]> git.proxmox.com Git - mirror_qemu.git/blob - target-arm/helper.c
target-arm: avoid undefined behaviour when writing TTBCR
[mirror_qemu.git] / target-arm / helper.c
1 #include "cpu.h"
2 #include "exec/gdbstub.h"
3 #include "helper.h"
4 #include "qemu/host-utils.h"
5 #include "sysemu/sysemu.h"
6 #include "qemu/bitops.h"
7
8 #ifndef CONFIG_USER_ONLY
9 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
10 int access_type, int is_user,
11 hwaddr *phys_ptr, int *prot,
12 target_ulong *page_size);
13 #endif
14
15 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
16 {
17 int nregs;
18
19 /* VFP data registers are always little-endian. */
20 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
21 if (reg < nregs) {
22 stfq_le_p(buf, env->vfp.regs[reg]);
23 return 8;
24 }
25 if (arm_feature(env, ARM_FEATURE_NEON)) {
26 /* Aliases for Q regs. */
27 nregs += 16;
28 if (reg < nregs) {
29 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
30 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
31 return 16;
32 }
33 }
34 switch (reg - nregs) {
35 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
36 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
37 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
38 }
39 return 0;
40 }
41
42 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
43 {
44 int nregs;
45
46 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
47 if (reg < nregs) {
48 env->vfp.regs[reg] = ldfq_le_p(buf);
49 return 8;
50 }
51 if (arm_feature(env, ARM_FEATURE_NEON)) {
52 nregs += 16;
53 if (reg < nregs) {
54 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
55 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
56 return 16;
57 }
58 }
59 switch (reg - nregs) {
60 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
61 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
62 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
63 }
64 return 0;
65 }
66
67 static int raw_read(CPUARMState *env, const ARMCPRegInfo *ri,
68 uint64_t *value)
69 {
70 *value = CPREG_FIELD32(env, ri);
71 return 0;
72 }
73
74 static int raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
75 uint64_t value)
76 {
77 CPREG_FIELD32(env, ri) = value;
78 return 0;
79 }
80
81 static bool read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
82 uint64_t *v)
83 {
84 /* Raw read of a coprocessor register (as needed for migration, etc)
85 * return true on success, false if the read is impossible for some reason.
86 */
87 if (ri->type & ARM_CP_CONST) {
88 *v = ri->resetvalue;
89 } else if (ri->raw_readfn) {
90 return (ri->raw_readfn(env, ri, v) == 0);
91 } else if (ri->readfn) {
92 return (ri->readfn(env, ri, v) == 0);
93 } else {
94 if (ri->type & ARM_CP_64BIT) {
95 *v = CPREG_FIELD64(env, ri);
96 } else {
97 *v = CPREG_FIELD32(env, ri);
98 }
99 }
100 return true;
101 }
102
103 static bool write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
104 int64_t v)
105 {
106 /* Raw write of a coprocessor register (as needed for migration, etc).
107 * Return true on success, false if the write is impossible for some reason.
108 * Note that constant registers are treated as write-ignored; the
109 * caller should check for success by whether a readback gives the
110 * value written.
111 */
112 if (ri->type & ARM_CP_CONST) {
113 return true;
114 } else if (ri->raw_writefn) {
115 return (ri->raw_writefn(env, ri, v) == 0);
116 } else if (ri->writefn) {
117 return (ri->writefn(env, ri, v) == 0);
118 } else {
119 if (ri->type & ARM_CP_64BIT) {
120 CPREG_FIELD64(env, ri) = v;
121 } else {
122 CPREG_FIELD32(env, ri) = v;
123 }
124 }
125 return true;
126 }
127
128 bool write_cpustate_to_list(ARMCPU *cpu)
129 {
130 /* Write the coprocessor state from cpu->env to the (index,value) list. */
131 int i;
132 bool ok = true;
133
134 for (i = 0; i < cpu->cpreg_array_len; i++) {
135 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
136 const ARMCPRegInfo *ri;
137 uint64_t v;
138 ri = get_arm_cp_reginfo(cpu, regidx);
139 if (!ri) {
140 ok = false;
141 continue;
142 }
143 if (ri->type & ARM_CP_NO_MIGRATE) {
144 continue;
145 }
146 if (!read_raw_cp_reg(&cpu->env, ri, &v)) {
147 ok = false;
148 continue;
149 }
150 cpu->cpreg_values[i] = v;
151 }
152 return ok;
153 }
154
155 bool write_list_to_cpustate(ARMCPU *cpu)
156 {
157 int i;
158 bool ok = true;
159
160 for (i = 0; i < cpu->cpreg_array_len; i++) {
161 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
162 uint64_t v = cpu->cpreg_values[i];
163 uint64_t readback;
164 const ARMCPRegInfo *ri;
165
166 ri = get_arm_cp_reginfo(cpu, regidx);
167 if (!ri) {
168 ok = false;
169 continue;
170 }
171 if (ri->type & ARM_CP_NO_MIGRATE) {
172 continue;
173 }
174 /* Write value and confirm it reads back as written
175 * (to catch read-only registers and partially read-only
176 * registers where the incoming migration value doesn't match)
177 */
178 if (!write_raw_cp_reg(&cpu->env, ri, v) ||
179 !read_raw_cp_reg(&cpu->env, ri, &readback) ||
180 readback != v) {
181 ok = false;
182 }
183 }
184 return ok;
185 }
186
187 static void add_cpreg_to_list(gpointer key, gpointer opaque)
188 {
189 ARMCPU *cpu = opaque;
190 uint64_t regidx;
191 const ARMCPRegInfo *ri;
192
193 regidx = *(uint32_t *)key;
194 ri = get_arm_cp_reginfo(cpu, regidx);
195
196 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
197 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
198 /* The value array need not be initialized at this point */
199 cpu->cpreg_array_len++;
200 }
201 }
202
203 static void count_cpreg(gpointer key, gpointer opaque)
204 {
205 ARMCPU *cpu = opaque;
206 uint64_t regidx;
207 const ARMCPRegInfo *ri;
208
209 regidx = *(uint32_t *)key;
210 ri = get_arm_cp_reginfo(cpu, regidx);
211
212 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
213 cpu->cpreg_array_len++;
214 }
215 }
216
217 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
218 {
219 uint32_t aidx = *(uint32_t *)a;
220 uint32_t bidx = *(uint32_t *)b;
221
222 return aidx - bidx;
223 }
224
225 void init_cpreg_list(ARMCPU *cpu)
226 {
227 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
228 * Note that we require cpreg_tuples[] to be sorted by key ID.
229 */
230 GList *keys;
231 int arraylen;
232
233 keys = g_hash_table_get_keys(cpu->cp_regs);
234 keys = g_list_sort(keys, cpreg_key_compare);
235
236 cpu->cpreg_array_len = 0;
237
238 g_list_foreach(keys, count_cpreg, cpu);
239
240 arraylen = cpu->cpreg_array_len;
241 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
242 cpu->cpreg_values = g_new(uint64_t, arraylen);
243 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
244 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
245 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
246 cpu->cpreg_array_len = 0;
247
248 g_list_foreach(keys, add_cpreg_to_list, cpu);
249
250 assert(cpu->cpreg_array_len == arraylen);
251
252 g_list_free(keys);
253 }
254
255 static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
256 {
257 env->cp15.c3 = value;
258 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
259 return 0;
260 }
261
262 static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
263 {
264 if (env->cp15.c13_fcse != value) {
265 /* Unlike real hardware the qemu TLB uses virtual addresses,
266 * not modified virtual addresses, so this causes a TLB flush.
267 */
268 tlb_flush(env, 1);
269 env->cp15.c13_fcse = value;
270 }
271 return 0;
272 }
273 static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
274 uint64_t value)
275 {
276 if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
277 /* For VMSA (when not using the LPAE long descriptor page table
278 * format) this register includes the ASID, so do a TLB flush.
279 * For PMSA it is purely a process ID and no action is needed.
280 */
281 tlb_flush(env, 1);
282 }
283 env->cp15.c13_context = value;
284 return 0;
285 }
286
287 static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
288 uint64_t value)
289 {
290 /* Invalidate all (TLBIALL) */
291 tlb_flush(env, 1);
292 return 0;
293 }
294
295 static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
296 uint64_t value)
297 {
298 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
299 tlb_flush_page(env, value & TARGET_PAGE_MASK);
300 return 0;
301 }
302
303 static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
304 uint64_t value)
305 {
306 /* Invalidate by ASID (TLBIASID) */
307 tlb_flush(env, value == 0);
308 return 0;
309 }
310
311 static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
312 uint64_t value)
313 {
314 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
315 tlb_flush_page(env, value & TARGET_PAGE_MASK);
316 return 0;
317 }
318
319 static const ARMCPRegInfo cp_reginfo[] = {
320 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
321 * version" bits will read as a reserved value, which should cause
322 * Linux to not try to use the debug hardware.
323 */
324 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
325 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
326 /* MMU Domain access control / MPU write buffer control */
327 { .name = "DACR", .cp = 15,
328 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
329 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
330 .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
331 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
332 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
333 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
334 { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
335 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
336 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
337 /* ??? This covers not just the impdef TLB lockdown registers but also
338 * some v7VMSA registers relating to TEX remap, so it is overly broad.
339 */
340 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
341 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
342 /* MMU TLB control. Note that the wildcarding means we cover not just
343 * the unified TLB ops but also the dside/iside/inner-shareable variants.
