *regs, void *opaque)
1415 {
1416 /* Define a whole list of registers */
1417 const ARMCPRegInfo *r;
1418 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
1419 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
1420 }
1421 }
1422
1423 const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp)
1424 {
1425 return g_hash_table_lookup(cpu->cp_regs, &encoded_cp);
1426 }
1427
1428 int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1429 uint64_t value)
1430 {
1431 /* Helper coprocessor write function for write-ignore registers */
1432 return 0;
1433 }
1434
1435 int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1436 {
1437 /* Helper coprocessor write function for read-as-zero registers */
1438 *value = 0;
1439 return 0;
1440 }
1441
1442 static int bad_mode_switch(CPUARMState *env, int mode)
1443 {
1444 /* Return true if it is not valid for us to switch to
1445 * this CPU mode (ie all the UNPREDICTABLE cases in
1446 * the ARM ARM CPSRWriteByInstr pseudocode).
1447 */
1448 switch (mode) {
1449 case ARM_CPU_MODE_USR:
1450 case ARM_CPU_MODE_SYS:
1451 case ARM_CPU_MODE_SVC:
1452 case ARM_CPU_MODE_ABT:
1453 case ARM_CPU_MODE_UND:
1454 case ARM_CPU_MODE_IRQ:
1455 case ARM_CPU_MODE_FIQ:
1456 return 0;
1457 default:
1458 return 1;
1459 }
1460 }
1461
1462 uint32_t cpsr_read(CPUARMState *env)
1463 {
1464 int ZF;
1465 ZF = (env->ZF == 0);
1466 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
1467 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1468 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
1469 | ((env->condexec_bits & 0xfc) << 8)
1470 | (env->GE << 16);
1471 }
1472
1473 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1474 {
1475 if (mask & CPSR_NZCV) {
1476 env->ZF = (~val) & CPSR_Z;
1477 env->NF = val;
1478 env->CF = (val >> 29) & 1;
1479 env->VF = (val << 3) & 0x80000000;
1480 }
1481 if (mask & CPSR_Q)
1482 env->QF = ((val & CPSR_Q) != 0);
1483 if (mask & CPSR_T)
1484 env->thumb = ((val & CPSR_T) != 0);
1485 if (mask & CPSR_IT_0_1) {
1486 env->condexec_bits &= ~3;
1487 env->condexec_bits |= (val >> 25) & 3;
1488 }
1489 if (mask & CPSR_IT_2_7) {
1490 env->condexec_bits &= 3;
1491 env->condexec_bits |= (val >> 8) & 0xfc;
1492 }
1493 if (mask & CPSR_GE) {
1494 env->GE = (val >> 16) & 0xf;
1495 }
1496
1497 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
1498 if (bad_mode_switch(env, val & CPSR_M)) {
1499 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
1500 * We choose to ignore the attempt and leave the CPSR M field
1501 * untouched.
1502 */
1503 mask &= ~CPSR_M;
1504 } else {
1505 switch_mode(env, val & CPSR_M);
1506 }
1507 }
1508 mask &= ~CACHED_CPSR_BITS;
1509 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
1510 }
1511
1512 /* Sign/zero extend */
1513 uint32_t HELPER(sxtb16)(uint32_t x)
1514 {
1515 uint32_t res;
1516 res = (uint16_t)(int8_t)x;
1517 res |= (uint32_t)(int8_t)(x >> 16) << 16;
1518 return res;
1519 }
1520
1521 uint32_t HELPER(uxtb16)(uint32_t x)
1522 {
1523 uint32_t res;
1524 res = (uint16_t)(uint8_t)x;
1525 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
1526 return res;
1527 }
1528
1529 uint32_t HELPER(clz)(uint32_t x)
1530 {
1531 return clz32(x);
1532 }
1533
1534 int32_t HELPER(sdiv)(int32_t num, int32_t den)
1535 {
1536 if (den == 0)
1537 return 0;
1538 if (num == INT_MIN && den == -1)
1539 return INT_MIN;
1540 return num / den;
1541 }
1542
1543 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
1544 {
1545 if (den == 0)
1546 return 0;
1547 return num / den;
1548 }
1549
1550 uint32_t HELPER(rbit)(uint32_t x)
1551 {
1552 x = ((x & 0xff000000) >> 24)
1553 | ((x & 0x00ff0000) >> 8)
1554 | ((x & 0x0000ff00) << 8)
1555 | ((x & 0x000000ff) << 24);
1556 x = ((x & 0xf0f0f0f0) >> 4)
1557 | ((x & 0x0f0f0f0f) << 4);
1558 x = ((x & 0x88888888) >> 3)
1559 | ((x & 0x44444444) >> 1)
1560 | ((x & 0x22222222) << 1)
1561 | ((x & 0x11111111) << 3);
1562 return x;
1563 }
1564
1565 #if defined(CONFIG_USER_ONLY)
1566
1567 void do_interrupt (CPUARMState *env)
1568 {
1569 env->exception_index = -1;
1570 }
1571
1572 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
1573 int mmu_idx)
1574 {
1575 if (rw == 2) {
1576 env->exception_index = EXCP_PREFETCH_ABORT;
1577 env->cp15.c6_insn = address;
1578 } else {
1579 env->exception_index = EXCP_DATA_ABORT;
1580 env->cp15.c6_data = address;
1581 }
1582 return 1;
1583 }
1584
1585 /* These should probably raise undefined insn exceptions. */
1586 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
1587 {
1588 cpu_abort(env, "v7m_mrs %d\n", reg);
1589 }
1590
1591 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
1592 {
1593 cpu_abort(env, "v7m_mrs %d\n", reg);
1594 return 0;
1595 }
1596
1597 void switch_mode(CPUARMState *env, int mode)
1598 {
1599 if (mode != ARM_CPU_MODE_USR)
1600 cpu_abort(env, "Tried to switch out of user mode\n");
1601 }
1602
1603 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
1604 {
1605 cpu_abort(env, "banked r13 write\n");
1606 }
1607
1608 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
1609 {
1610 cpu_abort(env, "banked r13 read\n");
1611 return 0;
1612 }
1613
1614 #else
1615
1616 /* Map CPU modes onto saved register banks. */
1617 static inline int bank_number(CPUARMState *env, int mode)
1618 {
1619 switch (mode) {
1620 case ARM_CPU_MODE_USR:
1621 case ARM_CPU_MODE_SYS:
1622 return 0;
1623 case ARM_CPU_MODE_SVC:
1624 return 1;
1625 case ARM_CPU_MODE_ABT:
1626 return 2;
1627 case ARM_CPU_MODE_UND:
1628 return 3;
1629 case ARM_CPU_MODE_IRQ:
1630 return 4;
1631 case ARM_CPU_MODE_FIQ:
1632 return 5;
1633 }
1634 cpu_abort(env, "Bad mode %x\n", mode);
1635 return -1;
1636 }
1637
1638 void switch_mode(CPUARMState *env, int mode)
1639 {
1640 int old_mode;
1641 int i;
1642
1643 old_mode = env->uncached_cpsr & CPSR_M;
1644 if (mode == old_mode)
1645 return;
1646
1647 if (old_mode == ARM_CPU_MODE_FIQ) {
1648 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
1649 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
1650 } else if (mode == ARM_CPU_MODE_FIQ) {
1651 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
1652 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
1653 }
1654
1655 i = bank_number(env, old_mode);
1656 env->banked_r13[i] = env->regs[13];
1657 env->banked_r14[i] = env->regs[14];
1658 env->banked_spsr[i] = env->spsr;
1659
1660 i = bank_number(env, mode);
1661 env->regs[13] = env->banked_r13[i];
1662 env->regs[14] = env->banked_r14[i];
1663 env->spsr = env->banked_spsr[i];
1664 }
1665
1666 static void v7m_push(CPUARMState *env, uint32_t val)
1667 {
1668 env->regs[13] -= 4;
1669 stl_phys(env->regs[13], val);
1670 }
1671
1672 static uint32_t v7m_pop(CPUARMState *env)
1673 {
1674 uint32_t val;
1675 val = ldl_phys(env->regs[13]);
1676 env->regs[13] += 4;
1677 return val;
1678 }
1679
1680 /* Switch to V7M main or process stack pointer. */
