3 #include "exec/gdbstub.h"
4 #include "exec/helper-proto.h"
5 #include "qemu/host-utils.h"
6 #include "sysemu/arch_init.h"
7 #include "sysemu/sysemu.h"
8 #include "qemu/bitops.h"
9 #include "qemu/crc32c.h"
10 #include "exec/cpu_ldst.h"
12 #include <zlib.h> /* For crc32 */
14 #ifndef CONFIG_USER_ONLY
15 static inline int get_phys_addr(CPUARMState
*env
, target_ulong address
,
16 int access_type
, int is_user
,
17 hwaddr
*phys_ptr
, int *prot
,
18 target_ulong
*page_size
);
20 /* Definitions for the PMCCNTR and PMCR registers */
26 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
30 /* VFP data registers are always little-endian. */
31 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
33 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
36 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
37 /* Aliases for Q regs. */
40 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
41 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
45 switch (reg
- nregs
) {
46 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
47 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
48 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
53 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
57 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
59 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
62 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
65 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
66 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
70 switch (reg
- nregs
) {
71 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
72 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
73 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
78 static int aarch64_fpu_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
82 /* 128 bit FP register */
83 stfq_le_p(buf
, env
->vfp
.regs
[reg
* 2]);
84 stfq_le_p(buf
+ 8, env
->vfp
.regs
[reg
* 2 + 1]);
88 stl_p(buf
, vfp_get_fpsr(env
));
92 stl_p(buf
, vfp_get_fpcr(env
));
99 static int aarch64_fpu_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
103 /* 128 bit FP register */
104 env
->vfp
.regs
[reg
* 2] = ldfq_le_p(buf
);
105 env
->vfp
.regs
[reg
* 2 + 1] = ldfq_le_p(buf
+ 8);
109 vfp_set_fpsr(env
, ldl_p(buf
));
113 vfp_set_fpcr(env
, ldl_p(buf
));
120 static uint64_t raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
122 if (cpreg_field_is_64bit(ri
)) {
123 return CPREG_FIELD64(env
, ri
);
125 return CPREG_FIELD32(env
, ri
);
129 static void raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
132 if (cpreg_field_is_64bit(ri
)) {
133 CPREG_FIELD64(env
, ri
) = value
;
135 CPREG_FIELD32(env
, ri
) = value
;
139 static uint64_t read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
141 /* Raw read of a coprocessor register (as needed for migration, etc). */
142 if (ri
->type
& ARM_CP_CONST
) {
143 return ri
->resetvalue
;
144 } else if (ri
->raw_readfn
) {
145 return ri
->raw_readfn(env
, ri
);
146 } else if (ri
->readfn
) {
147 return ri
->readfn(env
, ri
);
149 return raw_read(env
, ri
);
153 static void write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
156 /* Raw write of a coprocessor register (as needed for migration, etc).
157 * Note that constant registers are treated as write-ignored; the
158 * caller should check for success by whether a readback gives the
161 if (ri
->type
& ARM_CP_CONST
) {
163 } else if (ri
->raw_writefn
) {
164 ri
->raw_writefn(env
, ri
, v
);
165 } else if (ri
->writefn
) {
166 ri
->writefn(env
, ri
, v
);
168 raw_write(env
, ri
, v
);
172 bool write_cpustate_to_list(ARMCPU
*cpu
)
174 /* Write the coprocessor state from cpu->env to the (index,value) list. */
178 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
179 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
180 const ARMCPRegInfo
*ri
;
182 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
187 if (ri
->type
& ARM_CP_NO_MIGRATE
) {
190 cpu
->cpreg_values
[i
] = read_raw_cp_reg(&cpu
->env
, ri
);
195 bool write_list_to_cpustate(ARMCPU
*cpu
)
200 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
201 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
202 uint64_t v
= cpu
->cpreg_values
[i
];
203 const ARMCPRegInfo
*ri
;
205 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
210 if (ri
->type
& ARM_CP_NO_MIGRATE
) {
213 /* Write value and confirm it reads back as written
214 * (to catch read-only registers and partially read-only
215 * registers where the incoming migration value doesn't match)
217 write_raw_cp_reg(&cpu
->env
, ri
, v
);
218 if (read_raw_cp_reg(&cpu
->env
, ri
) != v
) {
225 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
227 ARMCPU
*cpu
= opaque
;
229 const ARMCPRegInfo
*ri
;
231 regidx
= *(uint32_t *)key
;
232 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
234 if (!(ri
->type
& ARM_CP_NO_MIGRATE
)) {
235 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
236 /* The value array need not be initialized at this point */
237 cpu
->cpreg_array_len
++;
241 static void count_cpreg(gpointer key
, gpointer opaque
)
243 ARMCPU
*cpu
= opaque
;
245 const ARMCPRegInfo
*ri
;
247 regidx
= *(uint32_t *)key
;
248 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
250 if (!(ri
->type
& ARM_CP_NO_MIGRATE
)) {
251 cpu
->cpreg_array_len
++;
255 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
257 uint64_t aidx
= cpreg_to_kvm_id(*(uint32_t *)a
);
258 uint64_t bidx
= cpreg_to_kvm_id(*(uint32_t *)b
);
269 static void cpreg_make_keylist(gpointer key
, gpointer value
, gpointer udata
)
271 GList
**plist
= udata
;
273 *plist
= g_list_prepend(*plist
, key
);
276 void init_cpreg_list(ARMCPU
*cpu
)
278 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
279 * Note that we require cpreg_tuples[] to be sorted by key ID.
284 g_hash_table_foreach(cpu
->cp_regs
, cpreg_make_keylist
, &keys
);
286 keys
= g_list_sort(keys
, cpreg_key_compare
);
288 cpu
->cpreg_array_len
= 0;
290 g_list_foreach(keys
, count_cpreg
, cpu
);
292 arraylen
= cpu
->cpreg_array_len
;
293 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
294 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
295 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
296 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
297 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
298 cpu
->cpreg_array_len
= 0;
300 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
302 assert(cpu
->cpreg_array_len
== arraylen
);
307 /* Return true if extended addresses are enabled.
308 * This is always the case if our translation regime is 64 bit,
309 * but depends on TTBCR.EAE for 32 bit.
311 static inline bool extended_addresses_enabled(CPUARMState
*env
)
313 return arm_el_is_aa64(env
, 1)
314 || ((arm_feature(env
, ARM_FEATURE_LPAE
)
315 && (env
->cp15
.c2_control
& TTBCR_EAE
)));
318 static void dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
320 ARMCPU
*cpu
= arm_env_get_cpu(env
);
322 raw_write(env
, ri
, value
);
323 tlb_flush(CPU(cpu
), 1); /* Flush TLB as domain not tracked in TLB */
326 static void fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
328 ARMCPU
*cpu
= arm_env_get_cpu(env
);
330 if (raw_read(env
, ri
) != value
) {
331 /* Unlike real hardware the qemu TLB uses virtual addresses,
332 * not modified virtual addresses, so this causes a TLB flush.
334 tlb_flush(CPU(cpu
), 1);
335 raw_write(env
, ri
, value
);
339 static void contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
342 ARMCPU
*cpu
= arm_env_get_cpu(env
);
344 if (raw_read(env
, ri
) != value
&& !arm_feature(env
, ARM_FEATURE_MPU
)
345 && !extended_addresses_enabled(env
)) {
346 /* For VMSA (when not using the LPAE long descriptor page table
347 * format) this register includes the ASID, so do a TLB flush.
348 * For PMSA it is purely a process ID and no action is needed.
350 tlb_flush(CPU(cpu
), 1);
352 raw_write(env
, ri
, value
);
355 static void tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
358 /* Invalidate all (TLBIALL) */
359 ARMCPU
*cpu
= arm_env_get_cpu(env
);
361 tlb_flush(CPU(cpu
), 1);
364 static void tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
367 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
368 ARMCPU
*cpu
= arm_env_get_cpu(env
);
370 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
373 static void tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
376 /* Invalidate by ASID (TLBIASID) */
377 ARMCPU
*cpu
= arm_env_get_cpu(env
);
379 tlb_flush(CPU(cpu
), value
== 0);
382 static void tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
385 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
386 ARMCPU
*cpu
= arm_env_get_cpu(env
);
388 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
391 static const ARMCPRegInfo cp_reginfo
[] = {
392 { .name
= "FCSEIDR", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 0,
393 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c13_fcse
),
394 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
395 { .name
= "CONTEXTIDR", .state
= ARM_CP_STATE_BOTH
,
396 .opc0
= 3, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
398 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_el1
),
399 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
403 static const ARMCPRegInfo not_v8_cp_reginfo
[] = {
404 /* NB: Some of these registers exist in v8 but with more precise
405 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
407 /* MMU Domain access control / MPU write buffer control */
408 { .name
= "DACR", .cp
= 15,
409 .crn
= 3, .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
410 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c3
),
411 .resetvalue
= 0, .writefn
= dacr_write
, .raw_writefn
= raw_write
, },
412 /* ??? This covers not just the impdef TLB lockdown registers but also
413 * some v7VMSA registers relating to TEX remap, so it is overly broad.
415 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= CP_ANY
,
416 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
417 /* MMU TLB control. Note that the wildcarding means we cover not just
418 * the unified TLB ops but also the dside/iside/inner-shareable variants.
420 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
421 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
422 .type
= ARM_CP_NO_MIGRATE
},
423 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
424 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
425 .type
= ARM_CP_NO_MIGRATE
},
426 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
427 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
428 .type
= ARM_CP_NO_MIGRATE
},
429 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
430 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
431 .type
= ARM_CP_NO_MIGRATE
},
432 /* Cache maintenance ops; some of this space may be overridden later. */
433 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
434 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
435 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
439 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
440 /* Not all pre-v6 cores implemented this WFI, so this is slightly
443 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
444 .access
= PL1_W
, .type
= ARM_CP_WFI
},
448 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
449 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
450 * is UNPREDICTABLE; we choose to NOP as most implementations do).
452 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
453 .access
= PL1_W
, .type
= ARM_CP_WFI
},
454 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
455 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
456 * OMAPCP will override this space.
458 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
459 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
461 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
462 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
464 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
465 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
466 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
468 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
469 * implementing it as RAZ means the "debug architecture version" bits
470 * will read as a reserved value, which should cause Linux to not try
471 * to use the debug hardware.
473 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
474 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
478 static void cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
483 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
484 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
485 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
486 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
487 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
489 if (arm_feature(env
, ARM_FEATURE_VFP
)) {
490 /* VFP coprocessor: cp10 & cp11 [23:20] */
491 mask
|= (1 << 31) | (1 << 30) | (0xf << 20);
493 if (!arm_feature(env
, ARM_FEATURE_NEON
)) {
494 /* ASEDIS [31] bit is RAO/WI */
498 /* VFPv3 and upwards with NEON implement 32 double precision
499 * registers (D0-D31).
501 if (!arm_feature(env
, ARM_FEATURE_NEON
) ||
502 !arm_feature(env
, ARM_FEATURE_VFP3
)) {
503 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
509 env
->cp15
.c1_coproc
= value
;
512 static const ARMCPRegInfo v6_cp_reginfo
[] = {
513 /* prefetch by MVA in v6, NOP in v7 */
514 { .name
= "MVA_prefetch",
515 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
516 .access
= PL1_W
, .type
= ARM_CP_NOP
},
517 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
518 .access
= PL0_W
, .type
= ARM_CP_NOP
},
519 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
520 .access
= PL0_W
, .type
= ARM_CP_NOP
},
521 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
522 .access
= PL0_W
, .type
= ARM_CP_NOP
},
523 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
525 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.far_el
[1]),
527 /* Watchpoint Fault Address Register : should actually only be present
528 * for 1136, 1176, 11MPCore.
530 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
531 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
532 { .name
= "CPACR", .state
= ARM_CP_STATE_BOTH
, .opc0
= 3,
533 .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2,
534 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_coproc
),
535 .resetvalue
= 0, .writefn
= cpacr_write
},
539 static CPAccessResult
pmreg_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
541 /* Performance monitor registers user accessibility is controlled
544 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
545 return CP_ACCESS_TRAP
;
550 #ifndef CONFIG_USER_ONLY
552 static inline bool arm_ccnt_enabled(CPUARMState
*env
)
554 /* This does not support checking PMCCFILTR_EL0 register */
556 if (!(env
->cp15
.c9_pmcr
& PMCRE
)) {
563 void pmccntr_sync(CPUARMState
*env
)
567 temp_ticks
= muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
),
568 get_ticks_per_sec(), 1000000);
570 if (env
->cp15
.c9_pmcr
& PMCRD
) {
571 /* Increment once every 64 processor clock cycles */
575 if (arm_ccnt_enabled(env
)) {
576 env
->cp15
.c15_ccnt
= temp_ticks
- env
->cp15
.c15_ccnt
;
580 static void pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
586 /* The counter has been reset */
587 env
->cp15
.c15_ccnt
= 0;
590 /* only the DP, X, D and E bits are writable */
591 env
->cp15
.c9_pmcr
&= ~0x39;
592 env
->cp15
.c9_pmcr
|= (value
& 0x39);
597 static uint64_t pmccntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
599 uint64_t total_ticks
;
601 if (!arm_ccnt_enabled(env
)) {
602 /* Counter is disabled, do not change value */
603 return env
->cp15
.c15_ccnt
;
606 total_ticks
= muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
),
607 get_ticks_per_sec(), 1000000);
609 if (env
->cp15
.c9_pmcr
& PMCRD
) {
610 /* Increment once every 64 processor clock cycles */
613 return total_ticks
- env
->cp15
.c15_ccnt
;
616 static void pmccntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
619 uint64_t total_ticks
;
621 if (!arm_ccnt_enabled(env
)) {
622 /* Counter is disabled, set the absolute value */
623 env
->cp15
.c15_ccnt
= value
;
627 total_ticks
= muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
),
628 get_ticks_per_sec(), 1000000);
630 if (env
->cp15
.c9_pmcr
& PMCRD
) {
631 /* Increment once every 64 processor clock cycles */
634 env
->cp15
.c15_ccnt
= total_ticks
- value
;
637 static void pmccntr_write32(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
640 uint64_t cur_val
= pmccntr_read(env
, NULL
);
642 pmccntr_write(env
, ri
, deposit64(cur_val
, 0, 32, value
));
645 #else /* CONFIG_USER_ONLY */
647 void pmccntr_sync(CPUARMState
*env
)
653 static void pmccfiltr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
657 env
->cp15
.pmccfiltr_el0
= value
& 0x7E000000;
661 static void pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
665 env
->cp15
.c9_pmcnten
|= value
;
668 static void pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
672 env
->cp15
.c9_pmcnten
&= ~value
;
675 static void pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
678 env
->cp15
.c9_pmovsr
&= ~value
;
681 static void pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
684 env
->cp15
.c9_pmxevtyper
= value
& 0xff;
687 static void pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
690 env
->cp15
.c9_pmuserenr
= value
& 1;
693 static void pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
696 /* We have no event counters so only the C bit can be changed */
698 env
->cp15
.c9_pminten
|= value
;
701 static void pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
705 env
->cp15
.c9_pminten
&= ~value
;
708 static void vbar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
711 /* Note that even though the AArch64 view of this register has bits
712 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
713 * architectural requirements for bits which are RES0 only in some
714 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
715 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
717 raw_write(env
, ri
, value
& ~0x1FULL
);
720 static uint64_t ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
722 ARMCPU
*cpu
= arm_env_get_cpu(env
);
723 return cpu
->ccsidr
[env
->cp15
.c0_cssel
];
726 static void csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
729 raw_write(env
, ri
, value
& 0xf);
732 static uint64_t isr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
734 CPUState
*cs
= ENV_GET_CPU(env
);
737 if (cs
->interrupt_request
& CPU_INTERRUPT_HARD
) {
740 if (cs
->interrupt_request
& CPU_INTERRUPT_FIQ
) {
743 /* External aborts are not possible in QEMU so A bit is always clear */
747 static const ARMCPRegInfo v7_cp_reginfo
[] = {
748 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
749 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
750 .access
= PL1_W
, .type
= ARM_CP_NOP
},
751 /* Performance monitors are implementation defined in v7,
752 * but with an ARM recommended set of registers, which we
753 * follow (although we don't actually implement any counters)
755 * Performance registers fall into three categories:
756 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
757 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
758 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
759 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
760 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
762 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
763 .access
= PL0_RW
, .type
= ARM_CP_NO_MIGRATE
,
764 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
765 .writefn
= pmcntenset_write
,
766 .accessfn
= pmreg_access
,
767 .raw_writefn
= raw_write
},
768 { .name
= "PMCNTENSET_EL0", .state
= ARM_CP_STATE_AA64
,
769 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 1,
770 .access
= PL0_RW
, .accessfn
= pmreg_access
,
771 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
), .resetvalue
= 0,
772 .writefn
= pmcntenset_write
, .raw_writefn
= raw_write
},
773 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
775 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
776 .accessfn
= pmreg_access
,
777 .writefn
= pmcntenclr_write
,
778 .type
= ARM_CP_NO_MIGRATE
},
779 { .name
= "PMCNTENCLR_EL0", .state
= ARM_CP_STATE_AA64
,
780 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 2,
781 .access
= PL0_RW
, .accessfn
= pmreg_access
,
782 .type
= ARM_CP_NO_MIGRATE
,
783 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
784 .writefn
= pmcntenclr_write
},
785 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
786 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
787 .accessfn
= pmreg_access
,
788 .writefn
= pmovsr_write
,
789 .raw_writefn
= raw_write
},
790 /* Unimplemented so WI. */
791 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
792 .access
= PL0_W
, .accessfn
= pmreg_access
, .type
= ARM_CP_NOP
},
793 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
794 * We choose to RAZ/WI.
796 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
797 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
798 .accessfn
= pmreg_access
},
799 #ifndef CONFIG_USER_ONLY
800 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
801 .access
= PL0_RW
, .resetvalue
= 0, .type
= ARM_CP_IO
,
802 .readfn
= pmccntr_read
, .writefn
= pmccntr_write32
,
803 .accessfn
= pmreg_access
},
804 { .name
= "PMCCNTR_EL0", .state
= ARM_CP_STATE_AA64
,
805 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 0,
806 .access
= PL0_RW
, .accessfn
= pmreg_access
,
808 .readfn
= pmccntr_read
, .writefn
= pmccntr_write
, },
810 { .name
= "PMCCFILTR_EL0", .state
= ARM_CP_STATE_AA64
,
811 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 15, .opc2
= 7,
812 .writefn
= pmccfiltr_write
,
813 .access
= PL0_RW
, .accessfn
= pmreg_access
,
815 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmccfiltr_el0
),
817 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
819 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmxevtyper
),
820 .accessfn
= pmreg_access
, .writefn
= pmxevtyper_write
,
821 .raw_writefn
= raw_write
},
822 /* Unimplemented, RAZ/WI. */
823 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
824 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
825 .accessfn
= pmreg_access
},
826 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
827 .access
= PL0_R
| PL1_RW
,
828 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
830 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
831 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
833 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
835 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
836 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
837 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
838 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
839 .resetvalue
= 0, .writefn
= pmintenclr_write
, },
840 { .name
= "VBAR", .state
= ARM_CP_STATE_BOTH
,
841 .opc0
= 3, .crn
= 12, .crm
= 0, .opc1
= 0, .opc2
= 0,
842 .access
= PL1_RW
, .writefn
= vbar_write
,
843 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[1]),
845 { .name
= "SCR", .cp
= 15, .crn
= 1, .crm
= 1, .opc1
= 0, .opc2
= 0,
846 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_scr
),
848 { .name
= "CCSIDR", .state
= ARM_CP_STATE_BOTH
,
849 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
850 .access
= PL1_R
, .readfn
= ccsidr_read
, .type
= ARM_CP_NO_MIGRATE
},
851 { .name
= "CSSELR", .state
= ARM_CP_STATE_BOTH
,
852 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
853 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cssel
),
854 .writefn
= csselr_write
, .resetvalue
= 0 },
855 /* Auxiliary ID register: this actually has an IMPDEF value but for now
856 * just RAZ for all cores:
858 { .name
= "AIDR", .state
= ARM_CP_STATE_BOTH
,
859 .opc0
= 3, .opc1
= 1, .crn
= 0, .crm
= 0, .opc2
= 7,
860 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
861 /* Auxiliary fault status registers: these also are IMPDEF, and we
862 * choose to RAZ/WI for all cores.