344 */
345 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
346 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
347 .type = ARM_CP_NO_MIGRATE },
348 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
349 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
350 .type = ARM_CP_NO_MIGRATE },
351 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
352 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
353 .type = ARM_CP_NO_MIGRATE },
354 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
355 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
356 .type = ARM_CP_NO_MIGRATE },
357 /* Cache maintenance ops; some of this space may be overridden later. */
358 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
359 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
360 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
361 REGINFO_SENTINEL
362 };
363
364 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
365 /* Not all pre-v6 cores implemented this WFI, so this is slightly
366 * over-broad.
367 */
368 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
369 .access = PL1_W, .type = ARM_CP_WFI },
370 REGINFO_SENTINEL
371 };
372
373 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
374 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
375 * is UNPREDICTABLE; we choose to NOP as most implementations do).
376 */
377 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
378 .access = PL1_W, .type = ARM_CP_WFI },
379 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
380 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
381 * OMAPCP will override this space.
382 */
383 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
384 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
385 .resetvalue = 0 },
386 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
387 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
388 .resetvalue = 0 },
389 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
390 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
391 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
392 .resetvalue = 0 },
393 REGINFO_SENTINEL
394 };
395
396 static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
397 {
398 if (env->cp15.c1_coproc != value) {
399 env->cp15.c1_coproc = value;
400 /* ??? Is this safe when called from within a TB? */
401 tb_flush(env);
402 }
403 return 0;
404 }
405
406 static const ARMCPRegInfo v6_cp_reginfo[] = {
407 /* prefetch by MVA in v6, NOP in v7 */
408 { .name = "MVA_prefetch",
409 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
410 .access = PL1_W, .type = ARM_CP_NOP },
411 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
412 .access = PL0_W, .type = ARM_CP_NOP },
413 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
414 .access = PL0_W, .type = ARM_CP_NOP },
415 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
416 .access = PL0_W, .type = ARM_CP_NOP },
417 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
418 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
419 .resetvalue = 0, },
420 /* Watchpoint Fault Address Register : should actually only be present
421 * for 1136, 1176, 11MPCore.
422 */
423 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
424 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
425 { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
426 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
427 .resetvalue = 0, .writefn = cpacr_write },
428 REGINFO_SENTINEL
429 };
430
431
432 static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri,
433 uint64_t *value)
434 {
435 /* Generic performance monitor register read function for where
436 * user access may be allowed by PMUSERENR.
437 */
438 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
439 return EXCP_UDEF;
440 }
441 *value = CPREG_FIELD32(env, ri);
442 return 0;
443 }
444
445 static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
446 uint64_t value)
447 {
448 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
449 return EXCP_UDEF;
450 }
451 /* only the DP, X, D and E bits are writable */
452 env->cp15.c9_pmcr &= ~0x39;
453 env->cp15.c9_pmcr |= (value & 0x39);
454 return 0;
455 }
456
457 static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
458 uint64_t value)
459 {
460 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
461 return EXCP_UDEF;
462 }
463 value &= (1 << 31);
464 env->cp15.c9_pmcnten |= value;
465 return 0;
466 }
467
468 static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
469 uint64_t value)
470 {
471 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
472 return EXCP_UDEF;
473 }
474 value &= (1 << 31);
475 env->cp15.c9_pmcnten &= ~value;
476 return 0;
477 }
478
479 static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
480 uint64_t value)
481 {
482 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
483 return EXCP_UDEF;
484 }
485 env->cp15.c9_pmovsr &= ~value;
486 return 0;
487 }
488
489 static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
490 uint64_t value)
491 {
492 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
493 return EXCP_UDEF;
494 }
495 env->cp15.c9_pmxevtyper = value & 0xff;
496 return 0;
497 }
498
499 static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 uint64_t value)
501 {
502 env->cp15.c9_pmuserenr = value & 1;
503 return 0;
504 }
505
506 static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
507 uint64_t value)
508 {
509 /* We have no event counters so only the C bit can be changed */
510 value &= (1 << 31);
511 env->cp15.c9_pminten |= value;
512 return 0;
513 }
514
515 static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
516 uint64_t value)
517 {
518 value &= (1 << 31);
519 env->cp15.c9_pminten &= ~value;
520 return 0;
521 }
522
523 static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
524 uint64_t *value)
525 {
526 ARMCPU *cpu = arm_env_get_cpu(env);
527 *value = cpu->ccsidr[env->cp15.c0_cssel];
528 return 0;
529 }
530
531 static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
532 uint64_t value)
533 {
534 env->cp15.c0_cssel = value & 0xf;
535 return 0;
536 }
537
538 static const ARMCPRegInfo v7_cp_reginfo[] = {
539 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
540 * debug components
541 */
542 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
543 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
544 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
545 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
546 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
547 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
548 .access = PL1_W, .type = ARM_CP_NOP },
549 /* Performance monitors are implementation defined in v7,
550 * but with an ARM recommended set of registers, which we
551 * follow (although we don't actually implement any counters)
552 *
553 * Performance registers fall into three categories:
554 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
555 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
556 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
557 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
558 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
559 */
560 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
561 .access = PL0_RW, .resetvalue = 0,
562 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
563 .readfn = pmreg_read, .writefn = pmcntenset_write,
564 .raw_readfn = raw_read, .raw_writefn = raw_write },
565 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
566 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
567 .readfn = pmreg_read, .writefn = pmcntenclr_write,
568 .type = ARM_CP_NO_MIGRATE },
569 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
570 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
571 .readfn = pmreg_read, .writefn = pmovsr_write,
572 .raw_readfn = raw_read, .raw_writefn = raw_write },
573 /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
574 * respect PMUSERENR.
575 */
576 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
577 .access = PL0_W, .type = ARM_CP_NOP },
578 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
579 * We choose to RAZ/WI. XXX should respect PMUSERENR.
580 */
581 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
582 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
583 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
584 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
585 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
586 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
587 .access = PL0_RW,
588 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
589 .readfn = pmreg_read, .writefn = pmxevtyper_write,
590 .raw_readfn = raw_read, .raw_writefn = raw_write },
591 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
592 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
593 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
594 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
595 .access = PL0_R | PL1_RW,
596 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
597 .resetvalue = 0,
598 .writefn = pmuserenr_write, .raw_writefn = raw_write },
599 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
600 .access = PL1_RW,
601 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
602 .resetvalue = 0,
603 .writefn = pmintenset_write, .raw_writefn = raw_write },
604 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
605 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
606 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
607 .resetvalue = 0, .writefn = pmintenclr_write, },
608 { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
609 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
610 .resetvalue = 0, },
611 { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
612 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
613 { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
614 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
615 .writefn = csselr_write, .resetvalue = 0 },
616 /* Auxiliary ID register: this actually has an IMPDEF value but for now
617 * just RAZ for all cores:
618 */
619 { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
620 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
621 REGINFO_SENTINEL
622 };
623
624 static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
625 {
626 value &= 1;
627 env->teecr = value;
628 return 0;
629 }
630
631 static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri,
632 uint64_t *value)
633 {
634 /* This is a helper function because the user access rights
635 * depend on the value of the TEECR.
636 */
637 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
638 return EXCP_UDEF;
639 }
640 *value = env->teehbr;
641 return 0;
642 }
643
644 static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
645 uint64_t value)
646 {
647 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
648 return EXCP_UDEF;
649 }
650 env->teehbr = value;
651 return 0;
652 }
653
654 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
655 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
656 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
657 .resetvalue = 0,
658 .writefn = teecr_write },
659 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
660 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
661 .resetvalue = 0, .raw_readfn = raw_read, .raw_writefn = raw_write,
662 .readfn = teehbr_read, .writefn = teehbr_write },
663 REGINFO_SENTINEL
664 };
665
666 static const ARMCPRegInfo v6k_cp_reginfo[] = {
667 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
668 .access = PL0_RW,
669 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1),
670 .resetvalue = 0 },
671 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
672 .access = PL0_R|PL1_W,
673 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2),
674 .resetvalue = 0 },
675 { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4,
676 .access = PL1_RW,
677 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3),
678 .resetvalue = 0 },
679 REGINFO_SENTINEL
680 };
681
682 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
683 /* Dummy implementation: RAZ/WI the whole crn=14 space */
684 { .name = "GENERIC_TIMER", .cp = 15, .crn = 14,
685 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
686 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
687 .resetvalue = 0 },
688 REGINFO_SENTINEL
689 };
690
691 static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
692 {
693 if (arm_feature(env, ARM_FEATURE_LPAE)) {
694 env->cp15.c7_par = value;
695 } else if (arm_feature(env, ARM_FEATURE_V7)) {
696 env->cp15.c7_par = value & 0xfffff6ff;
697 } else {
698 env->cp15.c7_par = value & 0xfffff1ff;
699 }
700 return 0;
701 }
702
703 #ifndef CONFIG_USER_ONLY
704 /* get_phys_addr() isn't present for user-mode-only targets */
705
706 /* Return true if extended addresses are enabled, ie this is an
707 * LPAE implementation and we are using the long-descriptor translation
708 * table format because the TTBCR EAE bit is set.