1681 static void switch_v7m_sp(CPUARMState *env, int process)
1682 {
1683 uint32_t tmp;
1684 if (env->v7m.current_sp != process) {
1685 tmp = env->v7m.other_sp;
1686 env->v7m.other_sp = env->regs[13];
1687 env->regs[13] = tmp;
1688 env->v7m.current_sp = process;
1689 }
1690 }
1691
1692 static void do_v7m_exception_exit(CPUARMState *env)
1693 {
1694 uint32_t type;
1695 uint32_t xpsr;
1696
1697 type = env->regs[15];
1698 if (env->v7m.exception != 0)
1699 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
1700
1701 /* Switch to the target stack. */
1702 switch_v7m_sp(env, (type & 4) != 0);
1703 /* Pop registers. */
1704 env->regs[0] = v7m_pop(env);
1705 env->regs[1] = v7m_pop(env);
1706 env->regs[2] = v7m_pop(env);
1707 env->regs[3] = v7m_pop(env);
1708 env->regs[12] = v7m_pop(env);
1709 env->regs[14] = v7m_pop(env);
1710 env->regs[15] = v7m_pop(env);
1711 xpsr = v7m_pop(env);
1712 xpsr_write(env, xpsr, 0xfffffdff);
1713 /* Undo stack alignment. */
1714 if (xpsr & 0x200)
1715 env->regs[13] |= 4;
1716 /* ??? The exception return type specifies Thread/Handler mode. However
1717 this is also implied by the xPSR value. Not sure what to do
1718 if there is a mismatch. */
1719 /* ??? Likewise for mismatches between the CONTROL register and the stack
1720 pointer. */
1721 }
1722
1723 static void do_interrupt_v7m(CPUARMState *env)
1724 {
1725 uint32_t xpsr = xpsr_read(env);
1726 uint32_t lr;
1727 uint32_t addr;
1728
1729 lr = 0xfffffff1;
1730 if (env->v7m.current_sp)
1731 lr |= 4;
1732 if (env->v7m.exception == 0)
1733 lr |= 8;
1734
1735 /* For exceptions we just mark as pending on the NVIC, and let that
1736 handle it. */
1737 /* TODO: Need to escalate if the current priority is higher than the
1738 one we're raising. */
1739 switch (env->exception_index) {
1740 case EXCP_UDEF:
1741 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
1742 return;
1743 case EXCP_SWI:
1744 env->regs[15] += 2;
1745 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
1746 return;
1747 case EXCP_PREFETCH_ABORT:
1748 case EXCP_DATA_ABORT:
1749 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
1750 return;
1751 case EXCP_BKPT:
1752 if (semihosting_enabled) {
1753 int nr;
1754 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
1755 if (nr == 0xab) {
1756 env->regs[15] += 2;
1757 env->regs[0] = do_arm_semihosting(env);
1758 return;
1759 }
1760 }
1761 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
1762 return;
1763 case EXCP_IRQ:
1764 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
1765 break;
1766 case EXCP_EXCEPTION_EXIT:
1767 do_v7m_exception_exit(env);
1768 return;
1769 default:
1770 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
1771 return; /* Never happens. Keep compiler happy. */
1772 }
1773
1774 /* Align stack pointer. */
1775 /* ??? Should only do this if Configuration Control Register
1776 STACKALIGN bit is set. */
1777 if (env->regs[13] & 4) {
1778 env->regs[13] -= 4;
1779 xpsr |= 0x200;
1780 }
1781 /* Switch to the handler mode. */
1782 v7m_push(env, xpsr);
1783 v7m_push(env, env->regs[15]);
1784 v7m_push(env, env->regs[14]);
1785 v7m_push(env, env->regs[12]);
1786 v7m_push(env, env->regs[3]);
1787 v7m_push(env, env->regs[2]);
1788 v7m_push(env, env->regs[1]);
1789 v7m_push(env, env->regs[0]);
1790 switch_v7m_sp(env, 0);
1791 /* Clear IT bits */
1792 env->condexec_bits = 0;
1793 env->regs[14] = lr;
1794 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
1795 env->regs[15] = addr & 0xfffffffe;
1796 env->thumb = addr & 1;
1797 }
1798
1799 /* Handle a CPU exception. */
1800 void do_interrupt(CPUARMState *env)
1801 {
1802 uint32_t addr;
1803 uint32_t mask;
1804 int new_mode;
1805 uint32_t offset;
1806
1807 if (IS_M(env)) {
1808 do_interrupt_v7m(env);
1809 return;
1810 }
1811 /* TODO: Vectored interrupt controller. */
1812 switch (env->exception_index) {
1813 case EXCP_UDEF:
1814 new_mode = ARM_CPU_MODE_UND;
1815 addr = 0x04;
1816 mask = CPSR_I;
1817 if (env->thumb)
1818 offset = 2;
1819 else
1820 offset = 4;
1821 break;
1822 case EXCP_SWI:
1823 if (semihosting_enabled) {
1824 /* Check for semihosting interrupt. */
1825 if (env->thumb) {
1826 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
1827 & 0xff;
1828 } else {
1829 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
1830 & 0xffffff;
1831 }
1832 /* Only intercept calls from privileged modes, to provide some
1833 semblance of security. */
1834 if (((mask == 0x123456 && !env->thumb)
1835 || (mask == 0xab && env->thumb))
1836 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
1837 env->regs[0] = do_arm_semihosting(env);
1838 return;
1839 }
1840 }
1841 new_mode = ARM_CPU_MODE_SVC;
1842 addr = 0x08;
1843 mask = CPSR_I;
1844 /* The PC already points to the next instruction. */
1845 offset = 0;
1846 break;
1847 case EXCP_BKPT:
1848 /* See if this is a semihosting syscall. */
1849 if (env->thumb && semihosting_enabled) {
1850 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
1851 if (mask == 0xab
1852 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
1853 env->regs[15] += 2;
1854 env->regs[0] = do_arm_semihosting(env);
1855 return;
1856 }
1857 }
1858 env->cp15.c5_insn = 2;
1859 /* Fall through to prefetch abort. */
1860 case EXCP_PREFETCH_ABORT:
1861 new_mode = ARM_CPU_MODE_ABT;
1862 addr = 0x0c;
1863 mask = CPSR_A | CPSR_I;
1864 offset = 4;
1865 break;
1866 case EXCP_DATA_ABORT:
1867 new_mode = ARM_CPU_MODE_ABT;
1868 addr = 0x10;
1869 mask = CPSR_A | CPSR_I;
1870 offset = 8;
1871 break;
1872 case EXCP_IRQ:
1873 new_mode = ARM_CPU_MODE_IRQ;
1874 addr = 0x18;
1875 /* Disable IRQ and imprecise data aborts. */
1876 mask = CPSR_A | CPSR_I;
1877 offset = 4;
1878 break;
1879 case EXCP_FIQ:
1880 new_mode = ARM_CPU_MODE_FIQ;
1881 addr = 0x1c;
1882 /* Disable FIQ, IRQ and imprecise data aborts. */
1883 mask = CPSR_A | CPSR_I | CPSR_F;
1884 offset = 4;
1885 break;
1886 default:
1887 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
1888 return; /* Never happens. Keep compiler happy. */
1889 }
1890 /* High vectors. */
1891 if (env->cp15.c1_sys & (1 << 13)) {
1892 addr += 0xffff0000;
1893 }
1894 switch_mode (env, new_mode);
1895 env->spsr = cpsr_read(env);
1896 /* Clear IT bits. */
1897 env->condexec_bits = 0;
1898 /* Switch to the new mode, and to the correct instruction set. */
1899 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
1900 env->uncached_cpsr |= mask;
1901 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
1902 * and we should just guard the thumb mode on V4 */
1903 if (arm_feature(env, ARM_FEATURE_V4T)) {
1904 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
1905 }
1906 env->regs[14] = env->regs[15] + offset;
1907 env->regs[15] = addr;
1908 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1909 }
1910
1911 /* Check section/page access permissions.