864 { .name
= "AFSR0_EL1", .state
= ARM_CP_STATE_BOTH
,
865 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 0,
866 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
867 { .name
= "AFSR1_EL1", .state
= ARM_CP_STATE_BOTH
,
868 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 1,
869 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
870 /* MAIR can just read-as-written because we don't implement caches
871 * and so don't need to care about memory attributes.
873 { .name
= "MAIR_EL1", .state
= ARM_CP_STATE_AA64
,
874 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0,
875 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el1
),
877 /* For non-long-descriptor page tables these are PRRR and NMRR;
878 * regardless they still act as reads-as-written for QEMU.
879 * The override is necessary because of the overly-broad TLB_LOCKDOWN
882 { .name
= "MAIR0", .state
= ARM_CP_STATE_AA32
, .type
= ARM_CP_OVERRIDE
,
883 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0, .access
= PL1_RW
,
884 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.mair_el1
),
885 .resetfn
= arm_cp_reset_ignore
},
886 { .name
= "MAIR1", .state
= ARM_CP_STATE_AA32
, .type
= ARM_CP_OVERRIDE
,
887 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 1, .access
= PL1_RW
,
888 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.mair_el1
),
889 .resetfn
= arm_cp_reset_ignore
},
890 { .name
= "ISR_EL1", .state
= ARM_CP_STATE_BOTH
,
891 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 1, .opc2
= 0,
892 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_R
, .readfn
= isr_read
},
896 static void teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
903 static CPAccessResult
teehbr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
905 if (arm_current_pl(env
) == 0 && (env
->teecr
& 1)) {
906 return CP_ACCESS_TRAP
;
911 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
912 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
913 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
915 .writefn
= teecr_write
},
916 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
917 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
918 .accessfn
= teehbr_access
, .resetvalue
= 0 },
922 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
923 { .name
= "TPIDR_EL0", .state
= ARM_CP_STATE_AA64
,
924 .opc0
= 3, .opc1
= 3, .opc2
= 2, .crn
= 13, .crm
= 0,
926 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el0
), .resetvalue
= 0 },
927 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
929 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.tpidr_el0
),
930 .resetfn
= arm_cp_reset_ignore
},
931 { .name
= "TPIDRRO_EL0", .state
= ARM_CP_STATE_AA64
,
932 .opc0
= 3, .opc1
= 3, .opc2
= 3, .crn
= 13, .crm
= 0,
933 .access
= PL0_R
|PL1_W
,
934 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidrro_el0
), .resetvalue
= 0 },
935 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
936 .access
= PL0_R
|PL1_W
,
937 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.tpidrro_el0
),
938 .resetfn
= arm_cp_reset_ignore
},
939 { .name
= "TPIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
940 .opc0
= 3, .opc1
= 0, .opc2
= 4, .crn
= 13, .crm
= 0,
942 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el1
), .resetvalue
= 0 },
946 #ifndef CONFIG_USER_ONLY
948 static CPAccessResult
gt_cntfrq_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
950 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
951 if (arm_current_pl(env
) == 0 && !extract32(env
->cp15
.c14_cntkctl
, 0, 2)) {
952 return CP_ACCESS_TRAP
;
957 static CPAccessResult
gt_counter_access(CPUARMState
*env
, int timeridx
)
959 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
960 if (arm_current_pl(env
) == 0 &&
961 !extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
962 return CP_ACCESS_TRAP
;
967 static CPAccessResult
gt_timer_access(CPUARMState
*env
, int timeridx
)
969 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
970 * EL0[PV]TEN is zero.
972 if (arm_current_pl(env
) == 0 &&
973 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
974 return CP_ACCESS_TRAP
;
979 static CPAccessResult
gt_pct_access(CPUARMState
*env
,
980 const ARMCPRegInfo
*ri
)
982 return gt_counter_access(env
, GTIMER_PHYS
);
985 static CPAccessResult
gt_vct_access(CPUARMState
*env
,
986 const ARMCPRegInfo
*ri
)
988 return gt_counter_access(env
, GTIMER_VIRT
);
991 static CPAccessResult
gt_ptimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
993 return gt_timer_access(env
, GTIMER_PHYS
);
996 static CPAccessResult
gt_vtimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
998 return gt_timer_access(env
, GTIMER_VIRT
);
1001 static uint64_t gt_get_countervalue(CPUARMState
*env
)
1003 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) / GTIMER_SCALE
;
1006 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
1008 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
1011 /* Timer enabled: calculate and set current ISTATUS, irq, and
1012 * reset timer to when ISTATUS next has to change
1014 uint64_t count
= gt_get_countervalue(&cpu
->env
);
1015 /* Note that this must be unsigned 64 bit arithmetic: */
1016 int istatus
= count
>= gt
->cval
;
1019 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
1020 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1021 (istatus
&& !(gt
->ctl
& 2)));
1023 /* Next transition is when count rolls back over to zero */
1024 nexttick
= UINT64_MAX
;
1026 /* Next transition is when we hit cval */
1027 nexttick
= gt
->cval
;
1029 /* Note that the desired next expiry time might be beyond the
1030 * signed-64-bit range of a QEMUTimer -- in this case we just
1031 * set the timer for as far in the future as possible. When the
1032 * timer expires we will reset the timer for any remaining period.
1034 if (nexttick
> INT64_MAX
/ GTIMER_SCALE
) {
1035 nexttick
= INT64_MAX
/ GTIMER_SCALE
;
1037 timer_mod(cpu
->gt_timer
[timeridx
], nexttick
);
1039 /* Timer disabled: ISTATUS and timer output always clear */
1041 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
1042 timer_del(cpu
->gt_timer
[timeridx
]);
1046 static void gt_cnt_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1048 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1049 int timeridx
= ri
->opc1
& 1;
1051 timer_del(cpu
->gt_timer
[timeridx
]);
1054 static uint64_t gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1056 return gt_get_countervalue(env
);
1059 static void gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1062 int timeridx
= ri
->opc1
& 1;
1064 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
1065 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1068 static uint64_t gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1070 int timeridx
= ri
->crm
& 1;
1072 return (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
1073 gt_get_countervalue(env
));
1076 static void gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1079 int timeridx
= ri
->crm
& 1;
1081 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) +
1082 + sextract64(value
, 0, 32);
1083 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1086 static void gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1089 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1090 int timeridx
= ri
->crm
& 1;
1091 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
1093 env
->cp15
.c14_timer
[timeridx
].ctl
= deposit64(oldval
, 0, 2, value
);
1094 if ((oldval
^ value
) & 1) {
1095 /* Enable toggled */
1096 gt_recalc_timer(cpu
, timeridx
);
1097 } else if ((oldval
^ value
) & 2) {
1098 /* IMASK toggled: don't need to recalculate,
1099 * just set the interrupt line based on ISTATUS
1101 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1102 (oldval
& 4) && !(value
& 2));
1106 void arm_gt_ptimer_cb(void *opaque
)
1108 ARMCPU
*cpu
= opaque
;
1110 gt_recalc_timer(cpu
, GTIMER_PHYS
);
1113 void arm_gt_vtimer_cb(void *opaque
)
1115 ARMCPU
*cpu
= opaque
;
1117 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1120 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1121 /* Note that CNTFRQ is purely reads-as-written for the benefit
1122 * of software; writing it doesn't actually change the timer frequency.
1123 * Our reset value matches the fixed frequency we implement the timer at.
1125 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
1126 .type
= ARM_CP_NO_MIGRATE
,
1127 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1128 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c14_cntfrq
),
1129 .resetfn
= arm_cp_reset_ignore
,
1131 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
1132 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
1133 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1134 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
1135 .resetvalue
= (1000 * 1000 * 1000) / GTIMER_SCALE
,
1137 /* overall control: mostly access permissions */
1138 { .name
= "CNTKCTL", .state
= ARM_CP_STATE_BOTH
,
1139 .opc0
= 3, .opc1
= 0, .crn
= 14, .crm
= 1, .opc2
= 0,
1141 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
1144 /* per-timer control */
1145 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1146 .type
= ARM_CP_IO
| ARM_CP_NO_MIGRATE
, .access
= PL1_RW
| PL0_R
,
1147 .accessfn
= gt_ptimer_access
,
1148 .fieldoffset
= offsetoflow32(CPUARMState
,
1149 cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1150 .resetfn
= arm_cp_reset_ignore
,
1151 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1153 { .name
= "CNTP_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1154 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 1,
1155 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1156 .accessfn
= gt_ptimer_access
,
1157 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1159 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1161 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
1162 .type
= ARM_CP_IO
| ARM_CP_NO_MIGRATE
, .access
= PL1_RW
| PL0_R
,
1163 .accessfn
= gt_vtimer_access
,
1164 .fieldoffset
= offsetoflow32(CPUARMState
,
1165 cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1166 .resetfn
= arm_cp_reset_ignore
,
1167 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1169 { .name
= "CNTV_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1170 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 1,
1171 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1172 .accessfn
= gt_vtimer_access
,
1173 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1175 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1177 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1178 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1179 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1180 .accessfn
= gt_ptimer_access
,
1181 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1183 { .name
= "CNTP_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1184 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 0,
1185 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1186 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1188 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
1189 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1190 .accessfn
= gt_vtimer_access
,
1191 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1193 { .name
= "CNTV_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1194 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 0,
1195 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1196 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1198 /* The counter itself */
1199 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
1200 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
1201 .accessfn
= gt_pct_access
,
1202 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1204 { .name
= "CNTPCT_EL0", .state
= ARM_CP_STATE_AA64
,
1205 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 1,
1206 .access
= PL0_R
, .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
1207 .accessfn
= gt_pct_access
,
1208 .readfn
= gt_cnt_read
, .resetfn
= gt_cnt_reset
,
1210 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
1211 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
1212 .accessfn
= gt_vct_access
,
1213 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1215 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
1216 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
1217 .access
= PL0_R
, .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
1218 .accessfn
= gt_vct_access
,
1219 .readfn
= gt_cnt_read
, .resetfn
= gt_cnt_reset
,
1221 /* Comparison value, indicating when the timer goes off */
1222 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
1223 .access
= PL1_RW
| PL0_R
,
1224 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_MIGRATE
,
1225 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1226 .accessfn
= gt_ptimer_access
, .resetfn
= arm_cp_reset_ignore
,
1227 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1229 { .name
= "CNTP_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1230 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 2,
1231 .access
= PL1_RW
| PL0_R
,
1233 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1234 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
1235 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1237 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
1238 .access
= PL1_RW
| PL0_R
,
1239 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_MIGRATE
,
1240 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1241 .accessfn
= gt_vtimer_access
, .resetfn
= arm_cp_reset_ignore
,
1242 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1244 { .name
= "CNTV_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1245 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 2,
1246 .access
= PL1_RW
| PL0_R
,
1248 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1249 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
1250 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1256 /* In user-mode none of the generic timer registers are accessible,
1257 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1258 * so instead just don't register any of them.
1260 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1266 static void par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1268 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1269 raw_write(env
, ri
, value
);
1270 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
1271 raw_write(env
, ri
, value
& 0xfffff6ff);
1273 raw_write(env
, ri
, value
& 0xfffff1ff);
1277 #ifndef CONFIG_USER_ONLY
1278 /* get_phys_addr() isn't present for user-mode-only targets */
1280 static CPAccessResult
ats_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1283 /* Other states are only available with TrustZone; in
1284 * a non-TZ implementation these registers don't exist
1285 * at all, which is an Uncategorized trap. This underdecoding
1286 * is safe because the reginfo is NO_MIGRATE.
1288 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1290 return CP_ACCESS_OK
;
1293 static void ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1296 target_ulong page_size
;
1298 int ret
, is_user
= ri
->opc2
& 2;
1299 int access_type
= ri
->opc2
& 1;
1301 ret
= get_phys_addr(env
, value
, access_type
, is_user
,
1302 &phys_addr
, &prot
, &page_size
);
1303 if (extended_addresses_enabled(env
)) {
1304 /* ret is a DFSR/IFSR value for the long descriptor
1305 * translation table format, but with WnR always clear.
1306 * Convert it to a 64-bit PAR.
1308 uint64_t par64
= (1 << 11); /* LPAE bit always set */
1310 par64
|= phys_addr
& ~0xfffULL
;
1311 /* We don't set the ATTR or SH fields in the PAR. */
1314 par64
|= (ret
& 0x3f) << 1; /* FS */
1315 /* Note that S2WLK and FSTAGE are always zero, because we don't
1316 * implement virtualization and therefore there can't be a stage 2
1320 env
->cp15
.par_el1
= par64
;
1322 /* ret is a DFSR/IFSR value for the short descriptor
1323 * translation table format (with WnR always clear).
1324 * Convert it to a 32-bit PAR.
1327 /* We do not set any attribute bits in the PAR */
1328 if (page_size
== (1 << 24)
1329 && arm_feature(env
, ARM_FEATURE_V7
)) {
1330 env
->cp15
.par_el1
= (phys_addr
& 0xff000000) | 1 << 1;
1332 env
->cp15
.par_el1
= phys_addr
& 0xfffff000;
1335 env
->cp15
.par_el1
= ((ret
& (1 << 10)) >> 5) |
1336 ((ret
& (1 << 12)) >> 6) |
1337 ((ret
& 0xf) << 1) | 1;
1343 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
1344 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
1345 .access
= PL1_RW
, .resetvalue
= 0,
1346 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.par_el1
),
1347 .writefn
= par_write
},
1348 #ifndef CONFIG_USER_ONLY
1349 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
1350 .access
= PL1_W
, .accessfn
= ats_access
,
1351 .writefn
= ats_write
, .type
= ARM_CP_NO_MIGRATE
},
1356 /* Return basic MPU access permission bits. */
1357 static uint32_t simple_mpu_ap_bits(uint32_t val
)
1364 for (i
= 0; i
< 16; i
+= 2) {
1365 ret
|= (val
>> i
) & mask
;
1371 /* Pad basic MPU access permission bits to extended format. */
1372 static uint32_t extended_mpu_ap_bits(uint32_t val
)
1379 for (i
= 0; i
< 16; i
+= 2) {
1380 ret
|= (val
& mask
) << i
;
1386 static void pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1389 env
->cp15
.pmsav5_data_ap
= extended_mpu_ap_bits(value
);
1392 static uint64_t pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1394 return simple_mpu_ap_bits(env
->cp15
.pmsav5_data_ap
);
1397 static void pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1400 env
->cp15
.pmsav5_insn_ap
= extended_mpu_ap_bits(value
);
1403 static uint64_t pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1405 return simple_mpu_ap_bits(env
->cp15
.pmsav5_insn_ap
);
1408 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
1409 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
1410 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
1411 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
1413 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
1414 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
1415 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
1416 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
1418 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
1419 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
1421 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
1423 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
1425 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
1427 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
1429 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
1430 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
1432 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
1433 /* Protection region base and size registers */
1434 { .name
= "946_PRBS0", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0,
1435 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1436 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[0]) },
1437 { .name
= "946_PRBS1", .cp
= 15, .crn
= 6, .crm
= 1, .opc1
= 0,
1438 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1439 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[1]) },
1440 { .name
= "946_PRBS2", .cp
= 15, .crn
= 6, .crm
= 2, .opc1
= 0,
1441 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1442 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[2]) },
1443 { .name
= "946_PRBS3", .cp
= 15, .crn
= 6, .crm
= 3, .opc1
= 0,
1444 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1445 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[3]) },
1446 { .name
= "946_PRBS4", .cp
= 15, .crn
= 6, .crm
= 4, .opc1
= 0,
1447 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1448 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[4]) },
1449 { .name
= "946_PRBS5", .cp
= 15, .crn
= 6, .crm
= 5, .opc1
= 0,
1450 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1451 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[5]) },
1452 { .name
= "946_PRBS6", .cp
= 15, .crn
= 6, .crm
= 6, .opc1
= 0,
1453 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1454 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[6]) },
1455 { .name
= "946_PRBS7", .cp
= 15, .crn
= 6, .crm
= 7, .opc1
= 0,
1456 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1457 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[7]) },
1461 static void vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1464 int maskshift
= extract32(value
, 0, 3);
1466 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
1467 if (arm_feature(env
, ARM_FEATURE_LPAE
) && (value
& TTBCR_EAE
)) {
1468 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
1469 * using Long-desciptor translation table format */
1470 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
1471 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
1472 /* In an implementation that includes the Security Extensions
1473 * TTBCR has additional fields PD0 [4] and PD1 [5] for
1474 * Short-descriptor translation table format.
1476 value
&= TTBCR_PD1
| TTBCR_PD0
| TTBCR_N
;
1482 /* Note that we always calculate c2_mask and c2_base_mask, but
1483 * they are only used for short-descriptor tables (ie if EAE is 0);
1484 * for long-descriptor tables the TTBCR fields are used differently
1485 * and the c2_mask and c2_base_mask values are meaningless.
1487 raw_write(env
, ri
, value
);
1488 env
->cp15
.c2_mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
1489 env
->cp15
.c2_base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
1492 static void vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1495 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1497 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1498 /* With LPAE the TTBCR could result in a change of ASID
1499 * via the TTBCR.A1 bit, so do a TLB flush.
1501 tlb_flush(CPU(cpu
), 1);
1503 vmsa_ttbcr_raw_write(env
, ri
, value
);
1506 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1508 env
->cp15
.c2_base_mask
= 0xffffc000u
;
1509 raw_write(env
, ri
, 0);
1510 env
->cp15
.c2_mask
= 0;
1513 static void vmsa_tcr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1516 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1518 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1519 tlb_flush(CPU(cpu
), 1);
1520 raw_write(env
, ri
, value
);
1523 static void vmsa_ttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1526 /* 64 bit accesses to the TTBRs can change the ASID and so we
1527 * must flush the TLB.
1529 if (cpreg_field_is_64bit(ri
)) {
1530 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1532 tlb_flush(CPU(cpu
), 1);
1534 raw_write(env
, ri
, value
);
1537 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
1538 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
1539 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
1540 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el
[1]),
1541 .resetfn
= arm_cp_reset_ignore
, },
1542 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
1544 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifsr_el2
), .resetvalue
= 0, },
1545 { .name
= "ESR_EL1", .state
= ARM_CP_STATE_AA64
,
1546 .opc0
= 3, .crn
= 5, .crm
= 2, .opc1
= 0, .opc2
= 0,
1548 .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[1]), .resetvalue
= 0, },
1549 { .name
= "TTBR0_EL1", .state
= ARM_CP_STATE_BOTH
,
1550 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
1551 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el1
),
1552 .writefn
= vmsa_ttbr_write
, .resetvalue
= 0 },
1553 { .name
= "TTBR1_EL1", .state
= ARM_CP_STATE_BOTH
,
1554 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
1555 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr1_el1
),
1556 .writefn
= vmsa_ttbr_write
, .resetvalue
= 0 },
1557 { .name
= "TCR_EL1", .state
= ARM_CP_STATE_AA64
,
1558 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
1559 .access
= PL1_RW
, .writefn
= vmsa_tcr_el1_write
,
1560 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
1561 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_control
) },
1562 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
1563 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= vmsa_ttbcr_write
,
1564 .resetfn
= arm_cp_reset_ignore
, .raw_writefn
= vmsa_ttbcr_raw_write
,
1565 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c2_control
) },
1566 /* 64-bit FAR; this entry also gives us the AArch32 DFAR */
1567 { .name
= "FAR_EL1", .state
= ARM_CP_STATE_BOTH
,
1568 .opc0
= 3, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
1569 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[1]),
1574 static void omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1577 env
->cp15
.c15_ticonfig
= value
& 0xe7;
1578 /* The OS_TYPE bit in this register changes the reported CPUID! */
1579 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
1580 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
1583 static void omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1586 env
->cp15
.c15_threadid
= value
& 0xffff;
1589 static void omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1592 /* Wait-for-interrupt (deprecated) */
1593 cpu_interrupt(CPU(arm_env_get_cpu(env
)), CPU_INTERRUPT_HALT
);
1596 static void omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1599 /* On OMAP there are registers indicating the max/min index of dcache lines
1600 * containing a dirty line; cache flush operations have to reset these.