709 */
710 static inline bool extended_addresses_enabled(CPUARMState *env)
711 {
712 return arm_feature(env, ARM_FEATURE_LPAE)
713 && (env->cp15.c2_control & (1 << 31));
714 }
715
716 static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
717 {
718 hwaddr phys_addr;
719 target_ulong page_size;
720 int prot;
721 int ret, is_user = ri->opc2 & 2;
722 int access_type = ri->opc2 & 1;
723
724 if (ri->opc2 & 4) {
725 /* Other states are only available with TrustZone */
726 return EXCP_UDEF;
727 }
728 ret = get_phys_addr(env, value, access_type, is_user,
729 &phys_addr, &prot, &page_size);
730 if (extended_addresses_enabled(env)) {
731 /* ret is a DFSR/IFSR value for the long descriptor
732 * translation table format, but with WnR always clear.
733 * Convert it to a 64-bit PAR.
734 */
735 uint64_t par64 = (1 << 11); /* LPAE bit always set */
736 if (ret == 0) {
737 par64 |= phys_addr & ~0xfffULL;
738 /* We don't set the ATTR or SH fields in the PAR. */
739 } else {
740 par64 |= 1; /* F */
741 par64 |= (ret & 0x3f) << 1; /* FS */
742 /* Note that S2WLK and FSTAGE are always zero, because we don't
743 * implement virtualization and therefore there can't be a stage 2
744 * fault.
745 */
746 }
747 env->cp15.c7_par = par64;
748 env->cp15.c7_par_hi = par64 >> 32;
749 } else {
750 /* ret is a DFSR/IFSR value for the short descriptor
751 * translation table format (with WnR always clear).
752 * Convert it to a 32-bit PAR.
753 */
754 if (ret == 0) {
755 /* We do not set any attribute bits in the PAR */
756 if (page_size == (1 << 24)
757 && arm_feature(env, ARM_FEATURE_V7)) {
758 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
759 } else {
760 env->cp15.c7_par = phys_addr & 0xfffff000;
761 }
762 } else {
763 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
764 ((ret & (12 << 1)) >> 6) |
765 ((ret & 0xf) << 1) | 1;
766 }
767 env->cp15.c7_par_hi = 0;
768 }
769 return 0;
770 }
771 #endif
772
773 static const ARMCPRegInfo vapa_cp_reginfo[] = {
774 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
775 .access = PL1_RW, .resetvalue = 0,
776 .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
777 .writefn = par_write },
778 #ifndef CONFIG_USER_ONLY
779 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
780 .access = PL1_W, .writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
781 #endif
782 REGINFO_SENTINEL
783 };
784
785 /* Return basic MPU access permission bits. */
786 static uint32_t simple_mpu_ap_bits(uint32_t val)
787 {
788 uint32_t ret;
789 uint32_t mask;
790 int i;
791 ret = 0;
792 mask = 3;
793 for (i = 0; i < 16; i += 2) {
794 ret |= (val >> i) & mask;
795 mask <<= 2;
796 }
797 return ret;
798 }
799
800 /* Pad basic MPU access permission bits to extended format. */
801 static uint32_t extended_mpu_ap_bits(uint32_t val)
802 {
803 uint32_t ret;
804 uint32_t mask;
805 int i;
806 ret = 0;
807 mask = 3;
808 for (i = 0; i < 16; i += 2) {
809 ret |= (val & mask) << i;
810 mask <<= 2;
811 }
812 return ret;
813 }
814
815 static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
816 uint64_t value)
817 {
818 env->cp15.c5_data = extended_mpu_ap_bits(value);
819 return 0;
820 }
821
822 static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
823 uint64_t *value)
824 {
825 *value = simple_mpu_ap_bits(env->cp15.c5_data);
826 return 0;
827 }
828
829 static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
830 uint64_t value)
831 {
832 env->cp15.c5_insn = extended_mpu_ap_bits(value);
833 return 0;
834 }
835
836 static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
837 uint64_t *value)
838 {
839 *value = simple_mpu_ap_bits(env->cp15.c5_insn);
840 return 0;
841 }
842
843 static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri,
844 uint64_t *value)
845 {
846 if (ri->crm >= 8) {
847 return EXCP_UDEF;
848 }
849 *value = env->cp15.c6_region[ri->crm];
850 return 0;
851 }
852
853 static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
854 uint64_t value)
855 {
856 if (ri->crm >= 8) {
857 return EXCP_UDEF;
858 }
859 env->cp15.c6_region[ri->crm] = value;
860 return 0;
861 }
862
863 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
864 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
865 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
866 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
867 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
868 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
869 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
870 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
871 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
872 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
873 .access = PL1_RW,
874 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
875 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
876 .access = PL1_RW,
877 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
878 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
879 .access = PL1_RW,
880 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
881 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
882 .access = PL1_RW,
883 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
884 /* Protection region base and size registers */
885 { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0,
886 .opc2 = CP_ANY, .access = PL1_RW,
887 .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, },
888 REGINFO_SENTINEL
889 };
890
891 static int vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
892 uint64_t value)
893 {
894 int maskshift = extract32(value, 0, 3);
895
896 if (arm_feature(env, ARM_FEATURE_LPAE)) {
897 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
898 } else {
899 value &= 7;
900 }
901 /* Note that we always calculate c2_mask and c2_base_mask, but
902 * they are only used for short-descriptor tables (ie if EAE is 0);
903 * for long-descriptor tables the TTBCR fields are used differently
904 * and the c2_mask and c2_base_mask values are meaningless.
905 */
906 env->cp15.c2_control = value;
907 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift);
908 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift);
909 return 0;
910 }
911
912 static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
913 uint64_t value)
914 {
915 if (arm_feature(env, ARM_FEATURE_LPAE)) {
916 /* With LPAE the TTBCR could result in a change of ASID
917 * via the TTBCR.A1 bit, so do a TLB flush.
918 */
919 tlb_flush(env, 1);
920 }
921 return vmsa_ttbcr_raw_write(env, ri, value);
922 }
923
924 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
925 {
926 env->cp15.c2_base_mask = 0xffffc000u;
927 env->cp15.c2_control = 0;
928 env->cp15.c2_mask = 0;
929 }
930
931 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
932 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
933 .access = PL1_RW,
934 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
935 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
936 .access = PL1_RW,
937 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
938 { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
939 .access = PL1_RW,
940 .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
941 { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
942 .access = PL1_RW,
943 .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, },
944 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
945 .access = PL1_RW, .writefn = vmsa_ttbcr_write,
946 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
947 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
948 { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
949 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
950 .resetvalue = 0, },
951 REGINFO_SENTINEL
952 };
953
954 static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
955 uint64_t value)
956 {
957 env->cp15.c15_ticonfig = value & 0xe7;
958 /* The OS_TYPE bit in this register changes the reported CPUID! */
959 env->cp15.c0_cpuid = (value & (1 << 5)) ?
960 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
961 return 0;
962 }
963
964 static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
965 uint64_t value)
966 {
967 env->cp15.c15_threadid = value & 0xffff;
968 return 0;
969 }
970
971 static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
972 uint64_t value)
973 {
974 /* Wait-for-interrupt (deprecated) */
975 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
976 return 0;
977 }
978
979 static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
980 uint64_t value)
981 {
982 /* On OMAP there are registers indicating the max/min index of dcache lines
983 * containing a dirty line; cache flush operations have to reset these.
984 */
985 env->cp15.c15_i_max = 0x000;
986 env->cp15.c15_i_min = 0xff0;
987 return 0;
988 }
989
990 static const ARMCPRegInfo omap_cp_reginfo[] = {
991 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
992 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
993 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
994 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
995 .access = PL1_RW, .type = ARM_CP_NOP },
996 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
997 .access = PL1_RW,
998 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
999 .writefn = omap_ticonfig_write },
1000 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
1001 .access = PL1_RW,
1002 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
1003 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
1004 .access = PL1_RW, .resetvalue = 0xff0,
1005 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
1006 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
1007 .access = PL1_RW,
1008 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
1009 .writefn = omap_threadid_write },
1010 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
1011 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1012 .type = ARM_CP_NO_MIGRATE,
1013 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
1014 /* TODO: Peripheral port remap register:
1015 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1016 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1017 * when MMU is off.
1018 */
1019 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1020 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
1021 .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
1022 .writefn = omap_cachemaint_write },
1023 { .name = "C9", .cp = 15, .crn = 9,
1024 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
1025 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1026 REGINFO_SENTINEL
1027 };
1028
1029 static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1030 uint64_t value)
1031 {
1032 value &= 0x3fff;
1033 if (env->cp15.c15_cpar != value) {
1034 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1035 tb_flush(env);
1036 env->cp15.c15_cpar = value;
1037 }
1038 return 0;
1039 }
1040
1041 static const ARMCPRegInfo xscale_cp_reginfo[] = {
1042 { .name = "XSCALE_CPAR",
1043 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1044 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
1045 .writefn = xscale_cpar_write, },
1046 { .name = "XSCALE_AUXCR",
1047 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
1048 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
1049 .resetvalue = 0, },
1050 REGINFO_SENTINEL
1051 };
1052
1053 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
1054 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1055 * implementation of this implementation-defined space.
1056 * Ideally this should eventually disappear in favour of actually
1057 * implementing the correct behaviour for all cores.