1912 Returns the page protection flags, or zero if the access is not
1913 permitted. */
1914 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
1915 int access_type, int is_user)
1916 {
1917 int prot_ro;
1918
1919 if (domain_prot == 3) {
1920 return PAGE_READ | PAGE_WRITE;
1921 }
1922
1923 if (access_type == 1)
1924 prot_ro = 0;
1925 else
1926 prot_ro = PAGE_READ;
1927
1928 switch (ap) {
1929 case 0:
1930 if (access_type == 1)
1931 return 0;
1932 switch ((env->cp15.c1_sys >> 8) & 3) {
1933 case 1:
1934 return is_user ? 0 : PAGE_READ;
1935 case 2:
1936 return PAGE_READ;
1937 default:
1938 return 0;
1939 }
1940 case 1:
1941 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
1942 case 2:
1943 if (is_user)
1944 return prot_ro;
1945 else
1946 return PAGE_READ | PAGE_WRITE;
1947 case 3:
1948 return PAGE_READ | PAGE_WRITE;
1949 case 4: /* Reserved. */
1950 return 0;
1951 case 5:
1952 return is_user ? 0 : prot_ro;
1953 case 6:
1954 return prot_ro;
1955 case 7:
1956 if (!arm_feature (env, ARM_FEATURE_V6K))
1957 return 0;
1958 return prot_ro;
1959 default:
1960 abort();
1961 }
1962 }
1963
1964 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
1965 {
1966 uint32_t table;
1967
1968 if (address & env->cp15.c2_mask)
1969 table = env->cp15.c2_base1 & 0xffffc000;
1970 else
1971 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
1972
1973 table |= (address >> 18) & 0x3ffc;
1974 return table;
1975 }
1976
1977 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
1978 int is_user, hwaddr *phys_ptr,
1979 int *prot, target_ulong *page_size)
1980 {
1981 int code;
1982 uint32_t table;
1983 uint32_t desc;
1984 int type;
1985 int ap;
1986 int domain;
1987 int domain_prot;
1988 hwaddr phys_addr;
1989
1990 /* Pagetable walk. */
1991 /* Lookup l1 descriptor. */
1992 table = get_level1_table_address(env, address);
1993 desc = ldl_phys(table);
1994 type = (desc & 3);
1995 domain = (desc >> 5) & 0x0f;
1996 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
1997 if (type == 0) {
1998 /* Section translation fault. */
1999 code = 5;
2000 goto do_fault;
2001 }
2002 if (domain_prot == 0 || domain_prot == 2) {
2003 if (type == 2)
2004 code = 9; /* Section domain fault. */
2005 else
2006 code = 11; /* Page domain fault. */
2007 goto do_fault;
2008 }
2009 if (type == 2) {
2010 /* 1Mb section. */
2011 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2012 ap = (desc >> 10) & 3;
2013 code = 13;
2014 *page_size = 1024 * 1024;
2015 } else {
2016 /* Lookup l2 entry. */
2017 if (type == 1) {
2018 /* Coarse pagetable. */
2019 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2020 } else {
2021 /* Fine pagetable. */
2022 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
2023 }
2024 desc = ldl_phys(table);
2025 switch (desc & 3) {
2026 case 0: /* Page translation fault. */
2027 code = 7;
2028 goto do_fault;
2029 case 1: /* 64k page. */
2030 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2031 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2032 *page_size = 0x10000;
2033 break;
2034 case 2: /* 4k page. */
2035 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2036 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2037 *page_size = 0x1000;
2038 break;
2039 case 3: /* 1k page. */
2040 if (type == 1) {
2041 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2042 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2043 } else {
2044 /* Page translation fault. */
2045 code = 7;
2046 goto do_fault;
2047 }
2048 } else {
2049 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
2050 }
2051 ap = (desc >> 4) & 3;
2052 *page_size = 0x400;
2053 break;
2054 default:
2055 /* Never happens, but compiler isn't smart enough to tell. */
2056 abort();
2057 }
2058 code = 15;
2059 }
2060 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2061 if (!*prot) {
2062 /* Access permission fault. */
2063 goto do_fault;
2064 }
2065 *prot |= PAGE_EXEC;
2066 *phys_ptr = phys_addr;
2067 return 0;
2068 do_fault:
2069 return code | (domain << 4);
2070 }
2071
2072 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
2073 int is_user, hwaddr *phys_ptr,
2074 int *prot, target_ulong *page_size)
2075 {
2076 int code;
2077 uint32_t table;
2078 uint32_t desc;
2079 uint32_t xn;
2080 uint32_t pxn = 0;
2081 int type;
2082 int ap;
2083 int domain = 0;
2084 int domain_prot;
2085 hwaddr phys_addr;
2086
2087 /* Pagetable walk. */
2088 /* Lookup l1 descriptor. */
2089 table = get_level1_table_address(env, address);
2090 desc = ldl_phys(table);
2091 type = (desc & 3);
2092 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
2093 /* Section translation fault, or attempt to use the encoding
2094 * which is Reserved on implementations without PXN.
2095 */
2096 code = 5;
2097 goto do_fault;
2098 }
2099 if ((type == 1) || !(desc & (1 << 18))) {
2100 /* Page or Section. */
2101 domain = (desc >> 5) & 0x0f;
2102 }
2103 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2104 if (domain_prot == 0 || domain_prot == 2) {
2105 if (type != 1) {
2106 code = 9; /* Section domain fault. */
2107 } else {
2108 code = 11; /* Page domain fault. */
2109 }
2110 goto do_fault;
2111 }
2112 if (type != 1) {
2113 if (desc & (1 << 18)) {
2114 /* Supersection. */
2115 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
2116 *page_size = 0x1000000;
2117 } else {
2118 /* Section. */
2119 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2120 *page_size = 0x100000;
2121 }
2122 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
2123 xn = desc & (1 << 4);
2124 pxn = desc & 1;
2125 code = 13;
2126 } else {
2127 if (arm_feature(env, ARM_FEATURE_PXN)) {
2128 pxn = (desc >> 2) & 1;
2129 }
2130 /* Lookup l2 entry. */
2131 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2132 desc = ldl_phys(table);
2133 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
2134 switch (desc & 3) {
2135 case 0: /* Page translation fault. */
2136 code = 7;
2137 goto do_fault;
2138 case 1: /* 64k page. */
2139 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2140 xn = desc & (1 << 15);
2141 *page_size = 0x10000;
2142 break;
2143 case 2: case 3: /* 4k page. */
2144 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2145 xn = desc & 1;
2146 *page_size = 0x1000;
2147 break;
2148 default:
2149 /* Never happens, but compiler isn't smart enough to tell. */
2150 abort();
2151 }
2152 code = 15;
2153 }
2154 if (domain_prot == 3) {
2155 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2156 } else {
2157 if (pxn && !is_user) {
2158 xn = 1;
2159 }
2160 if (xn && access_type == 2)
2161 goto do_fault;
2162
2163 /* The simplified model uses AP[0] as an access control bit. */
2164 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
2165 /* Access flag fault. */
2166 code = (code == 15) ? 6 : 3;
2167 goto do_fault;
2168 }
2169 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2170 if (!*prot) {
2171 /* Access permission fault. */
2172 goto do_fault;
2173 }
2174 if (!xn) {
2175 *prot |= PAGE_EXEC;
2176 }
2177 }
2178 *phys_ptr = phys_addr;
2179 return 0;
2180 do_fault:
2181 return code | (domain << 4);
2182 }
2183
2184 /* Fault type for long-descriptor MMU fault reporting; this corresponds
2185 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
2186 */
2187 typedef enum {
2188 translation_fault = 1,
2189 access_fault = 2,
2190 permission_fault = 3,
2191 } MMUFaultType;
2192
2193 static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
2194 int access_type, int is_user,
2195 hwaddr *phys_ptr, int *prot,
2196 target_ulong *page_size_ptr)
2197 {
2198 /* Read an LPAE long-descriptor translation table. */
2199 MMUFaultType fault_type = translation_fault;
2200 uint32_t level = 1;
2201 uint32_t epd;
2202 uint32_t tsz;
2203 uint64_t ttbr;
2204 int ttbr_select;
2205 int n;
2206 hwaddr descaddr;
2207 uint32_t tableattrs;
2208 target_ulong page_size;
2209 uint32_t attrs;
2210
2211 /* Determine whether this address is in the region controlled by
2212 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
2213 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
2214 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
2215 */
2216 uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
2217 uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
2218 if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
2219 /* there is a ttbr0 region and we are in it (high bits all zero) */
2220 ttbr_select = 0;
2221 } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
2222 /* there is a ttbr1 region and we are in it (high bits all one) */
2223 ttbr_select = 1;
2224 } else if (!t0sz) {
2225 /* ttbr0 region is "everything not in the ttbr1 region" */
2226 ttbr_select = 0;
2227 } else if (!t1sz) {
2228 /* ttbr1 region is "everything not in the ttbr0 region" */
2229 ttbr_select = 1;
2230 } else {
2231 /* in the gap between the two regions, this is a Translation fault */
2232 fault_type = translation_fault;
2233 goto do_fault;
2234 }
2235
2236 /* Note that QEMU ignores shareability and cacheability attributes,
2237 * so we don't need to do anything with the SH, ORGN, IRGN fields
2238 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
2239 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
2240 * implement any ASID-like capability so we can ignore it (instead
2241 * we will always flush the TLB any time the ASID is changed).