1602 env
->cp15
.c15_i_max
= 0x000;
1603 env
->cp15
.c15_i_min
= 0xff0;
1606 static const ARMCPRegInfo omap_cp_reginfo
[] = {
1607 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
1608 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
1609 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el
[1]),
1611 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
1612 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
1613 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
1615 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
1616 .writefn
= omap_ticonfig_write
},
1617 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
1619 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
1620 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
1621 .access
= PL1_RW
, .resetvalue
= 0xff0,
1622 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
1623 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
1625 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
1626 .writefn
= omap_threadid_write
},
1627 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
1628 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
1629 .type
= ARM_CP_NO_MIGRATE
,
1630 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
1631 /* TODO: Peripheral port remap register:
1632 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1633 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1636 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
1637 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
1638 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_MIGRATE
,
1639 .writefn
= omap_cachemaint_write
},
1640 { .name
= "C9", .cp
= 15, .crn
= 9,
1641 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
1642 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
1646 static void xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1650 if (env
->cp15
.c15_cpar
!= value
) {
1651 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1653 env
->cp15
.c15_cpar
= value
;
1657 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
1658 { .name
= "XSCALE_CPAR",
1659 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
1660 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
1661 .writefn
= xscale_cpar_write
, },
1662 { .name
= "XSCALE_AUXCR",
1663 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
1664 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
1666 /* XScale specific cache-lockdown: since we have no cache we NOP these
1667 * and hope the guest does not really rely on cache behaviour.
1669 { .name
= "XSCALE_LOCK_ICACHE_LINE",
1670 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
1671 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1672 { .name
= "XSCALE_UNLOCK_ICACHE",
1673 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
1674 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1675 { .name
= "XSCALE_DCACHE_LOCK",
1676 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 0,
1677 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
1678 { .name
= "XSCALE_UNLOCK_DCACHE",
1679 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 1,
1680 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1684 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
1685 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1686 * implementation of this implementation-defined space.
1687 * Ideally this should eventually disappear in favour of actually
1688 * implementing the correct behaviour for all cores.
1690 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
1691 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
1693 .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
| ARM_CP_OVERRIDE
,
1698 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
1699 /* Cache status: RAZ because we have no cache so it's always clean */
1700 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
1701 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1706 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
1707 /* We never have a a block transfer operation in progress */
1708 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
1709 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1711 /* The cache ops themselves: these all NOP for QEMU */
1712 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
1713 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1714 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
1715 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1716 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
1717 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1718 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
1719 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1720 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
1721 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1722 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
1723 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1727 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
1728 /* The cache test-and-clean instructions always return (1 << 30)
1729 * to indicate that there are no dirty cache lines.
1731 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
1732 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1733 .resetvalue
= (1 << 30) },
1734 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
1735 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1736 .resetvalue
= (1 << 30) },
1740 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
1741 /* Ignore ReadBuffer accesses */
1742 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
1743 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
1744 .access
= PL1_RW
, .resetvalue
= 0,
1745 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_MIGRATE
},
1749 static uint64_t mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1751 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
1752 uint32_t mpidr
= cs
->cpu_index
;
1753 /* We don't support setting cluster ID ([8..11]) (known as Aff1
1754 * in later ARM ARM versions), or any of the higher affinity level fields,
1755 * so these bits always RAZ.
1757 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
1758 mpidr
|= (1U << 31);
1759 /* Cores which are uniprocessor (non-coherent)
1760 * but still implement the MP extensions set
1761 * bit 30. (For instance, A9UP.) However we do
1762 * not currently model any of those cores.
1768 static const ARMCPRegInfo mpidr_cp_reginfo
[] = {
1769 { .name
= "MPIDR", .state
= ARM_CP_STATE_BOTH
,
1770 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
1771 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_MIGRATE
},
1775 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
1776 /* NOP AMAIR0/1: the override is because these clash with the rather
1777 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1779 { .name
= "AMAIR0", .state
= ARM_CP_STATE_BOTH
,
1780 .opc0
= 3, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
1781 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
1783 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
1784 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
1785 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
1787 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
1788 .access
= PL1_RW
, .type
= ARM_CP_64BIT
,
1789 .fieldoffset
= offsetof(CPUARMState
, cp15
.par_el1
), .resetvalue
= 0 },
1790 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
1791 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
,
1792 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el1
),
1793 .writefn
= vmsa_ttbr_write
, .resetfn
= arm_cp_reset_ignore
},
1794 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
1795 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
,
1796 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr1_el1
),
1797 .writefn
= vmsa_ttbr_write
, .resetfn
= arm_cp_reset_ignore
},
1801 static uint64_t aa64_fpcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1803 return vfp_get_fpcr(env
);
1806 static void aa64_fpcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1809 vfp_set_fpcr(env
, value
);
1812 static uint64_t aa64_fpsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1814 return vfp_get_fpsr(env
);
1817 static void aa64_fpsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1820 vfp_set_fpsr(env
, value
);
1823 static CPAccessResult
aa64_daif_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1825 if (arm_current_pl(env
) == 0 && !(env
->cp15
.c1_sys
& SCTLR_UMA
)) {
1826 return CP_ACCESS_TRAP
;
1828 return CP_ACCESS_OK
;
1831 static void aa64_daif_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1834 env
->daif
= value
& PSTATE_DAIF
;
1837 static CPAccessResult
aa64_cacheop_access(CPUARMState
*env
,
1838 const ARMCPRegInfo
*ri
)
1840 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
1841 * SCTLR_EL1.UCI is set.
1843 if (arm_current_pl(env
) == 0 && !(env
->cp15
.c1_sys
& SCTLR_UCI
)) {
1844 return CP_ACCESS_TRAP
;
1846 return CP_ACCESS_OK
;
1849 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
1850 * Page D4-1736 (DDI0487A.b)
1853 static void tlbi_aa64_va_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1856 /* Invalidate by VA (AArch64 version) */
1857 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1858 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
1860 tlb_flush_page(CPU(cpu
), pageaddr
);
1863 static void tlbi_aa64_vaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1866 /* Invalidate by VA, all ASIDs (AArch64 version) */
1867 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1868 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
1870 tlb_flush_page(CPU(cpu
), pageaddr
);
1873 static void tlbi_aa64_asid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1876 /* Invalidate by ASID (AArch64 version) */
1877 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1878 int asid
= extract64(value
, 48, 16);
1879 tlb_flush(CPU(cpu
), asid
== 0);
1882 static CPAccessResult
aa64_zva_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1884 /* We don't implement EL2, so the only control on DC ZVA is the
1885 * bit in the SCTLR which can prohibit access for EL0.
1887 if (arm_current_pl(env
) == 0 && !(env
->cp15
.c1_sys
& SCTLR_DZE
)) {
1888 return CP_ACCESS_TRAP
;
1890 return CP_ACCESS_OK
;
1893 static uint64_t aa64_dczid_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1895 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1896 int dzp_bit
= 1 << 4;
1898 /* DZP indicates whether DC ZVA access is allowed */
1899 if (aa64_zva_access(env
, NULL
) != CP_ACCESS_OK
) {
1902 return cpu
->dcz_blocksize
| dzp_bit
;
1905 static CPAccessResult
sp_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1907 if (!(env
->pstate
& PSTATE_SP
)) {
1908 /* Access to SP_EL0 is undefined if it's being used as
1909 * the stack pointer.
1911 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1913 return CP_ACCESS_OK
;
1916 static uint64_t spsel_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1918 return env
->pstate
& PSTATE_SP
;
1921 static void spsel_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t val
)
1923 update_spsel(env
, val
);
1926 static const ARMCPRegInfo v8_cp_reginfo
[] = {
1927 /* Minimal set of EL0-visible registers. This will need to be expanded
1928 * significantly for system emulation of AArch64 CPUs.
1930 { .name
= "NZCV", .state
= ARM_CP_STATE_AA64
,
1931 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 2,
1932 .access
= PL0_RW
, .type
= ARM_CP_NZCV
},
1933 { .name
= "DAIF", .state
= ARM_CP_STATE_AA64
,
1934 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 2,
1935 .type
= ARM_CP_NO_MIGRATE
,
1936 .access
= PL0_RW
, .accessfn
= aa64_daif_access
,
1937 .fieldoffset
= offsetof(CPUARMState
, daif
),
1938 .writefn
= aa64_daif_write
, .resetfn
= arm_cp_reset_ignore
},
1939 { .name
= "FPCR", .state
= ARM_CP_STATE_AA64
,
1940 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 4,
1941 .access
= PL0_RW
, .readfn
= aa64_fpcr_read
, .writefn
= aa64_fpcr_write
},
1942 { .name
= "FPSR", .state
= ARM_CP_STATE_AA64
,
1943 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 4,
1944 .access
= PL0_RW
, .readfn
= aa64_fpsr_read
, .writefn
= aa64_fpsr_write
},
1945 { .name
= "DCZID_EL0", .state
= ARM_CP_STATE_AA64
,
1946 .opc0
= 3, .opc1
= 3, .opc2
= 7, .crn
= 0, .crm
= 0,
1947 .access
= PL0_R
, .type
= ARM_CP_NO_MIGRATE
,
1948 .readfn
= aa64_dczid_read
},
1949 { .name
= "DC_ZVA", .state
= ARM_CP_STATE_AA64
,
1950 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 4, .opc2
= 1,
1951 .access
= PL0_W
, .type
= ARM_CP_DC_ZVA
,
1952 #ifndef CONFIG_USER_ONLY
1953 /* Avoid overhead of an access check that always passes in user-mode */
1954 .accessfn
= aa64_zva_access
,
1957 { .name
= "CURRENTEL", .state
= ARM_CP_STATE_AA64
,
1958 .opc0
= 3, .opc1
= 0, .opc2
= 2, .crn
= 4, .crm
= 2,
1959 .access
= PL1_R
, .type
= ARM_CP_CURRENTEL
},
1960 /* Cache ops: all NOPs since we don't emulate caches */
1961 { .name
= "IC_IALLUIS", .state
= ARM_CP_STATE_AA64
,
1962 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
1963 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1964 { .name
= "IC_IALLU", .state
= ARM_CP_STATE_AA64
,
1965 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
1966 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1967 { .name
= "IC_IVAU", .state
= ARM_CP_STATE_AA64
,
1968 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 5, .opc2
= 1,
1969 .access
= PL0_W
, .type
= ARM_CP_NOP
,
1970 .accessfn
= aa64_cacheop_access
},
1971 { .name
= "DC_IVAC", .state
= ARM_CP_STATE_AA64
,
1972 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
1973 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1974 { .name
= "DC_ISW", .state
= ARM_CP_STATE_AA64
,
1975 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
1976 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1977 { .name
= "DC_CVAC", .state
= ARM_CP_STATE_AA64
,
1978 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 10, .opc2
= 1,
1979 .access
= PL0_W
, .type
= ARM_CP_NOP
,
1980 .accessfn
= aa64_cacheop_access
},
1981 { .name
= "DC_CSW", .state
= ARM_CP_STATE_AA64
,
1982 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
1983 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1984 { .name
= "DC_CVAU", .state
= ARM_CP_STATE_AA64
,
1985 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 11, .opc2
= 1,
1986 .access
= PL0_W
, .type
= ARM_CP_NOP
,
1987 .accessfn
= aa64_cacheop_access
},
1988 { .name
= "DC_CIVAC", .state
= ARM_CP_STATE_AA64
,
1989 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 14, .opc2
= 1,
1990 .access
= PL0_W
, .type
= ARM_CP_NOP
,
1991 .accessfn
= aa64_cacheop_access
},
1992 { .name
= "DC_CISW", .state
= ARM_CP_STATE_AA64
,
1993 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
1994 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1995 /* TLBI operations */
1996 { .name
= "TLBI_VMALLE1IS", .state
= ARM_CP_STATE_AA64
,
1997 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
1998 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1999 .writefn
= tlbiall_write
},
2000 { .name
= "TLBI_VAE1IS", .state
= ARM_CP_STATE_AA64
,
2001 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
2002 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2003 .writefn
= tlbi_aa64_va_write
},
2004 { .name
= "TLBI_ASIDE1IS", .state
= ARM_CP_STATE_AA64
,
2005 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
2006 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2007 .writefn
= tlbi_aa64_asid_write
},
2008 { .name
= "TLBI_VAAE1IS", .state
= ARM_CP_STATE_AA64
,
2009 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
2010 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2011 .writefn
= tlbi_aa64_vaa_write
},
2012 { .name
= "TLBI_VALE1IS", .state
= ARM_CP_STATE_AA64
,
2013 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
2014 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2015 .writefn
= tlbi_aa64_va_write
},
2016 { .name
= "TLBI_VAALE1IS", .state
= ARM_CP_STATE_AA64
,
2017 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
2018 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2019 .writefn
= tlbi_aa64_vaa_write
},
2020 { .name
= "TLBI_VMALLE1", .state
= ARM_CP_STATE_AA64
,
2021 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
2022 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2023 .writefn
= tlbiall_write
},
2024 { .name
= "TLBI_VAE1", .state
= ARM_CP_STATE_AA64
,
2025 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
2026 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2027 .writefn
= tlbi_aa64_va_write
},
2028 { .name
= "TLBI_ASIDE1", .state
= ARM_CP_STATE_AA64
,
2029 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
2030 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2031 .writefn
= tlbi_aa64_asid_write
},
2032 { .name
= "TLBI_VAAE1", .state
= ARM_CP_STATE_AA64
,
2033 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
2034 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2035 .writefn
= tlbi_aa64_vaa_write
},
2036 { .name
= "TLBI_VALE1", .state
= ARM_CP_STATE_AA64
,
2037 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
2038 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2039 .writefn
= tlbi_aa64_va_write
},
2040 { .name
= "TLBI_VAALE1", .state
= ARM_CP_STATE_AA64
,
2041 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
2042 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2043 .writefn
= tlbi_aa64_vaa_write
},
2044 #ifndef CONFIG_USER_ONLY
2045 /* 64 bit address translation operations */
2046 { .name
= "AT_S1E1R", .state
= ARM_CP_STATE_AA64
,
2047 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 0,
2048 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= ats_write
},
2049 { .name
= "AT_S1E1W", .state
= ARM_CP_STATE_AA64
,
2050 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 1,
2051 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= ats_write
},
2052 { .name
= "AT_S1E0R", .state
= ARM_CP_STATE_AA64
,
2053 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 2,
2054 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= ats_write
},
2055 { .name
= "AT_S1E0W", .state
= ARM_CP_STATE_AA64
,
2056 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 3,
2057 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= ats_write
},
2059 /* 32 bit TLB invalidates, Inner Shareable */
2060 { .name
= "TLBIALLIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
2061 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiall_write
},
2062 { .name
= "TLBIMVAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
2063 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
2064 { .name
= "TLBIASIDIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
2065 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
2066 { .name
= "TLBIMVAAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
2067 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
2068 { .name
= "TLBIMVALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
2069 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
2070 { .name
= "TLBIMVAALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
2071 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
2072 /* 32 bit ITLB invalidates */
2073 { .name
= "ITLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 0,
2074 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiall_write
},
2075 { .name
= "ITLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 1,
2076 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
2077 { .name
= "ITLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 2,
2078 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
2079 /* 32 bit DTLB invalidates */
2080 { .name
= "DTLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 0,
2081 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiall_write
},
2082 { .name
= "DTLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 1,
2083 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
2084 { .name
= "DTLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 2,
2085 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
2086 /* 32 bit TLB invalidates */
2087 { .name
= "TLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
2088 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiall_write
},
2089 { .name
= "TLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
2090 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
2091 { .name
= "TLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
2092 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
2093 { .name
= "TLBIMVAA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
2094 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
2095 { .name
= "TLBIMVAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
2096 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
2097 { .name
= "TLBIMVAAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
2098 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
2099 /* 32 bit cache operations */
2100 { .name
= "ICIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
2101 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2102 { .name
= "BPIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 6,
2103 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2104 { .name
= "ICIALLU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
2105 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2106 { .name
= "ICIMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 1,
2107 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2108 { .name
= "BPIALL", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 6,
2109 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2110 { .name
= "BPIMVA", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 7,
2111 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2112 { .name
= "DCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
2113 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2114 { .name
= "DCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
2115 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2116 { .name
= "DCCMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 1,
2117 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2118 { .name
= "DCCSW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
2119 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2120 { .name
= "DCCMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 11, .opc2
= 1,
2121 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2122 { .name
= "DCCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 1,
2123 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2124 { .name
= "DCCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
2125 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2126 /* MMU Domain access control / MPU write buffer control */
2127 { .name
= "DACR", .cp
= 15,
2128 .opc1
= 0, .crn
= 3, .crm
= 0, .opc2
= 0,
2129 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c3
),
2130 .resetvalue
= 0, .writefn
= dacr_write
, .raw_writefn
= raw_write
, },
2131 { .name
= "ELR_EL1", .state
= ARM_CP_STATE_AA64
,
2132 .type
= ARM_CP_NO_MIGRATE
,
2133 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 1,
2135 .fieldoffset
= offsetof(CPUARMState
, elr_el
[1]) },
2136 { .name
= "SPSR_EL1", .state
= ARM_CP_STATE_AA64
,
2137 .type
= ARM_CP_NO_MIGRATE
,
2138 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 0,
2139 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[0]) },
2140 /* We rely on the access checks not allowing the guest to write to the
2141 * state field when SPSel indicates that it's being used as the stack
2144 { .name
= "SP_EL0", .state
= ARM_CP_STATE_AA64
,
2145 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 1, .opc2
= 0,
2146 .access
= PL1_RW
, .accessfn
= sp_el0_access
,
2147 .type
= ARM_CP_NO_MIGRATE
,
2148 .fieldoffset
= offsetof(CPUARMState
, sp_el
[0]) },
2149 { .name
= "SPSel", .state
= ARM_CP_STATE_AA64
,
2150 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 2, .opc2
= 0,
2151 .type
= ARM_CP_NO_MIGRATE
,
2152 .access
= PL1_RW
, .readfn
= spsel_read
, .writefn
= spsel_write
},
2156 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
2157 static const ARMCPRegInfo v8_el3_no_el2_cp_reginfo
[] = {
2158 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
2159 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
2161 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
2165 static const ARMCPRegInfo v8_el2_cp_reginfo
[] = {
2166 { .name
= "ELR_EL2", .state
= ARM_CP_STATE_AA64
,
2167 .type
= ARM_CP_NO_MIGRATE
,
2168 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 1,
2170 .fieldoffset
= offsetof(CPUARMState
, elr_el
[2]) },
2171 { .name
= "ESR_EL2", .state
= ARM_CP_STATE_AA64
,
2172 .type
= ARM_CP_NO_MIGRATE
,
2173 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 2, .opc2
= 0,
2174 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[2]) },
2175 { .name
= "FAR_EL2", .state
= ARM_CP_STATE_AA64
,
2176 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 0,
2177 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[2]) },
2178 { .name
= "SPSR_EL2", .state
= ARM_CP_STATE_AA64
,
2179 .type
= ARM_CP_NO_MIGRATE
,
2180 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 0,
2181 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[6]) },
2182 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
2183 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
2184 .access
= PL2_RW
, .writefn
= vbar_write
,
2185 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[2]),
2190 static const ARMCPRegInfo v8_el3_cp_reginfo
[] = {
2191 { .name
= "ELR_EL3", .state
= ARM_CP_STATE_AA64
,
2192 .type
= ARM_CP_NO_MIGRATE
,
2193 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 1,
2195 .fieldoffset
= offsetof(CPUARMState
, elr_el
[3]) },
2196 { .name
= "ESR_EL3", .state
= ARM_CP_STATE_AA64
,
2197 .type
= ARM_CP_NO_MIGRATE
,
2198 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 2, .opc2
= 0,
2199 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[3]) },
2200 { .name
= "FAR_EL3", .state
= ARM_CP_STATE_AA64
,
2201 .opc0
= 3, .opc1
= 6, .crn
= 6, .crm
= 0, .opc2
= 0,
2202 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[3]) },
2203 { .name
= "SPSR_EL3", .state
= ARM_CP_STATE_AA64
,
2204 .type
= ARM_CP_NO_MIGRATE
,
2205 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 0,
2206 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[7]) },
2207 { .name
= "VBAR_EL3", .state
= ARM_CP_STATE_AA64
,
2208 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 0,
2209 .access
= PL3_RW
, .writefn
= vbar_write
,
2210 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[3]),
2215 static void sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2218 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2220 if (raw_read(env
, ri
) == value
) {
2221 /* Skip the TLB flush if nothing actually changed; Linux likes
2222 * to do a lot of pointless SCTLR writes.