1058 */
1059 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
1060 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1061 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1062 .resetvalue = 0 },
1063 REGINFO_SENTINEL
1064 };
1065
1066 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
1067 /* Cache status: RAZ because we have no cache so it's always clean */
1068 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1069 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1070 .resetvalue = 0 },
1071 REGINFO_SENTINEL
1072 };
1073
1074 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
1075 /* We never have a a block transfer operation in progress */
1076 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1077 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1078 .resetvalue = 0 },
1079 /* The cache ops themselves: these all NOP for QEMU */
1080 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
1081 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1082 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
1083 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1084 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
1085 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1086 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
1087 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1088 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
1089 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1090 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
1091 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1092 REGINFO_SENTINEL
1093 };
1094
1095 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
1096 /* The cache test-and-clean instructions always return (1 << 30)
1097 * to indicate that there are no dirty cache lines.
1098 */
1099 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
1100 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1101 .resetvalue = (1 << 30) },
1102 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
1103 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1104 .resetvalue = (1 << 30) },
1105 REGINFO_SENTINEL
1106 };
1107
1108 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
1109 /* Ignore ReadBuffer accesses */
1110 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
1111 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1112 .access = PL1_RW, .resetvalue = 0,
1113 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
1114 REGINFO_SENTINEL
1115 };
1116
1117 static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1118 uint64_t *value)
1119 {
1120 CPUState *cs = CPU(arm_env_get_cpu(env));
1121 uint32_t mpidr = cs->cpu_index;
1122 /* We don't support setting cluster ID ([8..11])
1123 * so these bits always RAZ.
1124 */
1125 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1126 mpidr |= (1 << 31);
1127 /* Cores which are uniprocessor (non-coherent)
1128 * but still implement the MP extensions set
1129 * bit 30. (For instance, A9UP.) However we do
1130 * not currently model any of those cores.
1131 */
1132 }
1133 *value = mpidr;
1134 return 0;
1135 }
1136
1137 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
1138 { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
1139 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
1140 REGINFO_SENTINEL
1141 };
1142
1143 static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1144 {
1145 *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
1146 return 0;
1147 }
1148
1149 static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1150 {
1151 env->cp15.c7_par_hi = value >> 32;
1152 env->cp15.c7_par = value;
1153 return 0;
1154 }
1155
1156 static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1157 {
1158 env->cp15.c7_par_hi = 0;
1159 env->cp15.c7_par = 0;
1160 }
1161
1162 static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri,
1163 uint64_t *value)
1164 {
1165 *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
1166 return 0;
1167 }
1168
1169 static int ttbr064_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1170 uint64_t value)
1171 {
1172 env->cp15.c2_base0_hi = value >> 32;
1173 env->cp15.c2_base0 = value;
1174 return 0;
1175 }
1176
1177 static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri,
1178 uint64_t value)
1179 {
1180 /* Writes to the 64 bit format TTBRs may change the ASID */
1181 tlb_flush(env, 1);
1182 return ttbr064_raw_write(env, ri, value);
1183 }
1184
1185 static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1186 {
1187 env->cp15.c2_base0_hi = 0;
1188 env->cp15.c2_base0 = 0;
1189 }
1190
1191 static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri,
1192 uint64_t *value)
1193 {
1194 *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
1195 return 0;
1196 }
1197
1198 static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri,
1199 uint64_t value)
1200 {
1201 env->cp15.c2_base1_hi = value >> 32;
1202 env->cp15.c2_base1 = value;
1203 return 0;
1204 }
1205
1206 static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1207 {
1208 env->cp15.c2_base1_hi = 0;
1209 env->cp15.c2_base1 = 0;
1210 }
1211
1212 static const ARMCPRegInfo lpae_cp_reginfo[] = {
1213 /* NOP AMAIR0/1: the override is because these clash with the rather
1214 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1215 */
1216 { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
1217 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1218 .resetvalue = 0 },
1219 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
1220 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1221 .resetvalue = 0 },
1222 /* 64 bit access versions of the (dummy) debug registers */
1223 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1224 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1225 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1226 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1227 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
1228 .access = PL1_RW, .type = ARM_CP_64BIT,
1229 .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
1230 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1231 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read,
1232 .writefn = ttbr064_write, .raw_writefn = ttbr064_raw_write,
1233 .resetfn = ttbr064_reset },
1234 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1235 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read,
1236 .writefn = ttbr164_write, .resetfn = ttbr164_reset },
1237 REGINFO_SENTINEL
1238 };
1239
1240 static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1241 {
1242 env->cp15.c1_sys = value;
1243 /* ??? Lots of these bits are not implemented. */
1244 /* This may enable/disable the MMU, so do a TLB flush. */
1245 tlb_flush(env, 1);
1246 return 0;
1247 }
1248
1249 void register_cp_regs_for_features(ARMCPU *cpu)
1250 {
1251 /* Register all the coprocessor registers based on feature bits */
1252 CPUARMState *env = &cpu->env;
1253 if (arm_feature(env, ARM_FEATURE_M)) {
1254 /* M profile has no coprocessor registers */
1255 return;
1256 }
1257
1258 define_arm_cp_regs(cpu, cp_reginfo);
1259 if (arm_feature(env, ARM_FEATURE_V6)) {
1260 /* The ID registers all have impdef reset values */
1261 ARMCPRegInfo v6_idregs[] = {
1262 { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
1263 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1264 .resetvalue = cpu->id_pfr0 },
1265 { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
1266 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1267 .resetvalue = cpu->id_pfr1 },
1268 { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
1269 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1270 .resetvalue = cpu->id_dfr0 },
1271 { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
1272 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1273 .resetvalue = cpu->id_afr0 },
1274 { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
1275 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1276 .resetvalue = cpu->id_mmfr0 },
1277 { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
1278 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1279 .resetvalue = cpu->id_mmfr1 },
1280 { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
1281 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1282 .resetvalue = cpu->id_mmfr2 },
1283 { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
1284 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1285 .resetvalue = cpu->id_mmfr3 },
1286 { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
1287 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1288 .resetvalue = cpu->id_isar0 },
1289 { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
1290 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1291 .resetvalue = cpu->id_isar1 },
1292 { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
1293 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1294 .resetvalue = cpu->id_isar2 },
1295 { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
1296 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1297 .resetvalue = cpu->id_isar3 },
1298 { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
1299 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1300 .resetvalue = cpu->id_isar4 },
1301 { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
1302 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1303 .resetvalue = cpu->id_isar5 },
1304 /* 6..7 are as yet unallocated and must RAZ */
1305 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
1306 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1307 .resetvalue = 0 },
1308 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
1309 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1310 .resetvalue = 0 },
1311 REGINFO_SENTINEL
1312 };
1313 define_arm_cp_regs(cpu, v6_idregs);
1314 define_arm_cp_regs(cpu, v6_cp_reginfo);
1315 } else {
1316 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
1317 }
1318 if (arm_feature(env, ARM_FEATURE_V6K)) {
1319 define_arm_cp_regs(cpu, v6k_cp_reginfo);
1320 }
1321 if (arm_feature(env, ARM_FEATURE_V7)) {
1322 /* v7 performance monitor control register: same implementor
1323 * field as main ID register, and we implement no event counters.
1324 */
1325 ARMCPRegInfo pmcr = {
1326 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
1327 .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
1328 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
1329 .readfn = pmreg_read, .writefn = pmcr_write,
1330 .raw_readfn = raw_read, .raw_writefn = raw_write,
1331 };
1332 ARMCPRegInfo clidr = {
1333 .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
1334 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
1335 };
1336 define_one_arm_cp_reg(cpu, &pmcr);
1337 define_one_arm_cp_reg(cpu, &clidr);
1338 define_arm_cp_regs(cpu, v7_cp_reginfo);
1339 } else {
1340 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
1341 }
1342 if (arm_feature(env, ARM_FEATURE_MPU)) {
1343 /* These are the MPU registers prior to PMSAv6. Any new
1344 * PMSA core later than the ARM946 will require that we
1345 * implement the PMSAv6 or PMSAv7 registers, which are
1346 * completely different.
1347 */
1348 assert(!arm_feature(env, ARM_FEATURE_V6));
1349 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
1350 } else {
1351 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
1352 }
1353 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
1354 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
1355 }
1356 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1357 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
1358 }
1359 if (arm_feature(env, ARM_FEATURE_VAPA)) {
1360 define_arm_cp_regs(cpu, vapa_cp_reginfo);
1361 }
1362 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
1363 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
1364 }
1365 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
1366 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
1367 }
1368 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
1369 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
1370 }
1371 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1372 define_arm_cp_regs(cpu, omap_cp_reginfo);
1373 }
1374 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
1375 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
1376 }
1377 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1378 define_arm_cp_regs(cpu, xscale_cp_reginfo);
1379 }
1380 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
1381 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
1382 }
1383 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1384 define_arm_cp_regs(cpu, lpae_cp_reginfo);
1385 }
1386 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
1387 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
1388 * be read-only (ie write causes UNDEF exception).
1389 */
1390 {
1391 ARMCPRegInfo id_cp_reginfo[] = {
1392 /* Note that the MIDR isn't a simple constant register because
1393 * of the TI925 behaviour where writes to another register can
1394 * cause the MIDR value to change.
1395 *
1396 * Unimplemented registers in the c15 0 0 0 space default to
1397 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
1398 * and friends override accordingly.