2242 */
2243 if (ttbr_select == 0) {
2244 ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
2245 epd = extract32(env->cp15.c2_control, 7, 1);
2246 tsz = t0sz;
2247 } else {
2248 ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
2249 epd = extract32(env->cp15.c2_control, 23, 1);
2250 tsz = t1sz;
2251 }
2252
2253 if (epd) {
2254 /* Translation table walk disabled => Translation fault on TLB miss */
2255 goto do_fault;
2256 }
2257
2258 /* If the region is small enough we will skip straight to a 2nd level
2259 * lookup. This affects the number of bits of the address used in
2260 * combination with the TTBR to find the first descriptor. ('n' here
2261 * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
2262 * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
2263 */
2264 if (tsz > 1) {
2265 level = 2;
2266 n = 14 - tsz;
2267 } else {
2268 n = 5 - tsz;
2269 }
2270
2271 /* Clear the vaddr bits which aren't part of the within-region address,
2272 * so that we don't have to special case things when calculating the
2273 * first descriptor address.
2274 */
2275 address &= (0xffffffffU >> tsz);
2276
2277 /* Now we can extract the actual base address from the TTBR */
2278 descaddr = extract64(ttbr, 0, 40);
2279 descaddr &= ~((1ULL << n) - 1);
2280
2281 tableattrs = 0;
2282 for (;;) {
2283 uint64_t descriptor;
2284
2285 descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
2286 descriptor = ldq_phys(descaddr);
2287 if (!(descriptor & 1) ||
2288 (!(descriptor & 2) && (level == 3))) {
2289 /* Invalid, or the Reserved level 3 encoding */
2290 goto do_fault;
2291 }
2292 descaddr = descriptor & 0xfffffff000ULL;
2293
2294 if ((descriptor & 2) && (level < 3)) {
2295 /* Table entry. The top five bits are attributes which may
2296 * propagate down through lower levels of the table (and
2297 * which are all arranged so that 0 means "no effect", so
2298 * we can gather them up by ORing in the bits at each level).
2299 */
2300 tableattrs |= extract64(descriptor, 59, 5);
2301 level++;
2302 continue;
2303 }
2304 /* Block entry at level 1 or 2, or page entry at level 3.
2305 * These are basically the same thing, although the number
2306 * of bits we pull in from the vaddr varies.
2307 */
2308 page_size = (1 << (39 - (9 * level)));
2309 descaddr |= (address & (page_size - 1));
2310 /* Extract attributes from the descriptor and merge with table attrs */
2311 attrs = extract64(descriptor, 2, 10)
2312 | (extract64(descriptor, 52, 12) << 10);
2313 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
2314 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
2315 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
2316 * means "force PL1 access only", which means forcing AP[1] to 0.
2317 */
2318 if (extract32(tableattrs, 2, 1)) {
2319 attrs &= ~(1 << 4);
2320 }
2321 /* Since we're always in the Non-secure state, NSTable is ignored. */
2322 break;
2323 }
2324 /* Here descaddr is the final physical address, and attributes
2325 * are all in attrs.
2326 */
2327 fault_type = access_fault;
2328 if ((attrs & (1 << 8)) == 0) {
2329 /* Access flag */
2330 goto do_fault;
2331 }
2332 fault_type = permission_fault;
2333 if (is_user && !(attrs & (1 << 4))) {
2334 /* Unprivileged access not enabled */
2335 goto do_fault;
2336 }
2337 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2338 if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
2339 /* XN or PXN */
2340 if (access_type == 2) {
2341 goto do_fault;
2342 }
2343 *prot &= ~PAGE_EXEC;
2344 }
2345 if (attrs & (1 << 5)) {
2346 /* Write access forbidden */
2347 if (access_type == 1) {
2348 goto do_fault;
2349 }
2350 *prot &= ~PAGE_WRITE;
2351 }
2352
2353 *phys_ptr = descaddr;
2354 *page_size_ptr = page_size;
2355 return 0;
2356
2357 do_fault:
2358 /* Long-descriptor format IFSR/DFSR value */
2359 return (1 << 9) | (fault_type << 2) | level;
2360 }
2361
2362 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
2363 int access_type, int is_user,
2364 hwaddr *phys_ptr, int *prot)
2365 {
2366 int n;
2367 uint32_t mask;
2368 uint32_t base;
2369
2370 *phys_ptr = address;
2371 for (n = 7; n >= 0; n--) {
2372 base = env->cp15.c6_region[n];
2373 if ((base & 1) == 0)
2374 continue;
2375 mask = 1 << ((base >> 1) & 0x1f);
2376 /* Keep this shift separate from the above to avoid an
2377 (undefined) << 32. */
2378 mask = (mask << 1) - 1;
2379 if (((base ^ address) & ~mask) == 0)
2380 break;
2381 }
2382 if (n < 0)
2383 return 2;
2384
2385 if (access_type == 2) {
2386 mask = env->cp15.c5_insn;
2387 } else {
2388 mask = env->cp15.c5_data;
2389 }
2390 mask = (mask >> (n * 4)) & 0xf;
2391 switch (mask) {
2392 case 0:
2393 return 1;
2394 case 1:
2395 if (is_user)
2396 return 1;
2397 *prot = PAGE_READ | PAGE_WRITE;
2398 break;
2399 case 2:
2400 *prot = PAGE_READ;
2401 if (!is_user)
2402 *prot |= PAGE_WRITE;
2403 break;
2404 case 3:
2405 *prot = PAGE_READ | PAGE_WRITE;
2406 break;
2407 case 5:
2408 if (is_user)
2409 return 1;
2410 *prot = PAGE_READ;
2411 break;
2412 case 6:
2413 *prot = PAGE_READ;
2414 break;
2415 default:
2416 /* Bad permission. */
2417 return 1;
2418 }
2419 *prot |= PAGE_EXEC;
2420 return 0;
2421 }
2422
2423 /* get_phys_addr - get the physical address for this virtual address
2424 *
2425 * Find the physical address corresponding to the given virtual address,
2426 * by doing a translation table walk on MMU based systems or using the
2427 * MPU state on MPU based systems.