2227 raw_write(env
, ri
, value
);
2228 /* ??? Lots of these bits are not implemented. */
2229 /* This may enable/disable the MMU, so do a TLB flush. */
2230 tlb_flush(CPU(cpu
), 1);
2233 static CPAccessResult
ctr_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2235 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
2236 * but the AArch32 CTR has its own reginfo struct)
2238 if (arm_current_pl(env
) == 0 && !(env
->cp15
.c1_sys
& SCTLR_UCT
)) {
2239 return CP_ACCESS_TRAP
;
2241 return CP_ACCESS_OK
;
2244 static const ARMCPRegInfo debug_cp_reginfo
[] = {
2245 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
2246 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
2247 * unlike DBGDRAR it is never accessible from EL0.
2248 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
2251 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
2252 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2253 { .name
= "MDRAR_EL1", .state
= ARM_CP_STATE_AA64
,
2254 .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
2255 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2256 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
2257 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2258 /* Dummy implementation of monitor debug system control register:
2259 * we don't support debug. (The 32-bit alias is DBGDSCRext.)
2261 { .name
= "MDSCR_EL1", .state
= ARM_CP_STATE_BOTH
,
2262 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
2264 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
),
2266 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
2267 { .name
= "OSLAR_EL1", .state
= ARM_CP_STATE_BOTH
,
2268 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 4,
2269 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2273 static const ARMCPRegInfo debug_lpae_cp_reginfo
[] = {
2274 /* 64 bit access versions of the (dummy) debug registers */
2275 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
2276 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
2277 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
2278 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
2282 static void define_debug_regs(ARMCPU
*cpu
)
2284 /* Define v7 and v8 architectural debug registers.
2285 * These are just dummy implementations for now.
2289 ARMCPRegInfo dbgdidr
= {
2290 .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
2291 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->dbgdidr
,
2294 brps
= extract32(cpu
->dbgdidr
, 24, 4);
2295 wrps
= extract32(cpu
->dbgdidr
, 28, 4);
2297 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
2298 * of the debug registers such as number of breakpoints;
2299 * check that if they both exist then they agree.
2301 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
2302 assert(extract32(cpu
->id_aa64dfr0
, 12, 4) == brps
);
2303 assert(extract32(cpu
->id_aa64dfr0
, 20, 4) == wrps
);
2306 define_one_arm_cp_reg(cpu
, &dbgdidr
);
2307 define_arm_cp_regs(cpu
, debug_cp_reginfo
);
2309 if (arm_feature(&cpu
->env
, ARM_FEATURE_LPAE
)) {
2310 define_arm_cp_regs(cpu
, debug_lpae_cp_reginfo
);
2313 for (i
= 0; i
< brps
+ 1; i
++) {
2314 ARMCPRegInfo dbgregs
[] = {
2315 { .name
= "DBGBVR", .state
= ARM_CP_STATE_BOTH
,
2316 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 4,
2318 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbvr
[i
]) },
2319 { .name
= "DBGBCR", .state
= ARM_CP_STATE_BOTH
,
2320 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 5,
2322 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbcr
[i
]) },
2325 define_arm_cp_regs(cpu
, dbgregs
);
2328 for (i
= 0; i
< wrps
+ 1; i
++) {
2329 ARMCPRegInfo dbgregs
[] = {
2330 { .name
= "DBGWVR", .state
= ARM_CP_STATE_BOTH
,
2331 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 6,
2333 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwvr
[i
]) },
2334 { .name
= "DBGWCR", .state
= ARM_CP_STATE_BOTH
,
2335 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 7,
2337 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwcr
[i
]) },
2340 define_arm_cp_regs(cpu
, dbgregs
);
2344 void register_cp_regs_for_features(ARMCPU
*cpu
)
2346 /* Register all the coprocessor registers based on feature bits */
2347 CPUARMState
*env
= &cpu
->env
;
2348 if (arm_feature(env
, ARM_FEATURE_M
)) {
2349 /* M profile has no coprocessor registers */
2353 define_arm_cp_regs(cpu
, cp_reginfo
);
2354 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2355 /* Must go early as it is full of wildcards that may be
2356 * overridden by later definitions.
2358 define_arm_cp_regs(cpu
, not_v8_cp_reginfo
);
2361 if (arm_feature(env
, ARM_FEATURE_V6
)) {
2362 /* The ID registers all have impdef reset values */
2363 ARMCPRegInfo v6_idregs
[] = {
2364 { .name
= "ID_PFR0", .state
= ARM_CP_STATE_BOTH
,
2365 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
2366 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2367 .resetvalue
= cpu
->id_pfr0
},
2368 { .name
= "ID_PFR1", .state
= ARM_CP_STATE_BOTH
,
2369 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 1,
2370 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2371 .resetvalue
= cpu
->id_pfr1
},
2372 { .name
= "ID_DFR0", .state
= ARM_CP_STATE_BOTH
,
2373 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 2,
2374 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2375 .resetvalue
= cpu
->id_dfr0
},
2376 { .name
= "ID_AFR0", .state
= ARM_CP_STATE_BOTH
,
2377 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 3,
2378 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2379 .resetvalue
= cpu
->id_afr0
},
2380 { .name
= "ID_MMFR0", .state
= ARM_CP_STATE_BOTH
,
2381 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 4,
2382 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2383 .resetvalue
= cpu
->id_mmfr0
},
2384 { .name
= "ID_MMFR1", .state
= ARM_CP_STATE_BOTH
,
2385 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 5,
2386 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2387 .resetvalue
= cpu
->id_mmfr1
},
2388 { .name
= "ID_MMFR2", .state
= ARM_CP_STATE_BOTH
,
2389 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 6,
2390 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2391 .resetvalue
= cpu
->id_mmfr2
},
2392 { .name
= "ID_MMFR3", .state
= ARM_CP_STATE_BOTH
,
2393 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 7,
2394 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2395 .resetvalue
= cpu
->id_mmfr3
},
2396 { .name
= "ID_ISAR0", .state
= ARM_CP_STATE_BOTH
,
2397 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
2398 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2399 .resetvalue
= cpu
->id_isar0
},
2400 { .name
= "ID_ISAR1", .state
= ARM_CP_STATE_BOTH
,
2401 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 1,
2402 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2403 .resetvalue
= cpu
->id_isar1
},
2404 { .name
= "ID_ISAR2", .state
= ARM_CP_STATE_BOTH
,
2405 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
2406 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2407 .resetvalue
= cpu
->id_isar2
},
2408 { .name
= "ID_ISAR3", .state
= ARM_CP_STATE_BOTH
,
2409 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 3,
2410 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2411 .resetvalue
= cpu
->id_isar3
},
2412 { .name
= "ID_ISAR4", .state
= ARM_CP_STATE_BOTH
,
2413 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 4,
2414 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2415 .resetvalue
= cpu
->id_isar4
},
2416 { .name
= "ID_ISAR5", .state
= ARM_CP_STATE_BOTH
,
2417 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 5,
2418 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2419 .resetvalue
= cpu
->id_isar5
},
2420 /* 6..7 are as yet unallocated and must RAZ */
2421 { .name
= "ID_ISAR6", .cp
= 15, .crn
= 0, .crm
= 2,
2422 .opc1
= 0, .opc2
= 6, .access
= PL1_R
, .type
= ARM_CP_CONST
,
2424 { .name
= "ID_ISAR7", .cp
= 15, .crn
= 0, .crm
= 2,
2425 .opc1
= 0, .opc2
= 7, .access
= PL1_R
, .type
= ARM_CP_CONST
,
2429 define_arm_cp_regs(cpu
, v6_idregs
);
2430 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
2432 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
2434 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
2435 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
2437 if (arm_feature(env
, ARM_FEATURE_V7
)) {
2438 /* v7 performance monitor control register: same implementor
2439 * field as main ID register, and we implement only the cycle
2442 #ifndef CONFIG_USER_ONLY
2443 ARMCPRegInfo pmcr
= {
2444 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
2446 .type
= ARM_CP_IO
| ARM_CP_NO_MIGRATE
,
2447 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcr
),
2448 .accessfn
= pmreg_access
, .writefn
= pmcr_write
,
2449 .raw_writefn
= raw_write
,
2451 ARMCPRegInfo pmcr64
= {
2452 .name
= "PMCR_EL0", .state
= ARM_CP_STATE_AA64
,
2453 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 0,
2454 .access
= PL0_RW
, .accessfn
= pmreg_access
,
2456 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
2457 .resetvalue
= cpu
->midr
& 0xff000000,
2458 .writefn
= pmcr_write
, .raw_writefn
= raw_write
,
2460 define_one_arm_cp_reg(cpu
, &pmcr
);
2461 define_one_arm_cp_reg(cpu
, &pmcr64
);
2463 ARMCPRegInfo clidr
= {
2464 .name
= "CLIDR", .state
= ARM_CP_STATE_BOTH
,
2465 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
2466 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->clidr
2468 define_one_arm_cp_reg(cpu
, &clidr
);
2469 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
2470 define_debug_regs(cpu
);
2472 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
2474 if (arm_feature(env
, ARM_FEATURE_V8
)) {
2475 /* AArch64 ID registers, which all have impdef reset values */
2476 ARMCPRegInfo v8_idregs
[] = {
2477 { .name
= "ID_AA64PFR0_EL1", .state
= ARM_CP_STATE_AA64
,
2478 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 0,
2479 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2480 .resetvalue
= cpu
->id_aa64pfr0
},
2481 { .name
= "ID_AA64PFR1_EL1", .state
= ARM_CP_STATE_AA64
,
2482 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 1,
2483 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2484 .resetvalue
= cpu
->id_aa64pfr1
},
2485 { .name
= "ID_AA64DFR0_EL1", .state
= ARM_CP_STATE_AA64
,
2486 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 0,
2487 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2488 /* We mask out the PMUVer field, because we don't currently
2489 * implement the PMU. Not advertising it prevents the guest
2490 * from trying to use it and getting UNDEFs on registers we
2493 .resetvalue
= cpu
->id_aa64dfr0
& ~0xf00 },
2494 { .name
= "ID_AA64DFR1_EL1", .state
= ARM_CP_STATE_AA64
,
2495 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 1,
2496 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2497 .resetvalue
= cpu
->id_aa64dfr1
},
2498 { .name
= "ID_AA64AFR0_EL1", .state
= ARM_CP_STATE_AA64
,
2499 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 4,
2500 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2501 .resetvalue
= cpu
->id_aa64afr0
},
2502 { .name
= "ID_AA64AFR1_EL1", .state
= ARM_CP_STATE_AA64
,
2503 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 5,
2504 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2505 .resetvalue
= cpu
->id_aa64afr1
},
2506 { .name
= "ID_AA64ISAR0_EL1", .state
= ARM_CP_STATE_AA64
,
2507 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 0,
2508 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2509 .resetvalue
= cpu
->id_aa64isar0
},
2510 { .name
= "ID_AA64ISAR1_EL1", .state
= ARM_CP_STATE_AA64
,
2511 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 1,
2512 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2513 .resetvalue
= cpu
->id_aa64isar1
},
2514 { .name
= "ID_AA64MMFR0_EL1", .state
= ARM_CP_STATE_AA64
,
2515 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
2516 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2517 .resetvalue
= cpu
->id_aa64mmfr0
},
2518 { .name
= "ID_AA64MMFR1_EL1", .state
= ARM_CP_STATE_AA64
,
2519 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 1,
2520 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2521 .resetvalue
= cpu
->id_aa64mmfr1
},
2522 { .name
= "MVFR0_EL1", .state
= ARM_CP_STATE_AA64
,
2523 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 0,
2524 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2525 .resetvalue
= cpu
->mvfr0
},
2526 { .name
= "MVFR1_EL1", .state
= ARM_CP_STATE_AA64
,
2527 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 1,
2528 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2529 .resetvalue
= cpu
->mvfr1
},
2530 { .name
= "MVFR2_EL1", .state
= ARM_CP_STATE_AA64
,
2531 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 2,
2532 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2533 .resetvalue
= cpu
->mvfr2
},
2536 ARMCPRegInfo rvbar
= {
2537 .name
= "RVBAR_EL1", .state
= ARM_CP_STATE_AA64
,
2538 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 2,
2539 .type
= ARM_CP_CONST
, .access
= PL1_R
, .resetvalue
= cpu
->rvbar
2541 define_one_arm_cp_reg(cpu
, &rvbar
);
2542 define_arm_cp_regs(cpu
, v8_idregs
);
2543 define_arm_cp_regs(cpu
, v8_cp_reginfo
);
2545 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
2546 define_arm_cp_regs(cpu
, v8_el2_cp_reginfo
);
2548 /* If EL2 is missing but higher ELs are enabled, we need to
2549 * register the no_el2 reginfos.
2551 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
2552 define_arm_cp_regs(cpu
, v8_el3_no_el2_cp_reginfo
);
2555 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
2556 define_arm_cp_regs(cpu
, v8_el3_cp_reginfo
);
2558 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
2559 /* These are the MPU registers prior to PMSAv6. Any new
2560 * PMSA core later than the ARM946 will require that we
2561 * implement the PMSAv6 or PMSAv7 registers, which are
2562 * completely different.
2564 assert(!arm_feature(env
, ARM_FEATURE_V6
));
2565 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
2567 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
2569 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
2570 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
2572 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
2573 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
2575 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
2576 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
2578 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
2579 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
2581 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
2582 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
2584 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
2585 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
2587 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
2588 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
2590 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
2591 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
2593 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
2594 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
2596 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
2597 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
2599 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
2600 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
2602 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
2603 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
2604 * be read-only (ie write causes UNDEF exception).
2607 ARMCPRegInfo id_pre_v8_midr_cp_reginfo
[] = {
2608 /* Pre-v8 MIDR space.
2609 * Note that the MIDR isn't a simple constant register because
2610 * of the TI925 behaviour where writes to another register can
2611 * cause the MIDR value to change.
2613 * Unimplemented registers in the c15 0 0 0 space default to
2614 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
2615 * and friends override accordingly.
2618 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
2619 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
2620 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
2621 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
2622 .type
= ARM_CP_OVERRIDE
},
2623 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
2625 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
2626 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2628 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
2629 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2631 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
2632 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2634 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
2635 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2637 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
2638 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2641 ARMCPRegInfo id_v8_midr_cp_reginfo
[] = {
2642 /* v8 MIDR -- the wildcard isn't necessary, and nor is the
2643 * variable-MIDR TI925 behaviour. Instead we have a single
2644 * (strictly speaking IMPDEF) alias of the MIDR, REVIDR.
2646 { .name
= "MIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
2647 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 0,
2648 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
},
2649 { .name
= "REVIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
2650 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 6,
2651 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
},
2654 ARMCPRegInfo id_cp_reginfo
[] = {
2655 /* These are common to v8 and pre-v8 */
2657 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
2658 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
2659 { .name
= "CTR_EL0", .state
= ARM_CP_STATE_AA64
,
2660 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 0, .crm
= 0,
2661 .access
= PL0_R
, .accessfn
= ctr_el0_access
,
2662 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
2663 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
2665 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
2666 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2668 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
2669 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2672 ARMCPRegInfo crn0_wi_reginfo
= {
2673 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
2674 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
2675 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
2677 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
2678 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
2680 /* Register the blanket "writes ignored" value first to cover the
2681 * whole space. Then update the specific ID registers to allow write
2682 * access, so that they ignore writes rather than causing them to
2685 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
2686 for (r
= id_pre_v8_midr_cp_reginfo
;
2687 r
->type
!= ARM_CP_SENTINEL
; r
++) {
2690 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
2694 if (arm_feature(env
, ARM_FEATURE_V8
)) {
2695 define_arm_cp_regs(cpu
, id_v8_midr_cp_reginfo
);
2697 define_arm_cp_regs(cpu
, id_pre_v8_midr_cp_reginfo
);
2699 define_arm_cp_regs(cpu
, id_cp_reginfo
);
2702 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
2703 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
2706 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
2707 ARMCPRegInfo auxcr
= {
2708 .name
= "ACTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
2709 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 1,
2710 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
2711 .resetvalue
= cpu
->reset_auxcr
2713 define_one_arm_cp_reg(cpu
, &auxcr
);
2716 if (arm_feature(env
, ARM_FEATURE_CBAR
)) {
2717 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
2718 /* 32 bit view is [31:18] 0...0 [43:32]. */
2719 uint32_t cbar32
= (extract64(cpu
->reset_cbar
, 18, 14) << 18)
2720 | extract64(cpu
->reset_cbar
, 32, 12);
2721 ARMCPRegInfo cbar_reginfo
[] = {
2723 .type
= ARM_CP_CONST
,
2724 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
2725 .access
= PL1_R
, .resetvalue
= cpu
->reset_cbar
},
2726 { .name
= "CBAR_EL1", .state
= ARM_CP_STATE_AA64
,
2727 .type
= ARM_CP_CONST
,
2728 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 3, .opc2
= 0,
2729 .access
= PL1_R
, .resetvalue
= cbar32
},
2732 /* We don't implement a r/w 64 bit CBAR currently */
2733 assert(arm_feature(env
, ARM_FEATURE_CBAR_RO
));
2734 define_arm_cp_regs(cpu
, cbar_reginfo
);
2736 ARMCPRegInfo cbar
= {
2738 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
2739 .access
= PL1_R
|PL3_W
, .resetvalue
= cpu
->reset_cbar
,
2740 .fieldoffset
= offsetof(CPUARMState
,
2741 cp15
.c15_config_base_address
)
2743 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
2744 cbar
.access
= PL1_R
;
2745 cbar
.fieldoffset
= 0;
2746 cbar
.type
= ARM_CP_CONST
;
2748 define_one_arm_cp_reg(cpu
, &cbar
);
2752 /* Generic registers whose values depend on the implementation */
2754 ARMCPRegInfo sctlr
= {
2755 .name
= "SCTLR", .state
= ARM_CP_STATE_BOTH
,
2756 .opc0
= 3, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
2757 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_sys
),
2758 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
2759 .raw_writefn
= raw_write
,
2761 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
2762 /* Normally we would always end the TB on an SCTLR write, but Linux
2763 * arch/arm/mach-pxa/sleep.S expects two instructions following
2764 * an MMU enable to execute from cache. Imitate this behaviour.