1399 */
1400 { .name = "MIDR",
1401 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
1402 .access = PL1_R, .resetvalue = cpu->midr,
1403 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
1404 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
1405 .type = ARM_CP_OVERRIDE },
1406 { .name = "CTR",
1407 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
1408 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
1409 { .name = "TCMTR",
1410 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
1411 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1412 { .name = "TLBTR",
1413 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
1414 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1415 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
1416 { .name = "DUMMY",
1417 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
1418 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1419 { .name = "DUMMY",
1420 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
1421 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1422 { .name = "DUMMY",
1423 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
1424 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1425 { .name = "DUMMY",
1426 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
1427 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1428 { .name = "DUMMY",
1429 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
1430 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1431 REGINFO_SENTINEL
1432 };
1433 ARMCPRegInfo crn0_wi_reginfo = {
1434 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
1435 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
1436 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
1437 };
1438 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
1439 arm_feature(env, ARM_FEATURE_STRONGARM)) {
1440 ARMCPRegInfo *r;
1441 /* Register the blanket "writes ignored" value first to cover the
1442 * whole space. Then update the specific ID registers to allow write
1443 * access, so that they ignore writes rather than causing them to
1444 * UNDEF.
1445 */
1446 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
1447 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
1448 r->access = PL1_RW;
1449 }
1450 }
1451 define_arm_cp_regs(cpu, id_cp_reginfo);
1452 }
1453
1454 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
1455 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
1456 }
1457
1458 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
1459 ARMCPRegInfo auxcr = {
1460 .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
1461 .access = PL1_RW, .type = ARM_CP_CONST,
1462 .resetvalue = cpu->reset_auxcr
1463 };
1464 define_one_arm_cp_reg(cpu, &auxcr);
1465 }
1466
1467 /* Generic registers whose values depend on the implementation */
1468 {
1469 ARMCPRegInfo sctlr = {
1470 .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
1471 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
1472 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
1473 .raw_writefn = raw_write,
1474 };
1475 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1476 /* Normally we would always end the TB on an SCTLR write, but Linux
1477 * arch/arm/mach-pxa/sleep.S expects two instructions following
1478 * an MMU enable to execute from cache. Imitate this behaviour.
1479 */
1480 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
1481 }
1482 define_one_arm_cp_reg(cpu, &sctlr);
1483 }
1484 }
1485
1486 ARMCPU *cpu_arm_init(const char *cpu_model)
1487 {
1488 ARMCPU *cpu;
1489 CPUARMState *env;
1490 ObjectClass *oc;
1491
1492 oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
1493 if (!oc) {
1494 return NULL;
1495 }
1496 cpu = ARM_CPU(object_new(object_class_get_name(oc)));
1497 env = &cpu->env;
1498 env->cpu_model_str = cpu_model;
1499
1500 /* TODO this should be set centrally, once possible */
1501 object_property_set_bool(OBJECT(cpu), true, "realized", NULL);
1502
1503 return cpu;
1504 }
1505
1506 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
1507 {
1508 CPUARMState *env = &cpu->env;
1509
1510 if (arm_feature(env, ARM_FEATURE_NEON)) {
1511 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1512 51, "arm-neon.xml", 0);
1513 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
1514 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1515 35, "arm-vfp3.xml", 0);
1516 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
1517 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1518 19, "arm-vfp.xml", 0);
1519 }
1520 }
1521
1522 /* Sort alphabetically by type name, except for "any". */
1523 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
1524 {
1525 ObjectClass *class_a = (ObjectClass *)a;
1526 ObjectClass *class_b = (ObjectClass *)b;
1527 const char *name_a, *name_b;
1528
1529 name_a = object_class_get_name(class_a);
1530 name_b = object_class_get_name(class_b);
1531 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
1532 return 1;
1533 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
1534 return -1;
1535 } else {
1536 return strcmp(name_a, name_b);
1537 }
1538 }
1539
1540 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
1541 {
1542 ObjectClass *oc = data;
1543 CPUListState *s = user_data;
1544 const char *typename;
1545 char *name;
1546
1547 typename = object_class_get_name(oc);
1548 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
1549 (*s->cpu_fprintf)(s->file, " %s\n",
1550 name);
1551 g_free(name);
1552 }
1553
1554 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
1555 {
1556 CPUListState s = {
1557 .file = f,
1558 .cpu_fprintf = cpu_fprintf,
1559 };
1560 GSList *list;
1561
1562 list = object_class_get_list(TYPE_ARM_CPU, false);
1563 list = g_slist_sort(list, arm_cpu_list_compare);
1564 (*cpu_fprintf)(f, "Available CPUs:\n");
1565 g_slist_foreach(list, arm_cpu_list_entry, &s);
1566 g_slist_free(list);
1567 }
1568
1569 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1570 const ARMCPRegInfo *r, void *opaque)
1571 {
1572 /* Define implementations of coprocessor registers.
1573 * We store these in a hashtable because typically
1574 * there are less than 150 registers in a space which
1575 * is 16*16*16*8*8 = 262144 in size.
1576 * Wildcarding is supported for the crm, opc1 and opc2 fields.
1577 * If a register is defined twice then the second definition is
1578 * used, so this can be used to define some generic registers and
1579 * then override them with implementation specific variations.
1580 * At least one of the original and the second definition should
1581 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
1582 * against accidental use.
1583 */
1584 int crm, opc1, opc2;
1585 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
1586 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
1587 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
1588 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
1589 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
1590 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
1591 /* 64 bit registers have only CRm and Opc1 fields */
1592 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
1593 /* Check that the register definition has enough info to handle
1594 * reads and writes if they are permitted.
1595 */
1596 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
1597 if (r->access & PL3_R) {
1598 assert(r->fieldoffset || r->readfn);
1599 }
1600 if (r->access & PL3_W) {
1601 assert(r->fieldoffset || r->writefn);
1602 }
1603 }
1604 /* Bad type field probably means missing sentinel at end of reg list */
1605 assert(cptype_valid(r->type));
1606 for (crm = crmmin; crm <= crmmax; crm++) {
1607 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
1608 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
1609 uint32_t *key = g_new(uint32_t, 1);
1610 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
1611 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
1612 *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2);
1613 if (opaque) {
1614 r2->opaque = opaque;
1615 }
1616 /* Make sure reginfo passed to helpers for wildcarded regs
1617 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
1618 */
1619 r2->crm = crm;
1620 r2->opc1 = opc1;
1621 r2->opc2 = opc2;
1622 /* By convention, for wildcarded registers only the first
1623 * entry is used for migration; the others are marked as
1624 * NO_MIGRATE so we don't try to transfer the register
1625 * multiple times. Special registers (ie NOP/WFI) are
1626 * never migratable.
1627 */
1628 if ((r->type & ARM_CP_SPECIAL) ||
1629 ((r->crm == CP_ANY) && crm != 0) ||
1630 ((r->opc1 == CP_ANY) && opc1 != 0) ||
1631 ((r->opc2 == CP_ANY) && opc2 != 0)) {
1632 r2->type |= ARM_CP_NO_MIGRATE;
1633 }
1634
1635 /* Overriding of an existing definition must be explicitly
1636 * requested.
1637 */
1638 if (!(r->type & ARM_CP_OVERRIDE)) {
1639 ARMCPRegInfo *oldreg;
1640 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
1641 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
1642 fprintf(stderr, "Register redefined: cp=%d %d bit "
1643 "crn=%d crm=%d opc1=%d opc2=%d, "
1644 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
1645 r2->crn, r2->crm, r2->opc1, r2->opc2,
1646 oldreg->name, r2->name);
1647 assert(0);
1648 }
1649 }
1650 g_hash_table_insert(cpu->cp_regs, key, r2);
1651 }
1652 }
1653 }
1654 }
1655
1656 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1657 const ARMCPRegInfo *regs, void *opaque)
1658 {
1659 /* Define a whole list of registers */
1660 const ARMCPRegInfo *r;
1661 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
1662 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
1663 }
1664 }
1665
1666 const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp)
1667 {
1668 return g_hash_table_lookup(cpu->cp_regs, &encoded_cp);
1669 }
1670
1671 int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1672 uint64_t value)
1673 {
1674 /* Helper coprocessor write function for write-ignore registers */
1675 return 0;
1676 }
1677
1678 int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1679 {
1680 /* Helper coprocessor write function for read-as-zero registers */
1681 *value = 0;
1682 return 0;
1683 }
1684
1685 static int bad_mode_switch(CPUARMState *env, int mode)
1686 {
1687 /* Return true if it is not valid for us to switch to
1688 * this CPU mode (ie all the UNPREDICTABLE cases in
1689 * the ARM ARM CPSRWriteByInstr pseudocode).