2428 *
2429 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
2430 * prot and page_size are not filled in, and the return value provides
2431 * information on why the translation aborted, in the format of a
2432 * DFSR/IFSR fault register, with the following caveats:
2433 * * we honour the short vs long DFSR format differences.
2434 * * the WnR bit is never set (the caller must do this).
2435 * * for MPU based systems we don't bother to return a full FSR format
2436 * value.
2437 *
2438 * @env: CPUARMState
2439 * @address: virtual address to get physical address for
2440 * @access_type: 0 for read, 1 for write, 2 for execute
2441 * @is_user: 0 for privileged access, 1 for user
2442 * @phys_ptr: set to the physical address corresponding to the virtual address
2443 * @prot: set to the permissions for the page containing phys_ptr
2444 * @page_size: set to the size of the page containing phys_ptr
2445 */
2446 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
2447 int access_type, int is_user,
2448 hwaddr *phys_ptr, int *prot,
2449 target_ulong *page_size)
2450 {
2451 /* Fast Context Switch Extension. */
2452 if (address < 0x02000000)
2453 address += env->cp15.c13_fcse;
2454
2455 if ((env->cp15.c1_sys & 1) == 0) {
2456 /* MMU/MPU disabled. */
2457 *phys_ptr = address;
2458 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2459 *page_size = TARGET_PAGE_SIZE;
2460 return 0;
2461 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
2462 *page_size = TARGET_PAGE_SIZE;
2463 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
2464 prot);
2465 } else if (extended_addresses_enabled(env)) {
2466 return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
2467 prot, page_size);
2468 } else if (env->cp15.c1_sys & (1 << 23)) {
2469 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
2470 prot, page_size);
2471 } else {
2472 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
2473 prot, page_size);
2474 }
2475 }
2476
2477 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
2478 int access_type, int mmu_idx)
2479 {
2480 hwaddr phys_addr;
2481 target_ulong page_size;
2482 int prot;
2483 int ret, is_user;
2484
2485 is_user = mmu_idx == MMU_USER_IDX;
2486 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
2487 &page_size);
2488 if (ret == 0) {
2489 /* Map a single [sub]page. */
2490 phys_addr &= ~(hwaddr)0x3ff;
2491 address &= ~(uint32_t)0x3ff;
2492 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
2493 return 0;
2494 }
2495
2496 if (access_type == 2) {
2497 env->cp15.c5_insn = ret;
2498 env->cp15.c6_insn = address;
2499 env->exception_index = EXCP_PREFETCH_ABORT;
2500 } else {
2501 env->cp15.c5_data = ret;
2502 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
2503 env->cp15.c5_data |= (1 << 11);
2504 env->cp15.c6_data = address;
2505 env->exception_index = EXCP_DATA_ABORT;
2506 }
2507 return 1;
2508 }
2509
2510 hwaddr cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
2511 {
2512 hwaddr phys_addr;
2513 target_ulong page_size;
2514 int prot;
2515 int ret;
2516
2517 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
2518
2519 if (ret != 0)
2520 return -1;
2521
2522 return phys_addr;
2523 }
2524
2525 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2526 {
2527 if ((env->uncached_cpsr & CPSR_M) == mode) {
2528 env->regs[13] = val;
2529 } else {
2530 env->banked_r13[bank_number(env, mode)] = val;
2531 }
2532 }
2533
2534 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2535 {
2536 if ((env->uncached_cpsr & CPSR_M) == mode) {
2537 return env->regs[13];
2538 } else {
2539 return env->banked_r13[bank_number(env, mode)];
2540 }
2541 }
2542
2543 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2544 {
2545 switch (reg) {
2546 case 0: /* APSR */
2547 return xpsr_read(env) & 0xf8000000;
2548 case 1: /* IAPSR */
2549 return xpsr_read(env) & 0xf80001ff;
2550 case 2: /* EAPSR */
2551 return xpsr_read(env) & 0xff00fc00;
2552 case 3: /* xPSR */
2553 return xpsr_read(env) & 0xff00fdff;
2554 case 5: /* IPSR */
2555 return xpsr_read(env) & 0x000001ff;
2556 case 6: /* EPSR */
2557 return xpsr_read(env) & 0x0700fc00;
2558 case 7: /* IEPSR */
2559 return xpsr_read(env) & 0x0700edff;
2560 case 8: /* MSP */
2561 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2562 case 9: /* PSP */
2563 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2564 case 16: /* PRIMASK */
2565 return (env->uncached_cpsr & CPSR_I) != 0;
2566 case 17: /* BASEPRI */
2567 case 18: /* BASEPRI_MAX */
2568 return env->v7m.basepri;
2569 case 19: /* FAULTMASK */
2570 return (env->uncached_cpsr & CPSR_F) != 0;
2571 case 20: /* CONTROL */
2572 return env->v7m.control;
2573 default:
2574 /* ??? For debugging only. */
2575 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2576 return 0;
2577 }
2578 }
2579
2580 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2581 {
2582 switch (reg) {
2583 case 0: /* APSR */
2584 xpsr_write(env, val, 0xf8000000);
2585 break;
2586 case 1: /* IAPSR */
2587 xpsr_write(env, val, 0xf8000000);
2588 break;
2589 case 2: /* EAPSR */
2590 xpsr_write(env, val, 0xfe00fc00);
2591 break;
2592 case 3: /* xPSR */
2593 xpsr_write(env, val, 0xfe00fc00);
2594 break;
2595 case 5: /* IPSR */
2596 /* IPSR bits are readonly. */
2597 break;
2598 case 6: /* EPSR */
2599 xpsr_write(env, val, 0x0600fc00);
2600 break;
2601 case 7: /* IEPSR */
2602 xpsr_write(env, val, 0x0600fc00);
2603 break;
2604 case 8: /* MSP */
2605 if (env->v7m.current_sp)
2606 env->v7m.other_sp = val;
2607 else
2608 env->regs[13] = val;
2609 break;
2610 case 9: /* PSP */
2611 if (env->v7m.current_sp)
2612 env->regs[13] = val;
2613 else
2614 env->v7m.other_sp = val;
2615 break;
2616 case 16: /* PRIMASK */
2617 if (val & 1)
2618 env->uncached_cpsr |= CPSR_I;
2619 else
2620 env->uncached_cpsr &= ~CPSR_I;
2621 break;
2622 case 17: /* BASEPRI */
2623 env->v7m.basepri = val & 0xff;
2624 break;
2625 case 18: /* BASEPRI_MAX */
2626 val &= 0xff;
2627 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2628 env->v7m.basepri = val;
2629 break;
2630 case 19: /* FAULTMASK */
2631 if (val & 1)
2632 env->uncached_cpsr |= CPSR_F;
2633 else
2634 env->uncached_cpsr &= ~CPSR_F;
2635 break;
2636 case 20: /* CONTROL */
2637 env->v7m.control = val & 3;
2638 switch_v7m_sp(env, (val & 2) != 0);
2639 break;
2640 default:
2641 /* ??? For debugging only. */
2642 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2643 return;
2644 }
2645 }
2646
2647 #endif
2648
2649 /* Note that signed overflow is undefined in C. The following routines are
2650 careful to use unsigned types where modulo arithmetic is required.