2766 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
2768 define_one_arm_cp_reg(cpu
, &sctlr
);
2772 ARMCPU
*cpu_arm_init(const char *cpu_model
)
2774 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU
, cpu_model
));
2777 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
)
2779 CPUState
*cs
= CPU(cpu
);
2780 CPUARMState
*env
= &cpu
->env
;
2782 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
2783 gdb_register_coprocessor(cs
, aarch64_fpu_gdb_get_reg
,
2784 aarch64_fpu_gdb_set_reg
,
2785 34, "aarch64-fpu.xml", 0);
2786 } else if (arm_feature(env
, ARM_FEATURE_NEON
)) {
2787 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
2788 51, "arm-neon.xml", 0);
2789 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
2790 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
2791 35, "arm-vfp3.xml", 0);
2792 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
2793 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
2794 19, "arm-vfp.xml", 0);
2798 /* Sort alphabetically by type name, except for "any". */
2799 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
2801 ObjectClass
*class_a
= (ObjectClass
*)a
;
2802 ObjectClass
*class_b
= (ObjectClass
*)b
;
2803 const char *name_a
, *name_b
;
2805 name_a
= object_class_get_name(class_a
);
2806 name_b
= object_class_get_name(class_b
);
2807 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
2809 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
2812 return strcmp(name_a
, name_b
);
2816 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
2818 ObjectClass
*oc
= data
;
2819 CPUListState
*s
= user_data
;
2820 const char *typename
;
2823 typename
= object_class_get_name(oc
);
2824 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
2825 (*s
->cpu_fprintf
)(s
->file
, " %s\n",
2830 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
2834 .cpu_fprintf
= cpu_fprintf
,
2838 list
= object_class_get_list(TYPE_ARM_CPU
, false);
2839 list
= g_slist_sort(list
, arm_cpu_list_compare
);
2840 (*cpu_fprintf
)(f
, "Available CPUs:\n");
2841 g_slist_foreach(list
, arm_cpu_list_entry
, &s
);
2844 /* The 'host' CPU type is dynamically registered only if KVM is
2845 * enabled, so we have to special-case it here:
2847 (*cpu_fprintf
)(f
, " host (only available in KVM mode)\n");
2851 static void arm_cpu_add_definition(gpointer data
, gpointer user_data
)
2853 ObjectClass
*oc
= data
;
2854 CpuDefinitionInfoList
**cpu_list
= user_data
;
2855 CpuDefinitionInfoList
*entry
;
2856 CpuDefinitionInfo
*info
;
2857 const char *typename
;
2859 typename
= object_class_get_name(oc
);
2860 info
= g_malloc0(sizeof(*info
));
2861 info
->name
= g_strndup(typename
,
2862 strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
2864 entry
= g_malloc0(sizeof(*entry
));
2865 entry
->value
= info
;
2866 entry
->next
= *cpu_list
;
2870 CpuDefinitionInfoList
*arch_query_cpu_definitions(Error
**errp
)
2872 CpuDefinitionInfoList
*cpu_list
= NULL
;
2875 list
= object_class_get_list(TYPE_ARM_CPU
, false);
2876 g_slist_foreach(list
, arm_cpu_add_definition
, &cpu_list
);
2882 static void add_cpreg_to_hashtable(ARMCPU
*cpu
, const ARMCPRegInfo
*r
,
2883 void *opaque
, int state
,
2884 int crm
, int opc1
, int opc2
)
2886 /* Private utility function for define_one_arm_cp_reg_with_opaque():
2887 * add a single reginfo struct to the hash table.
2889 uint32_t *key
= g_new(uint32_t, 1);
2890 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
2891 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
2892 if (r
->state
== ARM_CP_STATE_BOTH
&& state
== ARM_CP_STATE_AA32
) {
2893 /* The AArch32 view of a shared register sees the lower 32 bits
2894 * of a 64 bit backing field. It is not migratable as the AArch64
2895 * view handles that. AArch64 also handles reset.
2896 * We assume it is a cp15 register if the .cp field is left unset.
2901 r2
->type
|= ARM_CP_NO_MIGRATE
;
2902 r2
->resetfn
= arm_cp_reset_ignore
;
2903 #ifdef HOST_WORDS_BIGENDIAN
2904 if (r2
->fieldoffset
) {
2905 r2
->fieldoffset
+= sizeof(uint32_t);
2909 if (state
== ARM_CP_STATE_AA64
) {
2910 /* To allow abbreviation of ARMCPRegInfo
2911 * definitions, we treat cp == 0 as equivalent to
2912 * the value for "standard guest-visible sysreg".
2913 * STATE_BOTH definitions are also always "standard
2914 * sysreg" in their AArch64 view (the .cp value may
2915 * be non-zero for the benefit of the AArch32 view).
2917 if (r
->cp
== 0 || r
->state
== ARM_CP_STATE_BOTH
) {
2918 r2
->cp
= CP_REG_ARM64_SYSREG_CP
;
2920 *key
= ENCODE_AA64_CP_REG(r2
->cp
, r2
->crn
, crm
,
2921 r2
->opc0
, opc1
, opc2
);
2923 *key
= ENCODE_CP_REG(r2
->cp
, is64
, r2
->crn
, crm
, opc1
, opc2
);
2926 r2
->opaque
= opaque
;
2928 /* reginfo passed to helpers is correct for the actual access,
2929 * and is never ARM_CP_STATE_BOTH:
2932 /* Make sure reginfo passed to helpers for wildcarded regs
2933 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
2938 /* By convention, for wildcarded registers only the first
2939 * entry is used for migration; the others are marked as
2940 * NO_MIGRATE so we don't try to transfer the register
2941 * multiple times. Special registers (ie NOP/WFI) are
2944 if ((r
->type
& ARM_CP_SPECIAL
) ||
2945 ((r
->crm
== CP_ANY
) && crm
!= 0) ||
2946 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
2947 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
2948 r2
->type
|= ARM_CP_NO_MIGRATE
;
2951 /* Overriding of an existing definition must be explicitly
2954 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
2955 ARMCPRegInfo
*oldreg
;
2956 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
2957 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
2958 fprintf(stderr
, "Register redefined: cp=%d %d bit "
2959 "crn=%d crm=%d opc1=%d opc2=%d, "
2960 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
2961 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
2962 oldreg
->name
, r2
->name
);
2963 g_assert_not_reached();
2966 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
2970 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
2971 const ARMCPRegInfo
*r
, void *opaque
)
2973 /* Define implementations of coprocessor registers.
2974 * We store these in a hashtable because typically
2975 * there are less than 150 registers in a space which
2976 * is 16*16*16*8*8 = 262144 in size.
2977 * Wildcarding is supported for the crm, opc1 and opc2 fields.
2978 * If a register is defined twice then the second definition is
2979 * used, so this can be used to define some generic registers and
2980 * then override them with implementation specific variations.
2981 * At least one of the original and the second definition should
2982 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
2983 * against accidental use.
2985 * The state field defines whether the register is to be
2986 * visible in the AArch32 or AArch64 execution state. If the
2987 * state is set to ARM_CP_STATE_BOTH then we synthesise a
2988 * reginfo structure for the AArch32 view, which sees the lower
2989 * 32 bits of the 64 bit register.
2991 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
2992 * be wildcarded. AArch64 registers are always considered to be 64
2993 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
2994 * the register, if any.
2996 int crm
, opc1
, opc2
, state
;
2997 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
2998 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
2999 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
3000 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
3001 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
3002 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
3003 /* 64 bit registers have only CRm and Opc1 fields */
3004 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
3005 /* op0 only exists in the AArch64 encodings */
3006 assert((r
->state
!= ARM_CP_STATE_AA32
) || (r
->opc0
== 0));
3007 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
3008 assert((r
->state
!= ARM_CP_STATE_AA64
) || !(r
->type
& ARM_CP_64BIT
));
3009 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
3010 * encodes a minimum access level for the register. We roll this
3011 * runtime check into our general permission check code, so check
3012 * here that the reginfo's specified permissions are strict enough
3013 * to encompass the generic architectural permission check.
3015 if (r
->state
!= ARM_CP_STATE_AA32
) {
3018 case 0: case 1: case 2:
3031 /* unallocated encoding, so not possible */
3039 /* min_EL EL1, secure mode only (we don't check the latter) */
3043 /* broken reginfo with out-of-range opc1 */
3047 /* assert our permissions are not too lax (stricter is fine) */
3048 assert((r
->access
& ~mask
) == 0);
3051 /* Check that the register definition has enough info to handle
3052 * reads and writes if they are permitted.
3054 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
3055 if (r
->access
& PL3_R
) {
3056 assert(r
->fieldoffset
|| r
->readfn
);
3058 if (r
->access
& PL3_W
) {
3059 assert(r
->fieldoffset
|| r
->writefn
);
3062 /* Bad type field probably means missing sentinel at end of reg list */
3063 assert(cptype_valid(r
->type
));
3064 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
3065 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
3066 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
3067 for (state
= ARM_CP_STATE_AA32
;
3068 state
<= ARM_CP_STATE_AA64
; state
++) {
3069 if (r
->state
!= state
&& r
->state
!= ARM_CP_STATE_BOTH
) {
3072 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
3080 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
3081 const ARMCPRegInfo
*regs
, void *opaque
)
3083 /* Define a whole list of registers */
3084 const ARMCPRegInfo
*r
;
3085 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
3086 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
3090 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
)
3092 return g_hash_table_lookup(cpregs
, &encoded_cp
);
3095 void arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3098 /* Helper coprocessor write function for write-ignore registers */
3101 uint64_t arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3103 /* Helper coprocessor write function for read-as-zero registers */
3107 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
3109 /* Helper coprocessor reset function for do-nothing-on-reset registers */
3112 static int bad_mode_switch(CPUARMState
*env
, int mode
)
3114 /* Return true if it is not valid for us to switch to
3115 * this CPU mode (ie all the UNPREDICTABLE cases in
3116 * the ARM ARM CPSRWriteByInstr pseudocode).
3119 case ARM_CPU_MODE_USR
:
3120 case ARM_CPU_MODE_SYS
:
3121 case ARM_CPU_MODE_SVC
:
3122 case ARM_CPU_MODE_ABT
:
3123 case ARM_CPU_MODE_UND
:
3124 case ARM_CPU_MODE_IRQ
:
3125 case ARM_CPU_MODE_FIQ
:
3132 uint32_t cpsr_read(CPUARMState
*env
)
3135 ZF
= (env
->ZF
== 0);
3136 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
3137 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
3138 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
3139 | ((env
->condexec_bits
& 0xfc) << 8)
3140 | (env
->GE
<< 16) | (env
->daif
& CPSR_AIF
);
3143 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
3145 if (mask
& CPSR_NZCV
) {
3146 env
->ZF
= (~val
) & CPSR_Z
;
3148 env
->CF
= (val
>> 29) & 1;
3149 env
->VF
= (val
<< 3) & 0x80000000;
3152 env
->QF
= ((val
& CPSR_Q
) != 0);
3154 env
->thumb
= ((val
& CPSR_T
) != 0);
3155 if (mask
& CPSR_IT_0_1
) {
3156 env
->condexec_bits
&= ~3;
3157 env
->condexec_bits
|= (val
>> 25) & 3;
3159 if (mask
& CPSR_IT_2_7
) {
3160 env
->condexec_bits
&= 3;
3161 env
->condexec_bits
|= (val
>> 8) & 0xfc;
3163 if (mask
& CPSR_GE
) {
3164 env
->GE
= (val
>> 16) & 0xf;
3167 env
->daif
&= ~(CPSR_AIF
& mask
);
3168 env
->daif
|= val
& CPSR_AIF
& mask
;
3170 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
3171 if (bad_mode_switch(env
, val
& CPSR_M
)) {
3172 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
3173 * We choose to ignore the attempt and leave the CPSR M field
3178 switch_mode(env
, val
& CPSR_M
);
3181 mask
&= ~CACHED_CPSR_BITS
;
3182 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
3185 /* Sign/zero extend */
3186 uint32_t HELPER(sxtb16
)(uint32_t x
)
3189 res
= (uint16_t)(int8_t)x
;
3190 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
3194 uint32_t HELPER(uxtb16
)(uint32_t x
)
3197 res
= (uint16_t)(uint8_t)x
;
3198 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
3202 uint32_t HELPER(clz
)(uint32_t x
)
3207 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
3211 if (num
== INT_MIN
&& den
== -1)
3216 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
3223 uint32_t HELPER(rbit
)(uint32_t x
)
3225 x
= ((x
& 0xff000000) >> 24)
3226 | ((x
& 0x00ff0000) >> 8)
3227 | ((x
& 0x0000ff00) << 8)
3228 | ((x
& 0x000000ff) << 24);
3229 x
= ((x
& 0xf0f0f0f0) >> 4)
3230 | ((x
& 0x0f0f0f0f) << 4);
3231 x
= ((x
& 0x88888888) >> 3)
3232 | ((x
& 0x44444444) >> 1)
3233 | ((x
& 0x22222222) << 1)
3234 | ((x
& 0x11111111) << 3);
3238 #if defined(CONFIG_USER_ONLY)
3240 void arm_cpu_do_interrupt(CPUState
*cs
)
3242 cs
->exception_index
= -1;
3245 int arm_cpu_handle_mmu_fault(CPUState
*cs
, vaddr address
, int rw
,
3248 ARMCPU
*cpu
= ARM_CPU(cs
);
3249 CPUARMState
*env
= &cpu
->env
;
3251 env
->exception
.vaddress
= address
;
3253 cs
->exception_index
= EXCP_PREFETCH_ABORT
;
3255 cs
->exception_index
= EXCP_DATA_ABORT
;
3260 /* These should probably raise undefined insn exceptions. */
3261 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
3263 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3265 cpu_abort(CPU(cpu
), "v7m_msr %d\n", reg
);
3268 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
3270 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3272 cpu_abort(CPU(cpu
), "v7m_mrs %d\n", reg
);
3276 void switch_mode(CPUARMState
*env
, int mode
)
3278 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3280 if (mode
!= ARM_CPU_MODE_USR
) {
3281 cpu_abort(CPU(cpu
), "Tried to switch out of user mode\n");
3285 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
3287 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3289 cpu_abort(CPU(cpu
), "banked r13 write\n");
3292 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
3294 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3296 cpu_abort(CPU(cpu
), "banked r13 read\n");
3302 /* Map CPU modes onto saved register banks. */
3303 int bank_number(int mode
)
3306 case ARM_CPU_MODE_USR
:
3307 case ARM_CPU_MODE_SYS
:
3309 case ARM_CPU_MODE_SVC
:
3311 case ARM_CPU_MODE_ABT
:
3313 case ARM_CPU_MODE_UND
:
3315 case ARM_CPU_MODE_IRQ
:
3317 case ARM_CPU_MODE_FIQ
:
3319 case ARM_CPU_MODE_HYP
:
3321 case ARM_CPU_MODE_MON
:
3324 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode
);
3327 void switch_mode(CPUARMState
*env
, int mode
)
3332 old_mode
= env
->uncached_cpsr
& CPSR_M
;
3333 if (mode
== old_mode
)
3336 if (old_mode
== ARM_CPU_MODE_FIQ
) {
3337 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
3338 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
3339 } else if (mode
== ARM_CPU_MODE_FIQ
) {
3340 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
3341 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
3344 i
= bank_number(old_mode
);
3345 env
->banked_r13
[i
] = env
->regs
[13];
3346 env
->banked_r14
[i
] = env
->regs
[14];
3347 env
->banked_spsr
[i
] = env
->spsr
;
3349 i
= bank_number(mode
);
3350 env
->regs
[13] = env
->banked_r13
[i
];
3351 env
->regs
[14] = env
->banked_r14
[i
];
3352 env
->spsr
= env
->banked_spsr
[i
];
3355 static void v7m_push(CPUARMState
*env
, uint32_t val
)
3357 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
3360 stl_phys(cs
->as
, env
->regs
[13], val
);
3363 static uint32_t v7m_pop(CPUARMState
*env
)
3365 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
3368 val
= ldl_phys(cs
->as
, env
->regs
[13]);
3373 /* Switch to V7M main or process stack pointer. */
3374 static void switch_v7m_sp(CPUARMState
*env
, int process
)
3377 if (env
->v7m
.current_sp
!= process
) {
3378 tmp
= env
->v7m
.other_sp
;
3379 env
->v7m
.other_sp
= env
->regs
[13];
3380 env
->regs
[13] = tmp
;
3381 env
->v7m
.current_sp
= process
;
3385 static void do_v7m_exception_exit(CPUARMState
*env
)
3390 type
= env
->regs
[15];
3391 if (env
->v7m
.exception
!= 0)
3392 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
3394 /* Switch to the target stack. */
3395 switch_v7m_sp(env
, (type
& 4) != 0);
3396 /* Pop registers. */
3397 env
->regs
[0] = v7m_pop(env
);
3398 env
->regs
[1] = v7m_pop(env
);
3399 env
->regs
[2] = v7m_pop(env
);
3400 env
->regs
[3] = v7m_pop(env
);
3401 env
->regs
[12] = v7m_pop(env
);
3402 env
->regs
[14] = v7m_pop(env
);
3403 env
->regs
[15] = v7m_pop(env
);
3404 xpsr
= v7m_pop(env
);
3405 xpsr_write(env
, xpsr
, 0xfffffdff);
3406 /* Undo stack alignment. */
3409 /* ??? The exception return type specifies Thread/Handler mode. However
3410 this is also implied by the xPSR value. Not sure what to do
3411 if there is a mismatch. */
3412 /* ??? Likewise for mismatches between the CONTROL register and the stack
3416 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
3418 ARMCPU
*cpu
= ARM_CPU(cs
);
3419 CPUARMState
*env
= &cpu
->env
;
3420 uint32_t xpsr
= xpsr_read(env
);
3424 arm_log_exception(cs
->exception_index
);
3427 if (env
->v7m
.current_sp
)
3429 if (env
->v7m
.exception
== 0)
3432 /* For exceptions we just mark as pending on the NVIC, and let that
3434 /* TODO: Need to escalate if the current priority is higher than the
3435 one we're raising. */
3436 switch (cs
->exception_index
) {
3438 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
3441 /* The PC already points to the next instruction. */
3442 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
3444 case EXCP_PREFETCH_ABORT
:
3445 case EXCP_DATA_ABORT
:
3446 /* TODO: if we implemented the MPU registers, this is where we
3447 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
3449 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
3452 if (semihosting_enabled
) {
3454 nr
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
3457 env
->regs
[0] = do_arm_semihosting(env
);
3458 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
3462 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
3465 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
3467 case EXCP_EXCEPTION_EXIT
:
3468 do_v7m_exception_exit(env
);
3471 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
3472 return; /* Never happens. Keep compiler happy. */
3475 /* Align stack pointer. */
3476 /* ??? Should only do this if Configuration Control Register
3477 STACKALIGN bit is set. */
3478 if (env
->regs
[13] & 4) {
3482 /* Switch to the handler mode. */
3483 v7m_push(env
, xpsr
);
3484 v7m_push(env
, env
->regs
[15]);
3485 v7m_push(env
, env
->regs
[14]);
3486 v7m_push(env
, env
->regs
[12]);
3487 v7m_push(env
, env
->regs
[3]);
3488 v7m_push(env
, env
->regs
[2]);
3489 v7m_push(env
, env
->regs
[1]);
3490 v7m_push(env
, env
->regs
[0]);
3491 switch_v7m_sp(env
, 0);
3493 env
->condexec_bits
= 0;
3495 addr
= ldl_phys(cs
->as
, env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
3496 env
->regs
[15] = addr
& 0xfffffffe;
3497 env
->thumb
= addr
& 1;
3500 /* Handle a CPU exception. */
3501 void arm_cpu_do_interrupt(CPUState
*cs
)
3503 ARMCPU
*cpu
= ARM_CPU(cs
);
3504 CPUARMState
*env
= &cpu
->env
;
3512 arm_log_exception(cs
->exception_index
);
3514 /* TODO: Vectored interrupt controller. */
3515 switch (cs
->exception_index
) {
3517 new_mode
= ARM_CPU_MODE_UND
;
3526 if (semihosting_enabled
) {
3527 /* Check for semihosting interrupt. */
3529 mask
= arm_lduw_code(env
, env
->regs
[15] - 2, env
->bswap_code
)
3532 mask
= arm_ldl_code(env
, env
->regs
[15] - 4, env
->bswap_code
)
3535 /* Only intercept calls from privileged modes, to provide some
3536 semblance of security. */
3537 if (((mask
== 0x123456 && !env
->thumb
)
3538 || (mask
== 0xab && env
->thumb
))
3539 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
3540 env
->regs
[0] = do_arm_semihosting(env
);
3541 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
3545 new_mode
= ARM_CPU_MODE_SVC
;
3548 /* The PC already points to the next instruction. */
3552 /* See if this is a semihosting syscall. */
3553 if (env
->thumb
&& semihosting_enabled
) {
3554 mask
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
3556 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
3558 env
->regs
[0] = do_arm_semihosting(env
);
3559 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
3563 env
->exception
.fsr
= 2;
3564 /* Fall through to prefetch abort. */
3565 case EXCP_PREFETCH_ABORT
:
3566 env
->cp15
.ifsr_el2
= env
->exception
.fsr
;
3567 env
->cp15
.far_el
[1] = deposit64(env
->cp15
.far_el
[1], 32, 32,
3568 env
->exception
.vaddress
);
3569 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
3570 env
->cp15
.ifsr_el2
, (uint32_t)env
->exception
.vaddress
);
3571 new_mode
= ARM_CPU_MODE_ABT
;
3573 mask
= CPSR_A
| CPSR_I
;
3576 case EXCP_DATA_ABORT
:
3577 env
->cp15
.esr_el
[1] = env
->exception
.fsr
;
3578 env
->cp15
.far_el
[1] = deposit64(env
->cp15
.far_el
[1], 0, 32,
3579 env
->exception
.vaddress
);
3580 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
3581 (uint32_t)env
->cp15
.esr_el
[1],
3582 (uint32_t)env
->exception
.vaddress
);
3583 new_mode
= ARM_CPU_MODE_ABT
;
3585 mask
= CPSR_A
| CPSR_I
;
3589 new_mode
= ARM_CPU_MODE_IRQ
;
3591 /* Disable IRQ and imprecise data aborts. */
3592 mask
= CPSR_A
| CPSR_I
;
3596 new_mode
= ARM_CPU_MODE_FIQ
;
3598 /* Disable FIQ, IRQ and imprecise data aborts. */
3599 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
3603 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
3604 return; /* Never happens. Keep compiler happy. */
3607 if (env
->cp15
.c1_sys
& SCTLR_V
) {
3608 /* when enabled, base address cannot be remapped. */
3611 /* ARM v7 architectures provide a vector base address register to remap
3612 * the interrupt vector table.