1690 */
1691 switch (mode) {
1692 case ARM_CPU_MODE_USR:
1693 case ARM_CPU_MODE_SYS:
1694 case ARM_CPU_MODE_SVC:
1695 case ARM_CPU_MODE_ABT:
1696 case ARM_CPU_MODE_UND:
1697 case ARM_CPU_MODE_IRQ:
1698 case ARM_CPU_MODE_FIQ:
1699 return 0;
1700 default:
1701 return 1;
1702 }
1703 }
1704
1705 uint32_t cpsr_read(CPUARMState *env)
1706 {
1707 int ZF;
1708 ZF = (env->ZF == 0);
1709 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
1710 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1711 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
1712 | ((env->condexec_bits & 0xfc) << 8)
1713 | (env->GE << 16);
1714 }
1715
1716 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1717 {
1718 if (mask & CPSR_NZCV) {
1719 env->ZF = (~val) & CPSR_Z;
1720 env->NF = val;
1721 env->CF = (val >> 29) & 1;
1722 env->VF = (val << 3) & 0x80000000;
1723 }
1724 if (mask & CPSR_Q)
1725 env->QF = ((val & CPSR_Q) != 0);
1726 if (mask & CPSR_T)
1727 env->thumb = ((val & CPSR_T) != 0);
1728 if (mask & CPSR_IT_0_1) {
1729 env->condexec_bits &= ~3;
1730 env->condexec_bits |= (val >> 25) & 3;
1731 }
1732 if (mask & CPSR_IT_2_7) {
1733 env->condexec_bits &= 3;
1734 env->condexec_bits |= (val >> 8) & 0xfc;
1735 }
1736 if (mask & CPSR_GE) {
1737 env->GE = (val >> 16) & 0xf;
1738 }
1739
1740 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
1741 if (bad_mode_switch(env, val & CPSR_M)) {
1742 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
1743 * We choose to ignore the attempt and leave the CPSR M field
1744 * untouched.
1745 */
1746 mask &= ~CPSR_M;
1747 } else {
1748 switch_mode(env, val & CPSR_M);
1749 }
1750 }
1751 mask &= ~CACHED_CPSR_BITS;
1752 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
1753 }
1754
1755 /* Sign/zero extend */
1756 uint32_t HELPER(sxtb16)(uint32_t x)
1757 {
1758 uint32_t res;
1759 res = (uint16_t)(int8_t)x;
1760 res |= (uint32_t)(int8_t)(x >> 16) << 16;
1761 return res;
1762 }
1763
1764 uint32_t HELPER(uxtb16)(uint32_t x)
1765 {
1766 uint32_t res;
1767 res = (uint16_t)(uint8_t)x;
1768 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
1769 return res;
1770 }
1771
1772 uint32_t HELPER(clz)(uint32_t x)
1773 {
1774 return clz32(x);
1775 }
1776
1777 int32_t HELPER(sdiv)(int32_t num, int32_t den)
1778 {
1779 if (den == 0)
1780 return 0;
1781 if (num == INT_MIN && den == -1)
1782 return INT_MIN;
1783 return num / den;
1784 }
1785
1786 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
1787 {
1788 if (den == 0)
1789 return 0;
1790 return num / den;
1791 }
1792
1793 uint32_t HELPER(rbit)(uint32_t x)
1794 {
1795 x = ((x & 0xff000000) >> 24)
1796 | ((x & 0x00ff0000) >> 8)
1797 | ((x & 0x0000ff00) << 8)
1798 | ((x & 0x000000ff) << 24);
1799 x = ((x & 0xf0f0f0f0) >> 4)
1800 | ((x & 0x0f0f0f0f) << 4);
1801 x = ((x & 0x88888888) >> 3)
1802 | ((x & 0x44444444) >> 1)
1803 | ((x & 0x22222222) << 1)
1804 | ((x & 0x11111111) << 3);
1805 return x;
1806 }
1807
1808 #if defined(CONFIG_USER_ONLY)
1809
1810 void arm_cpu_do_interrupt(CPUState *cs)
1811 {
1812 ARMCPU *cpu = ARM_CPU(cs);
1813 CPUARMState *env = &cpu->env;
1814
1815 env->exception_index = -1;
1816 }
1817
1818 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
1819 int mmu_idx)
1820 {
1821 if (rw == 2) {
1822 env->exception_index = EXCP_PREFETCH_ABORT;
1823 env->cp15.c6_insn = address;
1824 } else {
1825 env->exception_index = EXCP_DATA_ABORT;
1826 env->cp15.c6_data = address;
1827 }
1828 return 1;
1829 }
1830
1831 /* These should probably raise undefined insn exceptions. */
1832 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
1833 {
1834 cpu_abort(env, "v7m_mrs %d\n", reg);
1835 }
1836
1837 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
1838 {
1839 cpu_abort(env, "v7m_mrs %d\n", reg);
1840 return 0;
1841 }
1842
1843 void switch_mode(CPUARMState *env, int mode)
1844 {
1845 if (mode != ARM_CPU_MODE_USR)
1846 cpu_abort(env, "Tried to switch out of user mode\n");
1847 }
1848
1849 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
1850 {
1851 cpu_abort(env, "banked r13 write\n");
1852 }
1853
1854 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
1855 {
1856 cpu_abort(env, "banked r13 read\n");
1857 return 0;
1858 }
1859
1860 #else
1861
1862 /* Map CPU modes onto saved register banks. */
1863 int bank_number(int mode)
1864 {
1865 switch (mode) {
1866 case ARM_CPU_MODE_USR:
1867 case ARM_CPU_MODE_SYS:
1868 return 0;
1869 case ARM_CPU_MODE_SVC:
1870 return 1;
1871 case ARM_CPU_MODE_ABT:
1872 return 2;
1873 case ARM_CPU_MODE_UND:
1874 return 3;
1875 case ARM_CPU_MODE_IRQ:
1876 return 4;
1877 case ARM_CPU_MODE_FIQ:
1878 return 5;
1879 }
1880 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
1881 }
1882
1883 void switch_mode(CPUARMState *env, int mode)
1884 {
1885 int old_mode;
1886 int i;
1887
1888 old_mode = env->uncached_cpsr & CPSR_M;
1889 if (mode == old_mode)
1890 return;
1891
1892 if (old_mode == ARM_CPU_MODE_FIQ) {
1893 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
1894 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
1895 } else if (mode == ARM_CPU_MODE_FIQ) {
1896 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
1897 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
1898 }
1899
1900 i = bank_number(old_mode);
1901 env->banked_r13[i] = env->regs[13];
1902 env->banked_r14[i] = env->regs[14];
1903 env->banked_spsr[i] = env->spsr;
1904
1905 i = bank_number(mode);
1906 env->regs[13] = env->banked_r13[i];
1907 env->regs[14] = env->banked_r14[i];
1908 env->spsr = env->banked_spsr[i];
1909 }
1910
1911 static void v7m_push(CPUARMState *env, uint32_t val)
1912 {
1913 env->regs[13] -= 4;
1914 stl_phys(env->regs[13], val);
1915 }
1916
1917 static uint32_t v7m_pop(CPUARMState *env)
1918 {
1919 uint32_t val;
1920 val = ldl_phys(env->regs[13]);
1921 env->regs[13] += 4;
1922 return val;
1923 }
1924
1925 /* Switch to V7M main or process stack pointer. */
1926 static void switch_v7m_sp(CPUARMState *env, int process)
1927 {
1928 uint32_t tmp;
1929 if (env->v7m.current_sp != process) {
1930 tmp = env->v7m.other_sp;
1931 env->v7m.other_sp = env->regs[13];
1932 env->regs[13] = tmp;
1933 env->v7m.current_sp = process;
1934 }
1935 }
1936
1937 static void do_v7m_exception_exit(CPUARMState *env)
1938 {
1939 uint32_t type;
1940 uint32_t xpsr;
1941
1942 type = env->regs[15];
1943 if (env->v7m.exception != 0)
1944 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
1945
1946 /* Switch to the target stack. */
1947 switch_v7m_sp(env, (type & 4) != 0);
1948 /* Pop registers. */
1949 env->regs[0] = v7m_pop(env);
1950 env->regs[1] = v7m_pop(env);
1951 env->regs[2] = v7m_pop(env);
1952 env->regs[3] = v7m_pop(env);
1953 env->regs[12] = v7m_pop(env);
1954 env->regs[14] = v7m_pop(env);
1955 env->regs[15] = v7m_pop(env);
1956 xpsr = v7m_pop(env);
1957 xpsr_write(env, xpsr, 0xfffffdff);
1958 /* Undo stack alignment. */
1959 if (xpsr & 0x200)
1960 env->regs[13] |= 4;
1961 /* ??? The exception return type specifies Thread/Handler mode. However
1962 this is also implied by the xPSR value. Not sure what to do
1963 if there is a mismatch. */
1964 /* ??? Likewise for mismatches between the CONTROL register and the stack
1965 pointer. */
1966 }
1967
1968 void arm_v7m_cpu_do_interrupt(CPUState *cs)
1969 {
1970 ARMCPU *cpu = ARM_CPU(cs);
1971 CPUARMState *env = &cpu->env;
1972 uint32_t xpsr = xpsr_read(env);
1973 uint32_t lr;
1974 uint32_t addr;
1975
1976 lr = 0xfffffff1;
1977 if (env->v7m.current_sp)
1978 lr |= 4;
1979 if (env->v7m.exception == 0)
1980 lr |= 8;
1981
1982 /* For exceptions we just mark as pending on the NVIC, and let that
1983 handle it. */
1984 /* TODO: Need to escalate if the current priority is higher than the
1985 one we're raising. */
1986 switch (env->exception_index) {
1987 case EXCP_UDEF:
1988 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
1989 return;
1990 case EXCP_SWI:
1991 /* The PC already points to the next instruction. */
1992 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
1993 return;
1994 case EXCP_PREFETCH_ABORT:
1995 case EXCP_DATA_ABORT:
1996 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
1997 return;
1998 case EXCP_BKPT:
1999 if (semihosting_enabled) {
2000 int nr;
2001 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2002 if (nr == 0xab) {
2003 env->regs[15] += 2;
2004 env->regs[0] = do_arm_semihosting(env);
2005 return;
2006 }
2007 }
2008 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
2009 return;
2010 case EXCP_IRQ:
2011 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
2012 break;
2013 case EXCP_EXCEPTION_EXIT:
2014 do_v7m_exception_exit(env);
2015 return;
2016 default:
2017 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
2018 return; /* Never happens. Keep compiler happy. */
2019 }
2020
2021 /* Align stack pointer. */