2651 Failure to do so _will_ break on newer gcc. */
2652
2653 /* Signed saturating arithmetic. */
2654
2655 /* Perform 16-bit signed saturating addition. */
2656 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2657 {
2658 uint16_t res;
2659
2660 res = a + b;
2661 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2662 if (a & 0x8000)
2663 res = 0x8000;
2664 else
2665 res = 0x7fff;
2666 }
2667 return res;
2668 }
2669
2670 /* Perform 8-bit signed saturating addition. */
2671 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2672 {
2673 uint8_t res;
2674
2675 res = a + b;
2676 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2677 if (a & 0x80)
2678 res = 0x80;
2679 else
2680 res = 0x7f;
2681 }
2682 return res;
2683 }
2684
2685 /* Perform 16-bit signed saturating subtraction. */
2686 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2687 {
2688 uint16_t res;
2689
2690 res = a - b;
2691 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2692 if (a & 0x8000)
2693 res = 0x8000;
2694 else
2695 res = 0x7fff;
2696 }
2697 return res;
2698 }
2699
2700 /* Perform 8-bit signed saturating subtraction. */
2701 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2702 {
2703 uint8_t res;
2704
2705 res = a - b;
2706 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2707 if (a & 0x80)
2708 res = 0x80;
2709 else
2710 res = 0x7f;
2711 }
2712 return res;
2713 }
2714
2715 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2716 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2717 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2718 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2719 #define PFX q
2720
2721 #include "op_addsub.h"
2722
2723 /* Unsigned saturating arithmetic. */
2724 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2725 {
2726 uint16_t res;
2727 res = a + b;
2728 if (res < a)
2729 res = 0xffff;
2730 return res;
2731 }
2732
2733 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2734 {
2735 if (a > b)
2736 return a - b;
2737 else
2738 return 0;
2739 }
2740
2741 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2742 {
2743 uint8_t res;
2744 res = a + b;
2745 if (res < a)
2746 res = 0xff;
2747 return res;
2748 }
2749
2750 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2751 {
2752 if (a > b)
2753 return a - b;
2754 else
2755 return 0;
2756 }
2757
2758 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2759 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2760 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2761 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2762 #define PFX uq
2763
2764 #include "op_addsub.h"
2765
2766 /* Signed modulo arithmetic. */
2767 #define SARITH16(a, b, n, op) do { \
2768 int32_t sum; \
2769 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
2770 RESULT(sum, n, 16); \
2771 if (sum >= 0) \
2772 ge |= 3 << (n * 2); \
2773 } while(0)
2774
2775 #define SARITH8(a, b, n, op) do { \
2776 int32_t sum; \
2777 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
2778 RESULT(sum, n, 8); \
2779 if (sum >= 0) \
2780 ge |= 1 << n; \
2781 } while(0)
2782
2783
2784 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2785 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2786 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2787 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2788 #define PFX s
2789 #define ARITH_GE
2790
2791 #include "op_addsub.h"
2792
2793 /* Unsigned modulo arithmetic. */
2794 #define ADD16(a, b, n) do { \
2795 uint32_t sum; \
2796 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2797 RESULT(sum, n, 16); \
2798 if ((sum >> 16) == 1) \
2799 ge |= 3 << (n * 2); \
2800 } while(0)
2801
2802 #define ADD8(a, b, n) do { \
2803 uint32_t sum; \
2804 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2805 RESULT(sum, n, 8); \
2806 if ((sum >> 8) == 1) \
2807 ge |= 1 << n; \
2808 } while(0)
2809
2810 #define SUB16(a, b, n) do { \
2811 uint32_t sum; \
2812 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2813 RESULT(sum, n, 16); \
2814 if ((sum >> 16) == 0) \
2815 ge |= 3 << (n * 2); \
2816 } while(0)
2817
2818 #define SUB8(a, b, n) do { \
2819 uint32_t sum; \
2820 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2821 RESULT(sum, n, 8); \
2822 if ((sum >> 8) == 0) \
2823 ge |= 1 << n; \
2824 } while(0)
2825
2826 #define PFX u
2827 #define ARITH_GE
2828
2829 #include "op_addsub.h"
2830
2831 /* Halved signed arithmetic. */
2832 #define ADD16(a, b, n) \
2833 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2834 #define SUB16(a, b, n) \
2835 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2836 #define ADD8(a, b, n) \
2837 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2838 #define SUB8(a, b, n) \
2839 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2840 #define PFX sh
2841
2842 #include "op_addsub.h"
2843
2844 /* Halved unsigned arithmetic. */
2845 #define ADD16(a, b, n) \
2846 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2847 #define SUB16(a, b, n) \
2848 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2849 #define ADD8(a, b, n) \
2850 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2851 #define SUB8(a, b, n) \
2852 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2853 #define PFX uh
2854
2855 #include "op_addsub.h"
2856
2857 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2858 {
2859 if (a > b)
2860 return a - b;
2861 else
2862 return b - a;
2863 }
2864
2865 /* Unsigned sum of absolute byte differences. */
2866 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2867 {
2868 uint32_t sum;
2869 sum = do_usad(a, b);
2870 sum += do_usad(a >> 8, b >> 8);
2871 sum += do_usad(a >> 16, b >>16);
2872 sum += do_usad(a >> 24, b >> 24);
2873 return sum;
2874 }
2875
2876 /* For ARMv6 SEL instruction. */
2877 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2878 {
2879 uint32_t mask;
2880
2881 mask = 0;
2882 if (flags & 1)
2883 mask |= 0xff;
2884 if (flags & 2)
2885 mask |= 0xff00;
2886 if (flags & 4)
2887 mask |= 0xff0000;
2888 if (flags & 8)
2889 mask |= 0xff000000;
2890 return (a & mask) | (b & ~mask);
2891 }
2892
2893 uint32_t HELPER(logicq_cc)(uint64_t val)
2894 {
2895 return (val >> 32) | (val != 0);
2896 }
2897
2898 /* VFP support. We follow the convention used for VFP instructions:
2899 Single precision routines have a "s" suffix, double precision a
2900 "d" suffix. */
2901
2902 /* Convert host exception flags to vfp form. */
2903 static inline int vfp_exceptbits_from_host(int host_bits)
2904 {
2905 int target_bits = 0;
2906
2907 if (host_bits & float_flag_invalid)
2908 target_bits |= 1;
2909 if (host_bits & float_flag_divbyzero)
2910 target_bits |= 2;
2911 if (host_bits & float_flag_overflow)
2912 target_bits |= 4;
2913 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
2914 target_bits |= 8;
2915 if (host_bits & float_flag_inexact)
2916 target_bits |= 0x10;
2917 if (host_bits & float_flag_input_denormal)
2918 target_bits |= 0x80;
2919 return target_bits;
2920 }
2921
2922 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
2923 {
2924 int i;
2925 uint32_t fpscr;
2926
2927 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2928 | (env->vfp.vec_len << 16)
2929 | (env->vfp.vec_stride << 20);
2930 i = get_float_exception_flags(&env->vfp.fp_status);
2931 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
2932 fpscr |= vfp_exceptbits_from_host(i);
2933 return fpscr;
2934 }
2935
2936 uint32_t vfp_get_fpscr(CPUARMState *env)
2937 {
2938 return HELPER(vfp_get_fpscr)(env);
2939 }
2940
2941 /* Convert vfp exception flags to target form. */
2942 static inline int vfp_exceptbits_to_host(int target_bits)
2943 {
2944 int host_bits = 0;
2945
2946 if (target_bits & 1)
2947 host_bits |= float_flag_invalid;
2948 if (target_bits & 2)
2949 host_bits |= float_flag_divbyzero;
2950 if (target_bits & 4)
2951 host_bits |= float_flag_overflow;
2952 if (target_bits & 8)
2953 host_bits |= float_flag_underflow;
2954 if (target_bits & 0x10)
2955 host_bits |= float_flag_inexact;
2956 if (target_bits & 0x80)
2957 host_bits |= float_flag_input_denormal;
2958 return host_bits;
2959 }
2960
2961 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
2962 {
2963 int i;
2964 uint32_t changed;
2965
2966 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2967 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2968 env->vfp.vec_len = (val >> 16) & 7;
2969 env->vfp.vec_stride = (val >> 20) & 3;
2970
2971 changed ^= val;
2972 if (changed & (3 << 22)) {
2973 i = (val >> 22) & 3;
2974 switch (i) {