3613 * This register is only followed in non-monitor mode, and has a secure
3614 * and un-secure copy. Since the cpu is always in a un-secure operation
3615 * and is never in monitor mode this feature is always active.
3616 * Note: only bits 31:5 are valid.
3618 addr
+= env
->cp15
.vbar_el
[1];
3620 switch_mode (env
, new_mode
);
3621 /* For exceptions taken to AArch32 we must clear the SS bit in both
3622 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
3624 env
->uncached_cpsr
&= ~PSTATE_SS
;
3625 env
->spsr
= cpsr_read(env
);
3626 /* Clear IT bits. */
3627 env
->condexec_bits
= 0;
3628 /* Switch to the new mode, and to the correct instruction set. */
3629 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
3631 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
3632 * and we should just guard the thumb mode on V4 */
3633 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
3634 env
->thumb
= (env
->cp15
.c1_sys
& SCTLR_TE
) != 0;
3636 env
->regs
[14] = env
->regs
[15] + offset
;
3637 env
->regs
[15] = addr
;
3638 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
3641 /* Check section/page access permissions.
3642 Returns the page protection flags, or zero if the access is not
3644 static inline int check_ap(CPUARMState
*env
, int ap
, int domain_prot
,
3645 int access_type
, int is_user
)
3649 if (domain_prot
== 3) {
3650 return PAGE_READ
| PAGE_WRITE
;
3653 if (access_type
== 1)
3656 prot_ro
= PAGE_READ
;
3660 if (arm_feature(env
, ARM_FEATURE_V7
)) {
3663 if (access_type
== 1)
3665 switch (env
->cp15
.c1_sys
& (SCTLR_S
| SCTLR_R
)) {
3667 return is_user
? 0 : PAGE_READ
;
3674 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
3679 return PAGE_READ
| PAGE_WRITE
;
3681 return PAGE_READ
| PAGE_WRITE
;
3682 case 4: /* Reserved. */
3685 return is_user
? 0 : prot_ro
;
3689 if (!arm_feature (env
, ARM_FEATURE_V6K
))
3697 static bool get_level1_table_address(CPUARMState
*env
, uint32_t *table
,
3700 if (address
& env
->cp15
.c2_mask
) {
3701 if ((env
->cp15
.c2_control
& TTBCR_PD1
)) {
3702 /* Translation table walk disabled for TTBR1 */
3705 *table
= env
->cp15
.ttbr1_el1
& 0xffffc000;
3707 if ((env
->cp15
.c2_control
& TTBCR_PD0
)) {
3708 /* Translation table walk disabled for TTBR0 */
3711 *table
= env
->cp15
.ttbr0_el1
& env
->cp15
.c2_base_mask
;
3713 *table
|= (address
>> 18) & 0x3ffc;
3717 static int get_phys_addr_v5(CPUARMState
*env
, uint32_t address
, int access_type
,
3718 int is_user
, hwaddr
*phys_ptr
,
3719 int *prot
, target_ulong
*page_size
)
3721 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
3731 /* Pagetable walk. */
3732 /* Lookup l1 descriptor. */
3733 if (!get_level1_table_address(env
, &table
, address
)) {
3734 /* Section translation fault if page walk is disabled by PD0 or PD1 */
3738 desc
= ldl_phys(cs
->as
, table
);
3740 domain
= (desc
>> 5) & 0x0f;
3741 domain_prot
= (env
->cp15
.c3
>> (domain
* 2)) & 3;
3743 /* Section translation fault. */
3747 if (domain_prot
== 0 || domain_prot
== 2) {
3749 code
= 9; /* Section domain fault. */
3751 code
= 11; /* Page domain fault. */
3756 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
3757 ap
= (desc
>> 10) & 3;
3759 *page_size
= 1024 * 1024;
3761 /* Lookup l2 entry. */
3763 /* Coarse pagetable. */
3764 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
3766 /* Fine pagetable. */
3767 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
3769 desc
= ldl_phys(cs
->as
, table
);
3771 case 0: /* Page translation fault. */
3774 case 1: /* 64k page. */
3775 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
3776 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
3777 *page_size
= 0x10000;
3779 case 2: /* 4k page. */
3780 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
3781 ap
= (desc
>> (4 + ((address
>> 9) & 6))) & 3;
3782 *page_size
= 0x1000;
3784 case 3: /* 1k page. */
3786 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
3787 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
3789 /* Page translation fault. */
3794 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
3796 ap
= (desc
>> 4) & 3;
3800 /* Never happens, but compiler isn't smart enough to tell. */
3805 *prot
= check_ap(env
, ap
, domain_prot
, access_type
, is_user
);
3807 /* Access permission fault. */
3811 *phys_ptr
= phys_addr
;
3814 return code
| (domain
<< 4);
3817 static int get_phys_addr_v6(CPUARMState
*env
, uint32_t address
, int access_type
,
3818 int is_user
, hwaddr
*phys_ptr
,
3819 int *prot
, target_ulong
*page_size
)
3821 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
3833 /* Pagetable walk. */
3834 /* Lookup l1 descriptor. */
3835 if (!get_level1_table_address(env
, &table
, address
)) {
3836 /* Section translation fault if page walk is disabled by PD0 or PD1 */
3840 desc
= ldl_phys(cs
->as
, table
);
3842 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
3843 /* Section translation fault, or attempt to use the encoding
3844 * which is Reserved on implementations without PXN.
3849 if ((type
== 1) || !(desc
& (1 << 18))) {
3850 /* Page or Section. */
3851 domain
= (desc
>> 5) & 0x0f;
3853 domain_prot
= (env
->cp15
.c3
>> (domain
* 2)) & 3;
3854 if (domain_prot
== 0 || domain_prot
== 2) {
3856 code
= 9; /* Section domain fault. */
3858 code
= 11; /* Page domain fault. */
3863 if (desc
& (1 << 18)) {
3865 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
3866 *page_size
= 0x1000000;
3869 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
3870 *page_size
= 0x100000;
3872 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
3873 xn
= desc
& (1 << 4);
3877 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
3878 pxn
= (desc
>> 2) & 1;
3880 /* Lookup l2 entry. */
3881 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
3882 desc
= ldl_phys(cs
->as
, table
);
3883 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
3885 case 0: /* Page translation fault. */
3888 case 1: /* 64k page. */
3889 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
3890 xn
= desc
& (1 << 15);
3891 *page_size
= 0x10000;
3893 case 2: case 3: /* 4k page. */
3894 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
3896 *page_size
= 0x1000;
3899 /* Never happens, but compiler isn't smart enough to tell. */
3904 if (domain_prot
== 3) {
3905 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
3907 if (pxn
&& !is_user
) {
3910 if (xn
&& access_type
== 2)
3913 /* The simplified model uses AP[0] as an access control bit. */
3914 if ((env
->cp15
.c1_sys
& SCTLR_AFE
) && (ap
& 1) == 0) {
3915 /* Access flag fault. */
3916 code
= (code
== 15) ? 6 : 3;
3919 *prot
= check_ap(env
, ap
, domain_prot
, access_type
, is_user
);
3921 /* Access permission fault. */
3928 *phys_ptr
= phys_addr
;
3931 return code
| (domain
<< 4);
3934 /* Fault type for long-descriptor MMU fault reporting; this corresponds
3935 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
3938 translation_fault
= 1,
3940 permission_fault
= 3,
3943 static int get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
3944 int access_type
, int is_user
,
3945 hwaddr
*phys_ptr
, int *prot
,
3946 target_ulong
*page_size_ptr
)
3948 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
3949 /* Read an LPAE long-descriptor translation table. */
3950 MMUFaultType fault_type
= translation_fault
;
3957 hwaddr descaddr
, descmask
;
3958 uint32_t tableattrs
;
3959 target_ulong page_size
;
3961 int32_t granule_sz
= 9;
3962 int32_t va_size
= 32;
3965 if (arm_el_is_aa64(env
, 1)) {
3967 if (extract64(address
, 55, 1))
3968 tbi
= extract64(env
->cp15
.c2_control
, 38, 1);
3970 tbi
= extract64(env
->cp15
.c2_control
, 37, 1);
3974 /* Determine whether this address is in the region controlled by
3975 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
3976 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
3977 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
3979 uint32_t t0sz
= extract32(env
->cp15
.c2_control
, 0, 6);
3980 if (arm_el_is_aa64(env
, 1)) {
3981 t0sz
= MIN(t0sz
, 39);
3982 t0sz
= MAX(t0sz
, 16);
3984 uint32_t t1sz
= extract32(env
->cp15
.c2_control
, 16, 6);
3985 if (arm_el_is_aa64(env
, 1)) {
3986 t1sz
= MIN(t1sz
, 39);
3987 t1sz
= MAX(t1sz
, 16);
3989 if (t0sz
&& !extract64(address
, va_size
- t0sz
, t0sz
- tbi
)) {
3990 /* there is a ttbr0 region and we are in it (high bits all zero) */
3992 } else if (t1sz
&& !extract64(~address
, va_size
- t1sz
, t1sz
- tbi
)) {
3993 /* there is a ttbr1 region and we are in it (high bits all one) */
3996 /* ttbr0 region is "everything not in the ttbr1 region" */
3999 /* ttbr1 region is "everything not in the ttbr0 region" */
4002 /* in the gap between the two regions, this is a Translation fault */
4003 fault_type
= translation_fault
;
4007 /* Note that QEMU ignores shareability and cacheability attributes,
4008 * so we don't need to do anything with the SH, ORGN, IRGN fields
4009 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
4010 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
4011 * implement any ASID-like capability so we can ignore it (instead
4012 * we will always flush the TLB any time the ASID is changed).
4014 if (ttbr_select
== 0) {
4015 ttbr
= env
->cp15
.ttbr0_el1
;
4016 epd
= extract32(env
->cp15
.c2_control
, 7, 1);
4019 tg
= extract32(env
->cp15
.c2_control
, 14, 2);
4020 if (tg
== 1) { /* 64KB pages */
4023 if (tg
== 2) { /* 16KB pages */
4027 ttbr
= env
->cp15
.ttbr1_el1
;
4028 epd
= extract32(env
->cp15
.c2_control
, 23, 1);
4031 tg
= extract32(env
->cp15
.c2_control
, 30, 2);
4032 if (tg
== 3) { /* 64KB pages */
4035 if (tg
== 1) { /* 16KB pages */
4041 /* Translation table walk disabled => Translation fault on TLB miss */
4045 /* The starting level depends on the virtual address size which can be
4046 * up to 48-bits and the translation granule size.
4048 if ((va_size
- tsz
) > (granule_sz
* 4 + 3)) {
4050 } else if ((va_size
- tsz
) > (granule_sz
* 3 + 3)) {
4056 /* Clear the vaddr bits which aren't part of the within-region address,
4057 * so that we don't have to special case things when calculating the
4058 * first descriptor address.
4061 address
&= (1ULL << (va_size
- tsz
)) - 1;
4064 descmask
= (1ULL << (granule_sz
+ 3)) - 1;
4066 /* Now we can extract the actual base address from the TTBR */
4067 descaddr
= extract64(ttbr
, 0, 48);
4068 descaddr
&= ~((1ULL << (va_size
- tsz
- (granule_sz
* (4 - level
)))) - 1);
4072 uint64_t descriptor
;
4074 descaddr
|= (address
>> (granule_sz
* (4 - level
))) & descmask
;
4076 descriptor
= ldq_phys(cs
->as
, descaddr
);
4077 if (!(descriptor
& 1) ||
4078 (!(descriptor
& 2) && (level
== 3))) {
4079 /* Invalid, or the Reserved level 3 encoding */
4082 descaddr
= descriptor
& 0xfffffff000ULL
;
4084 if ((descriptor
& 2) && (level
< 3)) {
4085 /* Table entry. The top five bits are attributes which may
4086 * propagate down through lower levels of the table (and
4087 * which are all arranged so that 0 means "no effect", so
4088 * we can gather them up by ORing in the bits at each level).
4090 tableattrs
|= extract64(descriptor
, 59, 5);
4094 /* Block entry at level 1 or 2, or page entry at level 3.
4095 * These are basically the same thing, although the number
4096 * of bits we pull in from the vaddr varies.
4098 page_size
= (1ULL << ((granule_sz
* (4 - level
)) + 3));
4099 descaddr
|= (address
& (page_size
- 1));
4100 /* Extract attributes from the descriptor and merge with table attrs */
4101 attrs
= extract64(descriptor
, 2, 10)
4102 | (extract64(descriptor
, 52, 12) << 10);
4103 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
4104 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APTable[1] => AP[2] */
4105 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
4106 * means "force PL1 access only", which means forcing AP[1] to 0.
4108 if (extract32(tableattrs
, 2, 1)) {
4111 /* Since we're always in the Non-secure state, NSTable is ignored. */
4114 /* Here descaddr is the final physical address, and attributes
4117 fault_type
= access_fault
;
4118 if ((attrs
& (1 << 8)) == 0) {
4122 fault_type
= permission_fault
;
4123 if (is_user
&& !(attrs
& (1 << 4))) {
4124 /* Unprivileged access not enabled */
4127 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
4128 if ((arm_feature(env
, ARM_FEATURE_V8
) && is_user
&& (attrs
& (1 << 12))) ||
4129 (!arm_feature(env
, ARM_FEATURE_V8
) && (attrs
& (1 << 12))) ||
4130 (!is_user
&& (attrs
& (1 << 11)))) {
4131 /* XN/UXN or PXN. Since we only implement EL0/EL1 we unconditionally
4132 * treat XN/UXN as UXN for v8.
4134 if (access_type
== 2) {
4137 *prot
&= ~PAGE_EXEC
;
4139 if (attrs
& (1 << 5)) {
4140 /* Write access forbidden */
4141 if (access_type
== 1) {
4144 *prot
&= ~PAGE_WRITE
;
4147 *phys_ptr
= descaddr
;
4148 *page_size_ptr
= page_size
;
4152 /* Long-descriptor format IFSR/DFSR value */
4153 return (1 << 9) | (fault_type
<< 2) | level
;
4156 static int get_phys_addr_mpu(CPUARMState
*env
, uint32_t address
,
4157 int access_type
, int is_user
,
4158 hwaddr
*phys_ptr
, int *prot
)
4164 *phys_ptr
= address
;
4165 for (n
= 7; n
>= 0; n
--) {
4166 base
= env
->cp15
.c6_region
[n
];
4167 if ((base
& 1) == 0)
4169 mask
= 1 << ((base
>> 1) & 0x1f);
4170 /* Keep this shift separate from the above to avoid an
4171 (undefined) << 32. */
4172 mask
= (mask
<< 1) - 1;
4173 if (((base
^ address
) & ~mask
) == 0)
4179 if (access_type
== 2) {
4180 mask
= env
->cp15
.pmsav5_insn_ap
;
4182 mask
= env
->cp15
.pmsav5_data_ap
;
4184 mask
= (mask
>> (n
* 4)) & 0xf;
4191 *prot
= PAGE_READ
| PAGE_WRITE
;
4196 *prot
|= PAGE_WRITE
;
4199 *prot
= PAGE_READ
| PAGE_WRITE
;
4210 /* Bad permission. */
4217 /* get_phys_addr - get the physical address for this virtual address
4219 * Find the physical address corresponding to the given virtual address,
4220 * by doing a translation table walk on MMU based systems or using the
4221 * MPU state on MPU based systems.
4223 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
4224 * prot and page_size are not filled in, and the return value provides
4225 * information on why the translation aborted, in the format of a
4226 * DFSR/IFSR fault register, with the following caveats:
4227 * * we honour the short vs long DFSR format differences.
4228 * * the WnR bit is never set (the caller must do this).