2022 /* ??? Should only do this if Configuration Control Register
2023 STACKALIGN bit is set. */
2024 if (env->regs[13] & 4) {
2025 env->regs[13] -= 4;
2026 xpsr |= 0x200;
2027 }
2028 /* Switch to the handler mode. */
2029 v7m_push(env, xpsr);
2030 v7m_push(env, env->regs[15]);
2031 v7m_push(env, env->regs[14]);
2032 v7m_push(env, env->regs[12]);
2033 v7m_push(env, env->regs[3]);
2034 v7m_push(env, env->regs[2]);
2035 v7m_push(env, env->regs[1]);
2036 v7m_push(env, env->regs[0]);
2037 switch_v7m_sp(env, 0);
2038 /* Clear IT bits */
2039 env->condexec_bits = 0;
2040 env->regs[14] = lr;
2041 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
2042 env->regs[15] = addr & 0xfffffffe;
2043 env->thumb = addr & 1;
2044 }
2045
2046 /* Handle a CPU exception. */
2047 void arm_cpu_do_interrupt(CPUState *cs)
2048 {
2049 ARMCPU *cpu = ARM_CPU(cs);
2050 CPUARMState *env = &cpu->env;
2051 uint32_t addr;
2052 uint32_t mask;
2053 int new_mode;
2054 uint32_t offset;
2055
2056 assert(!IS_M(env));
2057
2058 /* TODO: Vectored interrupt controller. */
2059 switch (env->exception_index) {
2060 case EXCP_UDEF:
2061 new_mode = ARM_CPU_MODE_UND;
2062 addr = 0x04;
2063 mask = CPSR_I;
2064 if (env->thumb)
2065 offset = 2;
2066 else
2067 offset = 4;
2068 break;
2069 case EXCP_SWI:
2070 if (semihosting_enabled) {
2071 /* Check for semihosting interrupt. */
2072 if (env->thumb) {
2073 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
2074 & 0xff;
2075 } else {
2076 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
2077 & 0xffffff;
2078 }
2079 /* Only intercept calls from privileged modes, to provide some
2080 semblance of security. */
2081 if (((mask == 0x123456 && !env->thumb)
2082 || (mask == 0xab && env->thumb))
2083 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2084 env->regs[0] = do_arm_semihosting(env);
2085 return;
2086 }
2087 }
2088 new_mode = ARM_CPU_MODE_SVC;
2089 addr = 0x08;
2090 mask = CPSR_I;
2091 /* The PC already points to the next instruction. */
2092 offset = 0;
2093 break;
2094 case EXCP_BKPT:
2095 /* See if this is a semihosting syscall. */
2096 if (env->thumb && semihosting_enabled) {
2097 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2098 if (mask == 0xab
2099 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2100 env->regs[15] += 2;
2101 env->regs[0] = do_arm_semihosting(env);
2102 return;
2103 }
2104 }
2105 env->cp15.c5_insn = 2;
2106 /* Fall through to prefetch abort. */
2107 case EXCP_PREFETCH_ABORT:
2108 new_mode = ARM_CPU_MODE_ABT;
2109 addr = 0x0c;
2110 mask = CPSR_A | CPSR_I;
2111 offset = 4;
2112 break;
2113 case EXCP_DATA_ABORT:
2114 new_mode = ARM_CPU_MODE_ABT;
2115 addr = 0x10;
2116 mask = CPSR_A | CPSR_I;
2117 offset = 8;
2118 break;
2119 case EXCP_IRQ:
2120 new_mode = ARM_CPU_MODE_IRQ;
2121 addr = 0x18;
2122 /* Disable IRQ and imprecise data aborts. */
2123 mask = CPSR_A | CPSR_I;
2124 offset = 4;
2125 break;
2126 case EXCP_FIQ:
2127 new_mode = ARM_CPU_MODE_FIQ;
2128 addr = 0x1c;
2129 /* Disable FIQ, IRQ and imprecise data aborts. */
2130 mask = CPSR_A | CPSR_I | CPSR_F;
2131 offset = 4;
2132 break;
2133 default:
2134 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
2135 return; /* Never happens. Keep compiler happy. */
2136 }
2137 /* High vectors. */
2138 if (env->cp15.c1_sys & (1 << 13)) {
2139 addr += 0xffff0000;
2140 }
2141 switch_mode (env, new_mode);
2142 env->spsr = cpsr_read(env);
2143 /* Clear IT bits. */
2144 env->condexec_bits = 0;
2145 /* Switch to the new mode, and to the correct instruction set. */
2146 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
2147 env->uncached_cpsr |= mask;
2148 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
2149 * and we should just guard the thumb mode on V4 */
2150 if (arm_feature(env, ARM_FEATURE_V4T)) {
2151 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
2152 }
2153 env->regs[14] = env->regs[15] + offset;
2154 env->regs[15] = addr;
2155 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
2156 }
2157
2158 /* Check section/page access permissions.
2159 Returns the page protection flags, or zero if the access is not
2160 permitted. */
2161 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
2162 int access_type, int is_user)
2163 {
2164 int prot_ro;
2165
2166 if (domain_prot == 3) {
2167 return PAGE_READ | PAGE_WRITE;
2168 }
2169
2170 if (access_type == 1)
2171 prot_ro = 0;
2172 else
2173 prot_ro = PAGE_READ;
2174
2175 switch (ap) {
2176 case 0:
2177 if (access_type == 1)
2178 return 0;
2179 switch ((env->cp15.c1_sys >> 8) & 3) {
2180 case 1:
2181 return is_user ? 0 : PAGE_READ;
2182 case 2:
2183 return PAGE_READ;
2184 default:
2185 return 0;
2186 }
2187 case 1:
2188 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
2189 case 2:
2190 if (is_user)
2191 return prot_ro;
2192 else
2193 return PAGE_READ | PAGE_WRITE;
2194 case 3:
2195 return PAGE_READ | PAGE_WRITE;
2196 case 4: /* Reserved. */
2197 return 0;
2198 case 5:
2199 return is_user ? 0 : prot_ro;
2200 case 6:
2201 return prot_ro;
2202 case 7:
2203 if (!arm_feature (env, ARM_FEATURE_V6K))
2204 return 0;
2205 return prot_ro;
2206 default:
2207 abort();
2208 }
2209 }
2210
2211 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
2212 {
2213 uint32_t table;
2214
2215 if (address & env->cp15.c2_mask)
2216 table = env->cp15.c2_base1 & 0xffffc000;
2217 else
2218 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
2219
2220 table |= (address >> 18) & 0x3ffc;
2221 return table;
2222 }
2223
2224 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
2225 int is_user, hwaddr *phys_ptr,
2226 int *prot, target_ulong *page_size)
2227 {
2228 int code;
2229 uint32_t table;
2230 uint32_t desc;
2231 int type;
2232 int ap;
2233 int domain;
2234 int domain_prot;
2235 hwaddr phys_addr;
2236
2237 /* Pagetable walk. */
2238 /* Lookup l1 descriptor. */
2239 table = get_level1_table_address(env, address);
2240 desc = ldl_phys(table);
2241 type = (desc & 3);
2242 domain = (desc >> 5) & 0x0f;
2243 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2244 if (type == 0) {
2245 /* Section translation fault. */
2246 code = 5;
2247 goto do_fault;
2248 }
2249 if (domain_prot == 0 || domain_prot == 2) {
2250 if (type == 2)
2251 code = 9; /* Section domain fault. */
2252 else
2253 code = 11; /* Page domain fault. */
2254 goto do_fault;
2255 }
2256 if (type == 2) {
2257 /* 1Mb section. */
2258 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2259 ap = (desc >> 10) & 3;
2260 code = 13;
2261 *page_size = 1024 * 1024;
2262 } else {
2263 /* Lookup l2 entry. */
2264 if (type == 1) {
2265 /* Coarse pagetable. */
2266 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2267 } else {
2268 /* Fine pagetable. */
2269 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
2270 }
2271 desc = ldl_phys(table);
2272 switch (desc & 3) {
2273 case 0: /* Page translation fault. */
2274 code = 7;
2275 goto do_fault;
2276 case 1: /* 64k page. */
2277 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2278 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2279 *page_size = 0x10000;
2280 break;
2281 case 2: /* 4k page. */
2282 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2283 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2284 *page_size = 0x1000;
2285 break;
2286 case 3: /* 1k page. */
2287 if (type == 1) {
2288 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2289 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2290 } else {
2291 /* Page translation fault. */
2292 code = 7;
2293 goto do_fault;
2294 }
2295 } else {
2296 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
2297 }
2298 ap = (desc >> 4) & 3;
2299 *page_size = 0x400;
2300 break;
2301 default:
2302 /* Never happens, but compiler isn't smart enough to tell. */
2303 abort();
2304 }
2305 code = 15;
2306 }
2307 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2308 if (!*prot) {
2309 /* Access permission fault. */
2310 goto do_fault;
2311 }
2312 *prot |= PAGE_EXEC;
2313 *phys_ptr = phys_addr;
2314 return 0;
2315 do_fault:
2316 return code | (domain << 4);
2317 }
2318
2319 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
2320 int is_user, hwaddr *phys_ptr,
2321 int *prot, target_ulong *page_size)
2322 {
2323 int code;
2324 uint32_t table;
2325 uint32_t desc;
2326 uint32_t xn;
2327 uint32_t pxn = 0;
2328 int type;
2329 int ap;
2330 int domain = 0;
2331 int domain_prot;
2332 hwaddr phys_addr;
2333
2334 /* Pagetable walk. */
2335 /* Lookup l1 descriptor. */
2336 table = get_level1_table_address(env, address);
2337 desc = ldl_phys(table);
2338 type = (desc & 3);
2339 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
2340 /* Section translation fault, or attempt to use the encoding
2341 * which is Reserved on implementations without PXN.