2975 case 0:
2976 i = float_round_nearest_even;
2977 break;
2978 case 1:
2979 i = float_round_up;
2980 break;
2981 case 2:
2982 i = float_round_down;
2983 break;
2984 case 3:
2985 i = float_round_to_zero;
2986 break;
2987 }
2988 set_float_rounding_mode(i, &env->vfp.fp_status);
2989 }
2990 if (changed & (1 << 24)) {
2991 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2992 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2993 }
2994 if (changed & (1 << 25))
2995 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2996
2997 i = vfp_exceptbits_to_host(val);
2998 set_float_exception_flags(i, &env->vfp.fp_status);
2999 set_float_exception_flags(0, &env->vfp.standard_fp_status);
3000 }
3001
3002 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
3003 {
3004 HELPER(vfp_set_fpscr)(env, val);
3005 }
3006
3007 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
3008
3009 #define VFP_BINOP(name) \
3010 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
3011 { \
3012 float_status *fpst = fpstp; \
3013 return float32_ ## name(a, b, fpst); \
3014 } \
3015 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
3016 { \
3017 float_status *fpst = fpstp; \
3018 return float64_ ## name(a, b, fpst); \
3019 }
3020 VFP_BINOP(add)
3021 VFP_BINOP(sub)
3022 VFP_BINOP(mul)
3023 VFP_BINOP(div)
3024 #undef VFP_BINOP
3025
3026 float32 VFP_HELPER(neg, s)(float32 a)
3027 {
3028 return float32_chs(a);
3029 }
3030
3031 float64 VFP_HELPER(neg, d)(float64 a)
3032 {
3033 return float64_chs(a);
3034 }
3035
3036 float32 VFP_HELPER(abs, s)(float32 a)
3037 {
3038 return float32_abs(a);
3039 }
3040
3041 float64 VFP_HELPER(abs, d)(float64 a)
3042 {
3043 return float64_abs(a);
3044 }
3045
3046 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
3047 {
3048 return float32_sqrt(a, &env->vfp.fp_status);
3049 }
3050
3051 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
3052 {
3053 return float64_sqrt(a, &env->vfp.fp_status);
3054 }
3055
3056 /* XXX: check quiet/signaling case */
3057 #define DO_VFP_cmp(p, type) \
3058 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
3059 { \
3060 uint32_t flags; \
3061 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
3062 case 0: flags = 0x6; break; \
3063 case -1: flags = 0x8; break; \
3064 case 1: flags = 0x2; break; \
3065 default: case 2: flags = 0x3; break; \
3066 } \
3067 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3068 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3069 } \
3070 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
3071 { \
3072 uint32_t flags; \
3073 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
3074 case 0: flags = 0x6; break; \
3075 case -1: flags = 0x8; break; \
3076 case 1: flags = 0x2; break; \
3077 default: case 2: flags = 0x3; break; \
3078 } \
3079 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3080 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3081 }
3082 DO_VFP_cmp(s, float32)
3083 DO_VFP_cmp(d, float64)
3084 #undef DO_VFP_cmp
3085
3086 /* Integer to float and float to integer conversions */
3087
3088 #define CONV_ITOF(name, fsz, sign) \
3089 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
3090 { \
3091 float_status *fpst = fpstp; \
3092 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
3093 }
3094
3095 #define CONV_FTOI(name, fsz, sign, round) \
3096 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
3097 { \
3098 float_status *fpst = fpstp; \
3099 if (float##fsz##_is_any_nan(x)) { \
3100 float_raise(float_flag_invalid, fpst); \
3101 return 0; \
3102 } \
3103 return float##fsz##_to_##sign##int32##round(x, fpst); \
3104 }
3105
3106 #define FLOAT_CONVS(name, p, fsz, sign) \
3107 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
3108 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
3109 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
3110
3111 FLOAT_CONVS(si, s, 32, )
3112 FLOAT_CONVS(si, d, 64, )
3113 FLOAT_CONVS(ui, s, 32, u)
3114 FLOAT_CONVS(ui, d, 64, u)
3115
3116 #undef CONV_ITOF
3117 #undef CONV_FTOI
3118 #undef FLOAT_CONVS
3119
3120 /* floating point conversion */
3121 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
3122 {
3123 float64 r = float32_to_float64(x, &env->vfp.fp_status);
3124 /* ARM requires that S<->D conversion of any kind of NaN generates
3125 * a quiet NaN by forcing the most significant frac bit to 1.
3126 */
3127 return float64_maybe_silence_nan(r);
3128 }
3129
3130 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
3131 {
3132 float32 r = float64_to_float32(x, &env->vfp.fp_status);
3133 /* ARM requires that S<->D conversion of any kind of NaN generates
3134 * a quiet NaN by forcing the most significant frac bit to 1.
3135 */
3136 return float32_maybe_silence_nan(r);
3137 }
3138
3139 /* VFP3 fixed point conversion. */
3140 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
3141 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
3142 void *fpstp) \
3143 { \
3144 float_status *fpst = fpstp; \
3145 float##fsz tmp; \
3146 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
3147 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
3148 } \
3149 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
3150 void *fpstp) \
3151 { \
3152 float_status *fpst = fpstp; \
3153 float##fsz tmp; \
3154 if (float##fsz##_is_any_nan(x)) { \
3155 float_raise(float_flag_invalid, fpst); \
3156 return 0; \
3157 } \
3158 tmp = float##fsz##_scalbn(x, shift, fpst); \
3159 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
3160 }
3161
3162 VFP_CONV_FIX(sh, d, 64, int16, )
3163 VFP_CONV_FIX(sl, d, 64, int32, )
3164 VFP_CONV_FIX(uh, d, 64, uint16, u)
3165 VFP_CONV_FIX(ul, d, 64, uint32, u)
3166 VFP_CONV_FIX(sh, s, 32, int16, )
3167 VFP_CONV_FIX(sl, s, 32, int32, )
3168 VFP_CONV_FIX(uh, s, 32, uint16, u)
3169 VFP_CONV_FIX(ul, s, 32, uint32, u)
3170 #undef VFP_CONV_FIX
3171
3172 /* Half precision conversions. */
3173 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
3174 {
3175 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3176 float32 r = float16_to_float32(make_float16(a), ieee, s);
3177 if (ieee) {
3178 return float32_maybe_silence_nan(r);
3179 }
3180 return r;
3181 }
3182
3183 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
3184 {
3185 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3186 float16 r = float32_to_float16(a, ieee, s);
3187 if (ieee) {
3188 r = float16_maybe_silence_nan(r);
3189 }
3190 return float16_val(r);
3191 }
3192
3193 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3194 {
3195 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
3196 }
3197
3198 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3199 {
3200 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
3201 }
3202
3203 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3204 {
3205 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
3206 }
3207
3208 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3209 {
3210 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
3211 }
3212
3213 #define float32_two make_float32(0x40000000)
3214 #define float32_three make_float32(0x40400000)
3215 #define float32_one_point_five make_float32(0x3fc00000)
3216
3217 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
3218 {
3219 float_status *s = &env->vfp.standard_fp_status;
3220 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3221 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3222 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3223 float_raise(float_flag_input_denormal, s);
3224 }
3225 return float32_two;
3226 }
3227 return float32_sub(float32_two, float32_mul(a, b, s), s);
3228 }
3229
3230 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
3231 {
3232 float_status *s = &env->vfp.standard_fp_status;
3233 float32 product;
3234 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3235 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3236 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3237 float_raise(float_flag_input_denormal, s);
3238 }
3239 return float32_one_point_five;
3240 }
3241 product = float32_mul(a, b, s);
3242 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
3243 }
3244
3245 /* NEON helpers. */
3246
3247 /* Constants 256 and 512 are used in some helpers; we avoid relying on
3248 * int->float conversions at run-time. */
3249 #define float64_256 make_float64(0x4070000000000000LL)
3250 #define float64_512 make_float64(0x4080000000000000LL)
3251
3252 /* The algorithm that must be used to calculate the estimate
3253 * is specified by the ARM ARM.