4229 * * for MPU based systems we don't bother to return a full FSR format
4233 * @address: virtual address to get physical address for
4234 * @access_type: 0 for read, 1 for write, 2 for execute
4235 * @is_user: 0 for privileged access, 1 for user
4236 * @phys_ptr: set to the physical address corresponding to the virtual address
4237 * @prot: set to the permissions for the page containing phys_ptr
4238 * @page_size: set to the size of the page containing phys_ptr
4240 static inline int get_phys_addr(CPUARMState
*env
, target_ulong address
,
4241 int access_type
, int is_user
,
4242 hwaddr
*phys_ptr
, int *prot
,
4243 target_ulong
*page_size
)
4245 /* Fast Context Switch Extension. */
4246 if (address
< 0x02000000)
4247 address
+= env
->cp15
.c13_fcse
;
4249 if ((env
->cp15
.c1_sys
& SCTLR_M
) == 0) {
4250 /* MMU/MPU disabled. */
4251 *phys_ptr
= address
;
4252 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
4253 *page_size
= TARGET_PAGE_SIZE
;
4255 } else if (arm_feature(env
, ARM_FEATURE_MPU
)) {
4256 *page_size
= TARGET_PAGE_SIZE
;
4257 return get_phys_addr_mpu(env
, address
, access_type
, is_user
, phys_ptr
,
4259 } else if (extended_addresses_enabled(env
)) {
4260 return get_phys_addr_lpae(env
, address
, access_type
, is_user
, phys_ptr
,
4262 } else if (env
->cp15
.c1_sys
& SCTLR_XP
) {
4263 return get_phys_addr_v6(env
, address
, access_type
, is_user
, phys_ptr
,
4266 return get_phys_addr_v5(env
, address
, access_type
, is_user
, phys_ptr
,
4271 int arm_cpu_handle_mmu_fault(CPUState
*cs
, vaddr address
,
4272 int access_type
, int mmu_idx
)
4274 ARMCPU
*cpu
= ARM_CPU(cs
);
4275 CPUARMState
*env
= &cpu
->env
;
4277 target_ulong page_size
;
4281 bool same_el
= (arm_current_pl(env
) != 0);
4283 is_user
= mmu_idx
== MMU_USER_IDX
;
4284 ret
= get_phys_addr(env
, address
, access_type
, is_user
, &phys_addr
, &prot
,
4287 /* Map a single [sub]page. */
4288 phys_addr
&= TARGET_PAGE_MASK
;
4289 address
&= TARGET_PAGE_MASK
;
4290 tlb_set_page(cs
, address
, phys_addr
, prot
, mmu_idx
, page_size
);
4294 /* AArch64 syndrome does not have an LPAE bit */
4295 syn
= ret
& ~(1 << 9);
4297 /* For insn and data aborts we assume there is no instruction syndrome
4298 * information; this is always true for exceptions reported to EL1.
4300 if (access_type
== 2) {
4301 syn
= syn_insn_abort(same_el
, 0, 0, syn
);
4302 cs
->exception_index
= EXCP_PREFETCH_ABORT
;
4304 syn
= syn_data_abort(same_el
, 0, 0, 0, access_type
== 1, syn
);
4305 if (access_type
== 1 && arm_feature(env
, ARM_FEATURE_V6
)) {
4308 cs
->exception_index
= EXCP_DATA_ABORT
;
4311 env
->exception
.syndrome
= syn
;
4312 env
->exception
.vaddress
= address
;
4313 env
->exception
.fsr
= ret
;
4317 hwaddr
arm_cpu_get_phys_page_debug(CPUState
*cs
, vaddr addr
)
4319 ARMCPU
*cpu
= ARM_CPU(cs
);
4321 target_ulong page_size
;
4325 ret
= get_phys_addr(&cpu
->env
, addr
, 0, 0, &phys_addr
, &prot
, &page_size
);
4334 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
4336 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
4337 env
->regs
[13] = val
;
4339 env
->banked_r13
[bank_number(mode
)] = val
;
4343 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
4345 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
4346 return env
->regs
[13];
4348 return env
->banked_r13
[bank_number(mode
)];
4352 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
4354 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4358 return xpsr_read(env
) & 0xf8000000;
4360 return xpsr_read(env
) & 0xf80001ff;
4362 return xpsr_read(env
) & 0xff00fc00;
4364 return xpsr_read(env
) & 0xff00fdff;
4366 return xpsr_read(env
) & 0x000001ff;
4368 return xpsr_read(env
) & 0x0700fc00;
4370 return xpsr_read(env
) & 0x0700edff;
4372 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
4374 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
4375 case 16: /* PRIMASK */
4376 return (env
->daif
& PSTATE_I
) != 0;
4377 case 17: /* BASEPRI */
4378 case 18: /* BASEPRI_MAX */
4379 return env
->v7m
.basepri
;
4380 case 19: /* FAULTMASK */
4381 return (env
->daif
& PSTATE_F
) != 0;
4382 case 20: /* CONTROL */
4383 return env
->v7m
.control
;
4385 /* ??? For debugging only. */
4386 cpu_abort(CPU(cpu
), "Unimplemented system register read (%d)\n", reg
);
4391 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
4393 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4397 xpsr_write(env
, val
, 0xf8000000);
4400 xpsr_write(env
, val
, 0xf8000000);
4403 xpsr_write(env
, val
, 0xfe00fc00);
4406 xpsr_write(env
, val
, 0xfe00fc00);
4409 /* IPSR bits are readonly. */
4412 xpsr_write(env
, val
, 0x0600fc00);
4415 xpsr_write(env
, val
, 0x0600fc00);
4418 if (env
->v7m
.current_sp
)
4419 env
->v7m
.other_sp
= val
;
4421 env
->regs
[13] = val
;
4424 if (env
->v7m
.current_sp
)
4425 env
->regs
[13] = val
;
4427 env
->v7m
.other_sp
= val
;
4429 case 16: /* PRIMASK */
4431 env
->daif
|= PSTATE_I
;
4433 env
->daif
&= ~PSTATE_I
;
4436 case 17: /* BASEPRI */
4437 env
->v7m
.basepri
= val
& 0xff;
4439 case 18: /* BASEPRI_MAX */
4441 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
4442 env
->v7m
.basepri
= val
;
4444 case 19: /* FAULTMASK */
4446 env
->daif
|= PSTATE_F
;
4448 env
->daif
&= ~PSTATE_F
;
4451 case 20: /* CONTROL */
4452 env
->v7m
.control
= val
& 3;
4453 switch_v7m_sp(env
, (val
& 2) != 0);
4456 /* ??? For debugging only. */
4457 cpu_abort(CPU(cpu
), "Unimplemented system register write (%d)\n", reg
);
4464 void HELPER(dc_zva
)(CPUARMState
*env
, uint64_t vaddr_in
)
4466 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
4467 * Note that we do not implement the (architecturally mandated)
4468 * alignment fault for attempts to use this on Device memory
4469 * (which matches the usual QEMU behaviour of not implementing either
4470 * alignment faults or any memory attribute handling).
4473 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4474 uint64_t blocklen
= 4 << cpu
->dcz_blocksize
;
4475 uint64_t vaddr
= vaddr_in
& ~(blocklen
- 1);
4477 #ifndef CONFIG_USER_ONLY
4479 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
4480 * the block size so we might have to do more than one TLB lookup.
4481 * We know that in fact for any v8 CPU the page size is at least 4K
4482 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
4483 * 1K as an artefact of legacy v5 subpage support being present in the
4484 * same QEMU executable.
4486 int maxidx
= DIV_ROUND_UP(blocklen
, TARGET_PAGE_SIZE
);
4487 void *hostaddr
[maxidx
];
4490 for (try = 0; try < 2; try++) {
4492 for (i
= 0; i
< maxidx
; i
++) {
4493 hostaddr
[i
] = tlb_vaddr_to_host(env
,
4494 vaddr
+ TARGET_PAGE_SIZE
* i
,
4495 1, cpu_mmu_index(env
));
4501 /* If it's all in the TLB it's fair game for just writing to;
4502 * we know we don't need to update dirty status, etc.
4504 for (i
= 0; i
< maxidx
- 1; i
++) {
4505 memset(hostaddr
[i
], 0, TARGET_PAGE_SIZE
);
4507 memset(hostaddr
[i
], 0, blocklen
- (i
* TARGET_PAGE_SIZE
));
4510 /* OK, try a store and see if we can populate the tlb. This
4511 * might cause an exception if the memory isn't writable,
4512 * in which case we will longjmp out of here. We must for
4513 * this purpose use the actual register value passed to us
4514 * so that we get the fault address right.
4516 helper_ret_stb_mmu(env
, vaddr_in
, 0, cpu_mmu_index(env
), GETRA());
4517 /* Now we can populate the other TLB entries, if any */
4518 for (i
= 0; i
< maxidx
; i
++) {
4519 uint64_t va
= vaddr
+ TARGET_PAGE_SIZE
* i
;
4520 if (va
!= (vaddr_in
& TARGET_PAGE_MASK
)) {
4521 helper_ret_stb_mmu(env
, va
, 0, cpu_mmu_index(env
), GETRA());
4526 /* Slow path (probably attempt to do this to an I/O device or
4527 * similar, or clearing of a block of code we have translations
4528 * cached for). Just do a series of byte writes as the architecture
4529 * demands. It's not worth trying to use a cpu_physical_memory_map(),
4530 * memset(), unmap() sequence here because:
4531 * + we'd need to account for the blocksize being larger than a page
4532 * + the direct-RAM access case is almost always going to be dealt
4533 * with in the fastpath code above, so there's no speed benefit
4534 * + we would have to deal with the map returning NULL because the
4535 * bounce buffer was in use
4537 for (i
= 0; i
< blocklen
; i
++) {
4538 helper_ret_stb_mmu(env
, vaddr
+ i
, 0, cpu_mmu_index(env
), GETRA());
4542 memset(g2h(vaddr
), 0, blocklen
);
4546 /* Note that signed overflow is undefined in C. The following routines are
4547 careful to use unsigned types where modulo arithmetic is required.
4548 Failure to do so _will_ break on newer gcc. */
4550 /* Signed saturating arithmetic. */
4552 /* Perform 16-bit signed saturating addition. */
4553 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
4558 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
4567 /* Perform 8-bit signed saturating addition. */
4568 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
4573 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
4582 /* Perform 16-bit signed saturating subtraction. */
4583 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
4588 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
4597 /* Perform 8-bit signed saturating subtraction. */
4598 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
4603 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
4612 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
4613 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
4614 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
4615 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
4618 #include "op_addsub.h"
4620 /* Unsigned saturating arithmetic. */
4621 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
4630 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
4638 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
4647 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
4655 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
4656 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
4657 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
4658 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
4661 #include "op_addsub.h"
4663 /* Signed modulo arithmetic. */
4664 #define SARITH16(a, b, n, op) do { \
4666 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
4667 RESULT(sum, n, 16); \
4669 ge |= 3 << (n * 2); \
4672 #define SARITH8(a, b, n, op) do { \
4674 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
4675 RESULT(sum, n, 8); \
4681 #define ADD16(a, b, n) SARITH16(a, b, n, +)
4682 #define SUB16(a, b, n) SARITH16(a, b, n, -)
4683 #define ADD8(a, b, n) SARITH8(a, b, n, +)
4684 #define SUB8(a, b, n) SARITH8(a, b, n, -)
4688 #include "op_addsub.h"
4690 /* Unsigned modulo arithmetic. */
4691 #define ADD16(a, b, n) do { \
4693 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
4694 RESULT(sum, n, 16); \
4695 if ((sum >> 16) == 1) \
4696 ge |= 3 << (n * 2); \
4699 #define ADD8(a, b, n) do { \
4701 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
4702 RESULT(sum, n, 8); \
4703 if ((sum >> 8) == 1) \
4707 #define SUB16(a, b, n) do { \
4709 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
4710 RESULT(sum, n, 16); \
4711 if ((sum >> 16) == 0) \
4712 ge |= 3 << (n * 2); \
4715 #define SUB8(a, b, n) do { \
4717 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
4718 RESULT(sum, n, 8); \
4719 if ((sum >> 8) == 0) \
4726 #include "op_addsub.h"
4728 /* Halved signed arithmetic. */
4729 #define ADD16(a, b, n) \
4730 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
4731 #define SUB16(a, b, n) \
4732 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
4733 #define ADD8(a, b, n) \
4734 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
4735 #define SUB8(a, b, n) \
4736 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
4739 #include "op_addsub.h"
4741 /* Halved unsigned arithmetic. */
4742 #define ADD16(a, b, n) \
4743 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
4744 #define SUB16(a, b, n) \
4745 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
4746 #define ADD8(a, b, n) \
4747 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
4748 #define SUB8(a, b, n) \
4749 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
4752 #include "op_addsub.h"
4754 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
4762 /* Unsigned sum of absolute byte differences. */
4763 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
4766 sum
= do_usad(a
, b
);
4767 sum
+= do_usad(a
>> 8, b
>> 8);
4768 sum
+= do_usad(a
>> 16, b
>>16);
4769 sum
+= do_usad(a
>> 24, b
>> 24);
4773 /* For ARMv6 SEL instruction. */
4774 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
4787 return (a
& mask
) | (b
& ~mask
);
4790 /* VFP support. We follow the convention used for VFP instructions:
4791 Single precision routines have a "s" suffix, double precision a
4794 /* Convert host exception flags to vfp form. */
4795 static inline int vfp_exceptbits_from_host(int host_bits
)
4797 int target_bits
= 0;
4799 if (host_bits
& float_flag_invalid
)
4801 if (host_bits
& float_flag_divbyzero
)
4803 if (host_bits
& float_flag_overflow
)
4805 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
4807 if (host_bits
& float_flag_inexact
)
4808 target_bits
|= 0x10;
4809 if (host_bits
& float_flag_input_denormal
)
4810 target_bits
|= 0x80;
4814 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
4819 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
4820 | (env
->vfp
.vec_len
<< 16)
4821 | (env
->vfp
.vec_stride
<< 20);
4822 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
4823 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
4824 fpscr
|= vfp_exceptbits_from_host(i
);
4828 uint32_t vfp_get_fpscr(CPUARMState
*env
)
4830 return HELPER(vfp_get_fpscr
)(env
);
4833 /* Convert vfp exception flags to target form. */
4834 static inline int vfp_exceptbits_to_host(int target_bits
)
4838 if (target_bits
& 1)
4839 host_bits
|= float_flag_invalid
;
4840 if (target_bits
& 2)
4841 host_bits
|= float_flag_divbyzero
;
4842 if (target_bits
& 4)
4843 host_bits
|= float_flag_overflow
;
4844 if (target_bits
& 8)
4845 host_bits
|= float_flag_underflow
;
4846 if (target_bits
& 0x10)
4847 host_bits
|= float_flag_inexact
;
4848 if (target_bits
& 0x80)
4849 host_bits
|= float_flag_input_denormal
;
4853 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
4858 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
4859 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
4860 env
->vfp
.vec_len
= (val
>> 16) & 7;
4861 env
->vfp
.vec_stride
= (val
>> 20) & 3;
4864 if (changed
& (3 << 22)) {
4865 i
= (val
>> 22) & 3;
4867 case FPROUNDING_TIEEVEN
:
4868 i
= float_round_nearest_even
;
4870 case FPROUNDING_POSINF
:
4873 case FPROUNDING_NEGINF
:
4874 i
= float_round_down
;
4876 case FPROUNDING_ZERO
:
4877 i
= float_round_to_zero
;
4880 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
4882 if (changed
& (1 << 24)) {
4883 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
4884 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
4886 if (changed
& (1 << 25))
4887 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
4889 i
= vfp_exceptbits_to_host(val
);
4890 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
4891 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
4894 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
4896 HELPER(vfp_set_fpscr
)(env
, val
);
4899 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
4901 #define VFP_BINOP(name) \
4902 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
4904 float_status *fpst = fpstp; \
4905 return float32_ ## name(a, b, fpst); \
4907 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
4909 float_status *fpst = fpstp; \
4910 return float64_ ## name(a, b, fpst); \
4922 float32
VFP_HELPER(neg
, s
)(float32 a
)
4924 return float32_chs(a
);
4927 float64
VFP_HELPER(neg
, d
)(float64 a
)
4929 return float64_chs(a
);
4932 float32
VFP_HELPER(abs
, s
)(float32 a
)
4934 return float32_abs(a
);
4937 float64
VFP_HELPER(abs
, d
)(float64 a
)
4939 return float64_abs(a
);
4942 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
4944 return float32_sqrt(a
, &env
->vfp
.fp_status
);
4947 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
4949 return float64_sqrt(a
, &env
->vfp
.fp_status
);
4952 /* XXX: check quiet/signaling case */
4953 #define DO_VFP_cmp(p, type) \
4954 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
4957 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
4958 case 0: flags = 0x6; break; \
4959 case -1: flags = 0x8; break; \
4960 case 1: flags = 0x2; break; \
4961 default: case 2: flags = 0x3; break; \
4963 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
4964 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
4966 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
4969 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
4970 case 0: flags = 0x6; break; \
4971 case -1: flags = 0x8; break; \
4972 case 1: flags = 0x2; break; \
4973 default: case 2: flags = 0x3; break; \
4975 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
4976 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
4978 DO_VFP_cmp(s
, float32
)
4979 DO_VFP_cmp(d
, float64
)
4982 /* Integer to float and float to integer conversions */
4984 #define CONV_ITOF(name, fsz, sign) \
4985 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
4987 float_status *fpst = fpstp; \
4988 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
4991 #define CONV_FTOI(name, fsz, sign, round) \
4992 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
4994 float_status *fpst = fpstp; \
4995 if (float##fsz##_is_any_nan(x)) { \
4996 float_raise(float_flag_invalid, fpst); \
4999 return float##fsz##_to_##sign##int32##round(x, fpst); \
5002 #define FLOAT_CONVS(name, p, fsz, sign) \
5003 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
5004 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
5005 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
5007 FLOAT_CONVS(si
, s
, 32, )
5008 FLOAT_CONVS(si
, d
, 64, )
5009 FLOAT_CONVS(ui
, s
, 32, u
)
5010 FLOAT_CONVS(ui
, d
, 64, u
)
5016 /* floating point conversion */
5017 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
5019 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
5020 /* ARM requires that S<->D conversion of any kind of NaN generates
5021 * a quiet NaN by forcing the most significant frac bit to 1.
5023 return float64_maybe_silence_nan(r
);
5026 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
5028 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
5029 /* ARM requires that S<->D conversion of any kind of NaN generates
5030 * a quiet NaN by forcing the most significant frac bit to 1.
5032 return float32_maybe_silence_nan(r
);
5035 /* VFP3 fixed point conversion. */
5036 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
5037 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
5040 float_status *fpst = fpstp; \
5042 tmp = itype##_to_##float##fsz(x, fpst); \
5043 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
5046 /* Notice that we want only input-denormal exception flags from the
5047 * scalbn operation: the other possible flags (overflow+inexact if
5048 * we overflow to infinity, output-denormal) aren't correct for the
5049 * complete scale-and-convert operation.
5051 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
5052 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
5056 float_status *fpst = fpstp; \
5057 int old_exc_flags = get_float_exception_flags(fpst); \
5059 if (float##fsz##_is_any_nan(x)) { \
5060 float_raise(float_flag_invalid, fpst); \
5063 tmp = float##fsz##_scalbn(x, shift, fpst); \
5064 old_exc_flags |= get_float_exception_flags(fpst) \
5065 & float_flag_input_denormal; \
5066 set_float_exception_flags(old_exc_flags, fpst); \
5067 return float##fsz##_to_##itype##round(tmp, fpst); \
5070 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
5071 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
5072 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
5073 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
5075 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
5076 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
5077 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
5079 VFP_CONV_FIX(sh
, d
, 64, 64, int16
)
5080 VFP_CONV_FIX(sl
, d
, 64, 64, int32
)
5081 VFP_CONV_FIX_A64(sq
, d
, 64, 64, int64
)
5082 VFP_CONV_FIX(uh
, d
, 64, 64, uint16
)
5083 VFP_CONV_FIX(ul
, d
, 64, 64, uint32
)
5084 VFP_CONV_FIX_A64(uq
, d
, 64, 64, uint64
)
5085 VFP_CONV_FIX(sh
, s
, 32, 32, int16
)
5086 VFP_CONV_FIX(sl
, s
, 32, 32, int32
)
5087 VFP_CONV_FIX_A64(sq
, s
, 32, 64, int64
)
5088 VFP_CONV_FIX(uh
, s
, 32, 32, uint16
)
5089 VFP_CONV_FIX(ul
, s
, 32, 32, uint32
)
5090 VFP_CONV_FIX_A64(uq
, s
, 32, 64, uint64
)
5092 #undef VFP_CONV_FIX_FLOAT
5093 #undef VFP_CONV_FLOAT_FIX_ROUND
5095 /* Set the current fp rounding mode and return the old one.
5096 * The argument is a softfloat float_round_ value.
5098 uint32_t HELPER(set_rmode
)(uint32_t rmode
, CPUARMState
*env
)
5100 float_status
*fp_status
= &env
->vfp
.fp_status
;
5102 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
5103 set_float_rounding_mode(rmode
, fp_status
);
5108 /* Set the current fp rounding mode in the standard fp status and return
5109 * the old one. This is for NEON instructions that need to change the
5110 * rounding mode but wish to use the standard FPSCR values for everything
5111 * else. Always set the rounding mode back to the correct value after
5113 * The argument is a softfloat float_round_ value.
5115 uint32_t HELPER(set_neon_rmode
)(uint32_t rmode
, CPUARMState
*env
)
5117 float_status
*fp_status
= &env
->vfp
.standard_fp_status
;
5119 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
5120 set_float_rounding_mode(rmode
, fp_status
);
5125 /* Half precision conversions. */
5126 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUARMState
*env
, float_status
*s
)
5128 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
5129 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
5131 return float32_maybe_silence_nan(r
);
5136 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUARMState
*env
, float_status
*s
)
5138 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
5139 float16 r
= float32_to_float16(a
, ieee
, s
);
5141 r
= float16_maybe_silence_nan(r
);
5143 return float16_val(r
);
5146 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
5148 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
5151 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
5153 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
5156 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
5158 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
5161 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
5163 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
5166 float64
HELPER(vfp_fcvt_f16_to_f64
)(uint32_t a
, CPUARMState
*env
)
5168 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
5169 float64 r
= float16_to_float64(make_float16(a
), ieee
, &env
->vfp
.fp_status
);
5171 return float64_maybe_silence_nan(r
);
5176 uint32_t HELPER(vfp_fcvt_f64_to_f16
)(float64 a
, CPUARMState
*env
)
5178 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
5179 float16 r
= float64_to_float16(a
, ieee
, &env
->vfp
.fp_status
);
5181 r
= float16_maybe_silence_nan(r
);
5183 return float16_val(r
);
5186 #define float32_two make_float32(0x40000000)
5187 #define float32_three make_float32(0x40400000)
5188 #define float32_one_point_five make_float32(0x3fc00000)
5190 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
5192 float_status
*s
= &env
->vfp
.standard_fp_status
;
5193 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
5194 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
5195 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
5196 float_raise(float_flag_input_denormal
, s
);
5200 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
5203 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
5205 float_status
*s
= &env
->vfp
.standard_fp_status
;
5207 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
5208 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
5209 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
5210 float_raise(float_flag_input_denormal
, s
);
5212 return float32_one_point_five
;
5214 product
= float32_mul(a
, b
, s
);
5215 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
5220 /* Constants 256 and 512 are used in some helpers; we avoid relying on
5221 * int->float conversions at run-time. */
5222 #define float64_256 make_float64(0x4070000000000000LL)
5223 #define float64_512 make_float64(0x4080000000000000LL)
5224 #define float32_maxnorm make_float32(0x7f7fffff)
5225 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
5227 /* Reciprocal functions
5229 * The algorithm that must be used to calculate the estimate
5230 * is specified by the ARM ARM, see FPRecipEstimate()
5233 static float64
recip_estimate(float64 a
, float_status
*real_fp_status
)
5235 /* These calculations mustn't set any fp exception flags,
5236 * so we use a local copy of the fp_status.
5238 float_status dummy_status
= *real_fp_status
;
5239 float_status
*s
= &dummy_status
;
5240 /* q = (int)(a * 512.0) */
5241 float64 q
= float64_mul(float64_512
, a
, s
);
5242 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
5244 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
5245 q
= int64_to_float64(q_int
, s
);
5246 q
= float64_add(q
, float64_half
, s
);
5247 q
= float64_div(q
, float64_512
, s
);
5248 q
= float64_div(float64_one
, q
, s
);
5250 /* s = (int)(256.0 * r + 0.5) */
5251 q
= float64_mul(q
, float64_256
, s
);
5252 q
= float64_add(q
, float64_half
, s
);
5253 q_int
= float64_to_int64_round_to_zero(q
, s
);
5255 /* return (double)s / 256.0 */
5256 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
5259 /* Common wrapper to call recip_estimate */
5260 static float64
call_recip_estimate(float64 num
, int off
, float_status
*fpst
)
5262 uint64_t val64
= float64_val(num
);
5263 uint64_t frac
= extract64(val64
, 0, 52);
5264 int64_t exp
= extract64(val64
, 52, 11);
5266 float64 scaled
, estimate
;
5268 /* Generate the scaled number for the estimate function */
5270 if (extract64(frac
, 51, 1) == 0) {
5272 frac
= extract64(frac
, 0, 50) << 2;
5274 frac
= extract64(frac
, 0, 51) << 1;
5278 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
5279 scaled
= make_float64((0x3feULL
<< 52)
5280 | extract64(frac
, 44, 8) << 44);
5282 estimate
= recip_estimate(scaled
, fpst
);
5284 /* Build new result */
5285 val64
= float64_val(estimate
);
5286 sbit
= 0x8000000000000000ULL
& val64
;
5288 frac
= extract64(val64
, 0, 52);
5291 frac
= 1ULL << 51 | extract64(frac
, 1, 51);
5292 } else if (exp
== -1) {
5293 frac
= 1ULL << 50 | extract64(frac
, 2, 50);
5297 return make_float64(sbit
| (exp
<< 52) | frac
);
5300 static bool round_to_inf(float_status
*fpst
, bool sign_bit
)
5302 switch (fpst
->float_rounding_mode
) {
5303 case float_round_nearest_even
: /* Round to Nearest */
5305 case float_round_up
: /* Round to +Inf */
5307 case float_round_down
: /* Round to -Inf */
5309 case float_round_to_zero
: /* Round to Zero */
5313 g_assert_not_reached();
5316 float32
HELPER(recpe_f32
)(float32 input
, void *fpstp
)
5318 float_status
*fpst
= fpstp
;
5319 float32 f32
= float32_squash_input_denormal(input
, fpst
);
5320 uint32_t f32_val
= float32_val(f32
);
5321 uint32_t f32_sbit
= 0x80000000ULL
& f32_val
;
5322 int32_t f32_exp
= extract32(f32_val
, 23, 8);
5323 uint32_t f32_frac
= extract32(f32_val
, 0, 23);
5329 if (float32_is_any_nan(f32
)) {
5331 if (float32_is_signaling_nan(f32
)) {
5332 float_raise(float_flag_invalid
, fpst
);
5333 nan
= float32_maybe_silence_nan(f32
);
5335 if (fpst
->default_nan_mode
) {
5336 nan
= float32_default_nan
;
5339 } else if (float32_is_infinity(f32
)) {
5340 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
5341 } else if (float32_is_zero(f32
)) {
5342 float_raise(float_flag_divbyzero
, fpst
);
5343 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
5344 } else if ((f32_val
& ~(1ULL << 31)) < (1ULL << 21)) {
5345 /* Abs(value) < 2.0^-128 */
5346 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
5347 if (round_to_inf(fpst
, f32_sbit
)) {
5348 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
5350 return float32_set_sign(float32_maxnorm
, float32_is_neg(f32
));
5352 } else if (f32_exp
>= 253 && fpst
->flush_to_zero
) {
5353 float_raise(float_flag_underflow
, fpst
);
5354 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
5358 f64
= make_float64(((int64_t)(f32_exp
) << 52) | (int64_t)(f32_frac
) << 29);
5359 r64
= call_recip_estimate(f64
, 253, fpst
);
5360 r64_val
= float64_val(r64
);
5361 r64_exp
= extract64(r64_val
, 52, 11);
5362 r64_frac
= extract64(r64_val
, 0, 52);
5364 /* result = sign : result_exp<7:0> : fraction<51:29>; */
5365 return make_float32(f32_sbit
|
5366 (r64_exp
& 0xff) << 23 |
5367 extract64(r64_frac
, 29, 24));
5370 float64
HELPER(recpe_f64
)(float64 input
, void *fpstp
)
5372 float_status
*fpst
= fpstp
;
5373 float64 f64
= float64_squash_input_denormal(input
, fpst
);
5374 uint64_t f64_val
= float64_val(f64
);
5375 uint64_t f64_sbit
= 0x8000000000000000ULL
& f64_val
;
5376 int64_t f64_exp
= extract64(f64_val
, 52, 11);
5382 /* Deal with any special cases */
5383 if (float64_is_any_nan(f64
)) {
5385 if (float64_is_signaling_nan(f64
)) {
5386 float_raise(float_flag_invalid
, fpst
);
5387 nan
= float64_maybe_silence_nan(f64
);
5389 if (fpst
->default_nan_mode
) {
5390 nan
= float64_default_nan
;
5393 } else if (float64_is_infinity(f64
)) {
5394 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
5395 } else if (float64_is_zero(f64
)) {
5396 float_raise(float_flag_divbyzero
, fpst
);
5397 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
5398 } else if ((f64_val
& ~(1ULL << 63)) < (1ULL << 50)) {
5399 /* Abs(value) < 2.0^-1024 */
5400 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
5401 if (round_to_inf(fpst
, f64_sbit
)) {
5402 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
5404 return float64_set_sign(float64_maxnorm
, float64_is_neg(f64
));
5406 } else if (f64_exp
>= 1023 && fpst
->flush_to_zero
) {
5407 float_raise(float_flag_underflow
, fpst
);
5408 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
5411 r64
= call_recip_estimate(f64
, 2045, fpst
);
5412 r64_val
= float64_val(r64
);
5413 r64_exp
= extract64(r64_val
, 52, 11);
5414 r64_frac
= extract64(r64_val
, 0, 52);
5416 /* result = sign : result_exp<10:0> : fraction<51:0> */
5417 return make_float64(f64_sbit
|
5418 ((r64_exp
& 0x7ff) << 52) |
5422 /* The algorithm that must be used to calculate the estimate
5423 * is specified by the ARM ARM.
5425 static float64
recip_sqrt_estimate(float64 a
, float_status
*real_fp_status
)
5427 /* These calculations mustn't set any fp exception flags,
5428 * so we use a local copy of the fp_status.
5430 float_status dummy_status
= *real_fp_status
;
5431 float_status
*s
= &dummy_status
;
5435 if (float64_lt(a
, float64_half
, s
)) {
5436 /* range 0.25 <= a < 0.5 */
5438 /* a in units of 1/512 rounded down */
5439 /* q0 = (int)(a * 512.0); */
5440 q
= float64_mul(float64_512
, a
, s
);
5441 q_int
= float64_to_int64_round_to_zero(q
, s
);
5443 /* reciprocal root r */
5444 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
5445 q
= int64_to_float64(q_int
, s
);
5446 q
= float64_add(q
, float64_half
, s
);
5447 q
= float64_div(q
, float64_512
, s
);
5448 q
= float64_sqrt(q
, s
);
5449 q
= float64_div(float64_one
, q
, s
);
5451 /* range 0.5 <= a < 1.0 */
5453 /* a in units of 1/256 rounded down */
5454 /* q1 = (int)(a * 256.0); */
5455 q
= float64_mul(float64_256
, a
, s
);
5456 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
5458 /* reciprocal root r */
5459 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
5460 q
= int64_to_float64(q_int
, s
);
5461 q
= float64_add(q
, float64_half
, s
);
5462 q
= float64_div(q
, float64_256
, s
);
5463 q
= float64_sqrt(q
, s
);
5464 q
= float64_div(float64_one
, q
, s
);
5466 /* r in units of 1/256 rounded to nearest */
5467 /* s = (int)(256.0 * r + 0.5); */
5469 q
= float64_mul(q
, float64_256
,s
);
5470 q
= float64_add(q
, float64_half
, s
);
5471 q_int
= float64_to_int64_round_to_zero(q
, s
);
5473 /* return (double)s / 256.0;*/
5474 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
5477 float32
HELPER(rsqrte_f32
)(float32 input
, void *fpstp
)
5479 float_status
*s
= fpstp
;
5480 float32 f32
= float32_squash_input_denormal(input
, s
);
5481 uint32_t val
= float32_val(f32
);
5482 uint32_t f32_sbit
= 0x80000000 & val
;
5483 int32_t f32_exp
= extract32(val
, 23, 8);
5484 uint32_t f32_frac
= extract32(val
, 0, 23);
5490 if (float32_is_any_nan(f32
)) {
5492 if (float32_is_signaling_nan(f32
)) {
5493 float_raise(float_flag_invalid
, s
);
5494 nan
= float32_maybe_silence_nan(f32
);
5496 if (s
->default_nan_mode
) {
5497 nan
= float32_default_nan
;
5500 } else if (float32_is_zero(f32
)) {
5501 float_raise(float_flag_divbyzero
, s
);
5502 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
5503 } else if (float32_is_neg(f32
)) {
5504 float_raise(float_flag_invalid
, s
);
5505 return float32_default_nan
;
5506 } else if (float32_is_infinity(f32
)) {
5507 return float32_zero
;
5510 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
5511 * preserving the parity of the exponent. */
5513 f64_frac
= ((uint64_t) f32_frac
) << 29;
5515 while (extract64(f64_frac
, 51, 1) == 0) {
5516 f64_frac
= f64_frac
<< 1;
5517 f32_exp
= f32_exp
-1;
5519 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
5522 if (extract64(f32_exp
, 0, 1) == 0) {
5523 f64
= make_float64(((uint64_t) f32_sbit
) << 32
5527 f64
= make_float64(((uint64_t) f32_sbit
) << 32
5532 result_exp
= (380 - f32_exp
) / 2;
5534 f64
= recip_sqrt_estimate(f64
, s
);
5536 val64
= float64_val(f64
);
5538 val
= ((result_exp
& 0xff) << 23)
5539 | ((val64
>> 29) & 0x7fffff);
5540 return make_float32(val
);
5543 float64
HELPER(rsqrte_f64
)(float64 input
, void *fpstp
)
5545 float_status
*s
= fpstp
;
5546 float64 f64
= float64_squash_input_denormal(input
, s
);
5547 uint64_t val
= float64_val(f64
);
5548 uint64_t f64_sbit
= 0x8000000000000000ULL
& val
;
5549 int64_t f64_exp
= extract64(val
, 52, 11);
5550 uint64_t f64_frac
= extract64(val
, 0, 52);
5552 uint64_t result_frac
;
5554 if (float64_is_any_nan(f64
)) {
5556 if (float64_is_signaling_nan(f64
)) {
5557 float_raise(float_flag_invalid
, s
);
5558 nan
= float64_maybe_silence_nan(f64
);
5560 if (s
->default_nan_mode
) {
5561 nan
= float64_default_nan
;
5564 } else if (float64_is_zero(f64
)) {
5565 float_raise(float_flag_divbyzero
, s
);
5566 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
5567 } else if (float64_is_neg(f64
)) {
5568 float_raise(float_flag_invalid
, s
);
5569 return float64_default_nan
;
5570 } else if (float64_is_infinity(f64
)) {
5571 return float64_zero
;
5574 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
5575 * preserving the parity of the exponent. */
5578 while (extract64(f64_frac
, 51, 1) == 0) {
5579 f64_frac
= f64_frac
<< 1;
5580 f64_exp
= f64_exp
- 1;
5582 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
5585 if (extract64(f64_exp
, 0, 1) == 0) {
5586 f64
= make_float64(f64_sbit
5590 f64
= make_float64(f64_sbit
5595 result_exp
= (3068 - f64_exp
) / 2;
5597 f64
= recip_sqrt_estimate(f64
, s
);
5599 result_frac
= extract64(float64_val(f64
), 0, 52);
5601 return make_float64(f64_sbit
|
5602 ((result_exp
& 0x7ff) << 52) |
5606 uint32_t HELPER(recpe_u32
)(uint32_t a
, void *fpstp
)
5608 float_status
*s
= fpstp
;
5611 if ((a
& 0x80000000) == 0) {
5615 f64
= make_float64((0x3feULL
<< 52)
5616 | ((int64_t)(a
& 0x7fffffff) << 21));
5618 f64
= recip_estimate(f64
, s
);
5620 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
5623 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, void *fpstp
)
5625 float_status
*fpst
= fpstp
;
5628 if ((a
& 0xc0000000) == 0) {
5632 if (a
& 0x80000000) {
5633 f64
= make_float64((0x3feULL
<< 52)
5634 | ((uint64_t)(a
& 0x7fffffff) << 21));
5635 } else { /* bits 31-30 == '01' */
5636 f64
= make_float64((0x3fdULL
<< 52)
5637 | ((uint64_t)(a
& 0x3fffffff) << 22));
5640 f64
= recip_sqrt_estimate(f64
, fpst
);
5642 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
5645 /* VFPv4 fused multiply-accumulate */
5646 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
5648 float_status
*fpst
= fpstp
;
5649 return float32_muladd(a
, b
, c
, 0, fpst
);
5652 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
5654 float_status
*fpst
= fpstp
;
5655 return float64_muladd(a
, b
, c
, 0, fpst
);
5658 /* ARMv8 round to integral */
5659 float32
HELPER(rints_exact
)(float32 x
, void *fp_status
)
5661 return float32_round_to_int(x
, fp_status
);
5664 float64
HELPER(rintd_exact
)(float64 x
, void *fp_status
)
5666 return float64_round_to_int(x
, fp_status
);
5669 float32
HELPER(rints
)(float32 x
, void *fp_status
)
5671 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
5674 ret
= float32_round_to_int(x
, fp_status
);
5676 /* Suppress any inexact exceptions the conversion produced */
5677 if (!(old_flags
& float_flag_inexact
)) {
5678 new_flags
= get_float_exception_flags(fp_status
);
5679 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
5685 float64
HELPER(rintd
)(float64 x
, void *fp_status
)
5687 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
5690 ret
= float64_round_to_int(x
, fp_status
);
5692 new_flags
= get_float_exception_flags(fp_status
);
5694 /* Suppress any inexact exceptions the conversion produced */
5695 if (!(old_flags
& float_flag_inexact
)) {
5696 new_flags
= get_float_exception_flags(fp_status
);
5697 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
5703 /* Convert ARM rounding mode to softfloat */
5704 int arm_rmode_to_sf(int rmode
)
5707 case FPROUNDING_TIEAWAY
:
5708 rmode
= float_round_ties_away
;
5710 case FPROUNDING_ODD
:
5711 /* FIXME: add support for TIEAWAY and ODD */
5712 qemu_log_mask(LOG_UNIMP
, "arm: unimplemented rounding mode: %d\n",
5714 case FPROUNDING_TIEEVEN
:
5716 rmode
= float_round_nearest_even
;
5718 case FPROUNDING_POSINF
:
5719 rmode
= float_round_up
;
5721 case FPROUNDING_NEGINF
:
5722 rmode
= float_round_down
;
5724 case FPROUNDING_ZERO
:
5725 rmode
= float_round_to_zero
;
5732 * The upper bytes of val (above the number specified by 'bytes') must have
5733 * been zeroed out by the caller.
5735 uint32_t HELPER(crc32
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
5741 /* zlib crc32 converts the accumulator and output to one's complement. */
5742 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
5745 uint32_t HELPER(crc32c
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
5751 /* Linux crc32c converts the output to one's complement. */
5752 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;