3254 */
3255 static float64 recip_estimate(float64 a, CPUARMState *env)
3256 {
3257 /* These calculations mustn't set any fp exception flags,
3258 * so we use a local copy of the fp_status.
3259 */
3260 float_status dummy_status = env->vfp.standard_fp_status;
3261 float_status *s = &dummy_status;
3262 /* q = (int)(a * 512.0) */
3263 float64 q = float64_mul(float64_512, a, s);
3264 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3265
3266 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
3267 q = int64_to_float64(q_int, s);
3268 q = float64_add(q, float64_half, s);
3269 q = float64_div(q, float64_512, s);
3270 q = float64_div(float64_one, q, s);
3271
3272 /* s = (int)(256.0 * r + 0.5) */
3273 q = float64_mul(q, float64_256, s);
3274 q = float64_add(q, float64_half, s);
3275 q_int = float64_to_int64_round_to_zero(q, s);
3276
3277 /* return (double)s / 256.0 */
3278 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3279 }
3280
3281 float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
3282 {
3283 float_status *s = &env->vfp.standard_fp_status;
3284 float64 f64;
3285 uint32_t val32 = float32_val(a);
3286
3287 int result_exp;
3288 int a_exp = (val32 & 0x7f800000) >> 23;
3289 int sign = val32 & 0x80000000;
3290
3291 if (float32_is_any_nan(a)) {
3292 if (float32_is_signaling_nan(a)) {
3293 float_raise(float_flag_invalid, s);
3294 }
3295 return float32_default_nan;
3296 } else if (float32_is_infinity(a)) {
3297 return float32_set_sign(float32_zero, float32_is_neg(a));
3298 } else if (float32_is_zero_or_denormal(a)) {
3299 if (!float32_is_zero(a)) {
3300 float_raise(float_flag_input_denormal, s);
3301 }
3302 float_raise(float_flag_divbyzero, s);
3303 return float32_set_sign(float32_infinity, float32_is_neg(a));
3304 } else if (a_exp >= 253) {
3305 float_raise(float_flag_underflow, s);
3306 return float32_set_sign(float32_zero, float32_is_neg(a));
3307 }
3308
3309 f64 = make_float64((0x3feULL << 52)
3310 | ((int64_t)(val32 & 0x7fffff) << 29));
3311
3312 result_exp = 253 - a_exp;
3313
3314 f64 = recip_estimate(f64, env);
3315
3316 val32 = sign
3317 | ((result_exp & 0xff) << 23)
3318 | ((float64_val(f64) >> 29) & 0x7fffff);
3319 return make_float32(val32);
3320 }
3321
3322 /* The algorithm that must be used to calculate the estimate
3323 * is specified by the ARM ARM.
3324 */
3325 static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
3326 {
3327 /* These calculations mustn't set any fp exception flags,
3328 * so we use a local copy of the fp_status.
3329 */
3330 float_status dummy_status = env->vfp.standard_fp_status;
3331 float_status *s = &dummy_status;
3332 float64 q;
3333 int64_t q_int;
3334
3335 if (float64_lt(a, float64_half, s)) {
3336 /* range 0.25 <= a < 0.5 */
3337
3338 /* a in units of 1/512 rounded down */
3339 /* q0 = (int)(a * 512.0); */
3340 q = float64_mul(float64_512, a, s);
3341 q_int = float64_to_int64_round_to_zero(q, s);
3342
3343 /* reciprocal root r */
3344 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
3345 q = int64_to_float64(q_int, s);
3346 q = float64_add(q, float64_half, s);
3347 q = float64_div(q, float64_512, s);
3348 q = float64_sqrt(q, s);
3349 q = float64_div(float64_one, q, s);
3350 } else {
3351 /* range 0.5 <= a < 1.0 */
3352
3353 /* a in units of 1/256 rounded down */
3354 /* q1 = (int)(a * 256.0); */
3355 q = float64_mul(float64_256, a, s);
3356 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3357
3358 /* reciprocal root r */
3359 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3360 q = int64_to_float64(q_int, s);
3361 q = float64_add(q, float64_half, s);
3362 q = float64_div(q, float64_256, s);
3363 q = float64_sqrt(q, s);
3364 q = float64_div(float64_one, q, s);
3365 }
3366 /* r in units of 1/256 rounded to nearest */
3367 /* s = (int)(256.0 * r + 0.5); */
3368
3369 q = float64_mul(q, float64_256,s );
3370 q = float64_add(q, float64_half, s);
3371 q_int = float64_to_int64_round_to_zero(q, s);
3372
3373 /* return (double)s / 256.0;*/
3374 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3375 }
3376
3377 float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
3378 {
3379 float_status *s = &env->vfp.standard_fp_status;
3380 int result_exp;
3381 float64 f64;
3382 uint32_t val;
3383 uint64_t val64;
3384
3385 val = float32_val(a);
3386
3387 if (float32_is_any_nan(a)) {
3388 if (float32_is_signaling_nan(a)) {
3389 float_raise(float_flag_invalid, s);
3390 }
3391 return float32_default_nan;
3392 } else if (float32_is_zero_or_denormal(a)) {
3393 if (!float32_is_zero(a)) {
3394 float_raise(float_flag_input_denormal, s);
3395 }
3396 float_raise(float_flag_divbyzero, s);
3397 return float32_set_sign(float32_infinity, float32_is_neg(a));
3398 } else if (float32_is_neg(a)) {
3399 float_raise(float_flag_invalid, s);
3400 return float32_default_nan;
3401 } else if (float32_is_infinity(a)) {
3402 return float32_zero;
3403 }
3404
3405 /* Normalize to a double-precision value between 0.25 and 1.0,
3406 * preserving the parity of the exponent. */
3407 if ((val & 0x800000) == 0) {
3408 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3409 | (0x3feULL << 52)
3410 | ((uint64_t)(val & 0x7fffff) << 29));
3411 } else {
3412 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3413 | (0x3fdULL << 52)
3414 | ((uint64_t)(val & 0x7fffff) << 29));
3415 }
3416
3417 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
3418
3419 f64 = recip_sqrt_estimate(f64, env);
3420
3421 val64 = float64_val(f64);
3422
3423 val = ((result_exp & 0xff) << 23)
3424 | ((val64 >> 29) & 0x7fffff);
3425 return make_float32(val);
3426 }
3427
3428 uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
3429 {
3430 float64 f64;
3431
3432 if ((a & 0x80000000) == 0) {
3433 return 0xffffffff;
3434 }
3435
3436 f64 = make_float64((0x3feULL << 52)
3437 | ((int64_t)(a & 0x7fffffff) << 21));
3438
3439 f64 = recip_estimate (f64, env);
3440
3441 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3442 }
3443
3444 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
3445 {
3446 float64 f64;
3447
3448 if ((a & 0xc0000000) == 0) {
3449 return 0xffffffff;
3450 }
3451
3452 if (a & 0x80000000) {
3453 f64 = make_float64((0x3feULL << 52)
3454 | ((uint64_t)(a & 0x7fffffff) << 21));
3455 } else { /* bits 31-30 == '01' */
3456 f64 = make_float64((0x3fdULL << 52)
3457 | ((uint64_t)(a & 0x3fffffff) << 22));
3458 }
3459
3460 f64 = recip_sqrt_estimate(f64, env);
3461
3462 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3463 }
3464
3465 /* VFPv4 fused multiply-accumulate */
3466 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
3467 {
3468 float_status *fpst = fpstp;
3469 return float32_muladd(a, b, c, 0, fpst);
3470 }
3471
3472 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
3473 {
3474 float_status *fpst = fpstp;
3475 return float64_muladd(a, b, c, 0, fpst);
3476 }