2342 */
2343 code = 5;
2344 goto do_fault;
2345 }
2346 if ((type == 1) || !(desc & (1 << 18))) {
2347 /* Page or Section. */
2348 domain = (desc >> 5) & 0x0f;
2349 }
2350 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2351 if (domain_prot == 0 || domain_prot == 2) {
2352 if (type != 1) {
2353 code = 9; /* Section domain fault. */
2354 } else {
2355 code = 11; /* Page domain fault. */
2356 }
2357 goto do_fault;
2358 }
2359 if (type != 1) {
2360 if (desc & (1 << 18)) {
2361 /* Supersection. */
2362 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
2363 *page_size = 0x1000000;
2364 } else {
2365 /* Section. */
2366 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2367 *page_size = 0x100000;
2368 }
2369 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
2370 xn = desc & (1 << 4);
2371 pxn = desc & 1;
2372 code = 13;
2373 } else {
2374 if (arm_feature(env, ARM_FEATURE_PXN)) {
2375 pxn = (desc >> 2) & 1;
2376 }
2377 /* Lookup l2 entry. */
2378 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2379 desc = ldl_phys(table);
2380 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
2381 switch (desc & 3) {
2382 case 0: /* Page translation fault. */
2383 code = 7;
2384 goto do_fault;
2385 case 1: /* 64k page. */
2386 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2387 xn = desc & (1 << 15);
2388 *page_size = 0x10000;
2389 break;
2390 case 2: case 3: /* 4k page. */
2391 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2392 xn = desc & 1;
2393 *page_size = 0x1000;
2394 break;
2395 default:
2396 /* Never happens, but compiler isn't smart enough to tell. */
2397 abort();
2398 }
2399 code = 15;
2400 }
2401 if (domain_prot == 3) {
2402 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2403 } else {
2404 if (pxn && !is_user) {
2405 xn = 1;
2406 }
2407 if (xn && access_type == 2)
2408 goto do_fault;
2409
2410 /* The simplified model uses AP[0] as an access control bit. */
2411 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
2412 /* Access flag fault. */
2413 code = (code == 15) ? 6 : 3;
2414 goto do_fault;
2415 }
2416 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2417 if (!*prot) {
2418 /* Access permission fault. */
2419 goto do_fault;
2420 }
2421 if (!xn) {
2422 *prot |= PAGE_EXEC;
2423 }
2424 }
2425 *phys_ptr = phys_addr;
2426 return 0;
2427 do_fault:
2428 return code | (domain << 4);
2429 }
2430
2431 /* Fault type for long-descriptor MMU fault reporting; this corresponds
2432 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
2433 */
2434 typedef enum {
2435 translation_fault = 1,
2436 access_fault = 2,
2437 permission_fault = 3,
2438 } MMUFaultType;
2439
2440 static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
2441 int access_type, int is_user,
2442 hwaddr *phys_ptr, int *prot,
2443 target_ulong *page_size_ptr)
2444 {
2445 /* Read an LPAE long-descriptor translation table. */
2446 MMUFaultType fault_type = translation_fault;
2447 uint32_t level = 1;
2448 uint32_t epd;
2449 uint32_t tsz;
2450 uint64_t ttbr;
2451 int ttbr_select;
2452 int n;
2453 hwaddr descaddr;
2454 uint32_t tableattrs;
2455 target_ulong page_size;
2456 uint32_t attrs;
2457
2458 /* Determine whether this address is in the region controlled by
2459 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
2460 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
2461 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
2462 */
2463 uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
2464 uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
2465 if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
2466 /* there is a ttbr0 region and we are in it (high bits all zero) */
2467 ttbr_select = 0;
2468 } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
2469 /* there is a ttbr1 region and we are in it (high bits all one) */
2470 ttbr_select = 1;
2471 } else if (!t0sz) {
2472 /* ttbr0 region is "everything not in the ttbr1 region" */
2473 ttbr_select = 0;
2474 } else if (!t1sz) {
2475 /* ttbr1 region is "everything not in the ttbr0 region" */
2476 ttbr_select = 1;
2477 } else {
2478 /* in the gap between the two regions, this is a Translation fault */
2479 fault_type = translation_fault;
2480 goto do_fault;
2481 }
2482
2483 /* Note that QEMU ignores shareability and cacheability attributes,
2484 * so we don't need to do anything with the SH, ORGN, IRGN fields
2485 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
2486 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
2487 * implement any ASID-like capability so we can ignore it (instead
2488 * we will always flush the TLB any time the ASID is changed).
2489 */
2490 if (ttbr_select == 0) {
2491 ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
2492 epd = extract32(env->cp15.c2_control, 7, 1);
2493 tsz = t0sz;
2494 } else {
2495 ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
2496 epd = extract32(env->cp15.c2_control, 23, 1);
2497 tsz = t1sz;
2498 }
2499
2500 if (epd) {
2501 /* Translation table walk disabled => Translation fault on TLB miss */
2502 goto do_fault;
2503 }
2504
2505 /* If the region is small enough we will skip straight to a 2nd level
2506 * lookup. This affects the number of bits of the address used in
2507 * combination with the TTBR to find the first descriptor. ('n' here
2508 * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
2509 * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
2510 */
2511 if (tsz > 1) {
2512 level = 2;
2513 n = 14 - tsz;
2514 } else {
2515 n = 5 - tsz;
2516 }
2517
2518 /* Clear the vaddr bits which aren't part of the within-region address,
2519 * so that we don't have to special case things when calculating the
2520 * first descriptor address.
2521 */
2522 address &= (0xffffffffU >> tsz);
2523
2524 /* Now we can extract the actual base address from the TTBR */
2525 descaddr = extract64(ttbr, 0, 40);
2526 descaddr &= ~((1ULL << n) - 1);
2527
2528 tableattrs = 0;
2529 for (;;) {
2530 uint64_t descriptor;
2531
2532 descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
2533 descriptor = ldq_phys(descaddr);
2534 if (!(descriptor & 1) ||
2535 (!(descriptor & 2) && (level == 3))) {
2536 /* Invalid, or the Reserved level 3 encoding */
2537 goto do_fault;
2538 }
2539 descaddr = descriptor & 0xfffffff000ULL;
2540
2541 if ((descriptor & 2) && (level < 3)) {
2542 /* Table entry. The top five bits are attributes which may
2543 * propagate down through lower levels of the table (and
2544 * which are all arranged so that 0 means "no effect", so
2545 * we can gather them up by ORing in the bits at each level).
2546 */
2547 tableattrs |= extract64(descriptor, 59, 5);
2548 level++;
2549 continue;
2550 }
2551 /* Block entry at level 1 or 2, or page entry at level 3.
2552 * These are basically the same thing, although the number
2553 * of bits we pull in from the vaddr varies.
2554 */
2555 page_size = (1 << (39 - (9 * level)));
2556 descaddr |= (address & (page_size - 1));
2557 /* Extract attributes from the descriptor and merge with table attrs */
2558 attrs = extract64(descriptor, 2, 10)
2559 | (extract64(descriptor, 52, 12) << 10);
2560 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
2561 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
2562 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
2563 * means "force PL1 access only", which means forcing AP[1] to 0.
2564 */
2565 if (extract32(tableattrs, 2, 1)) {
2566 attrs &= ~(1 << 4);
2567 }
2568 /* Since we're always in the Non-secure state, NSTable is ignored. */
2569 break;
2570 }
2571 /* Here descaddr is the final physical address, and attributes
2572 * are all in attrs.
2573 */
2574 fault_type = access_fault;
2575 if ((attrs & (1 << 8)) == 0) {
2576 /* Access flag */
2577 goto do_fault;
2578 }
2579 fault_type = permission_fault;
2580 if (is_user && !(attrs & (1 << 4))) {
2581 /* Unprivileged access not enabled */
2582 goto do_fault;
2583 }
2584 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2585 if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
2586 /* XN or PXN */
2587 if (access_type == 2) {
2588 goto do_fault;
2589 }
2590 *prot &= ~PAGE_EXEC;
2591 }
2592 if (attrs & (1 << 5)) {
2593 /* Write access forbidden */
2594 if (access_type == 1) {
2595 goto do_fault;
2596 }
2597 *prot &= ~PAGE_WRITE;
2598 }
2599
2600 *phys_ptr = descaddr;
2601 *page_size_ptr = page_size;
2602 return 0;
2603
2604 do_fault:
2605 /* Long-descriptor format IFSR/DFSR value */
2606 return (1 << 9) | (fault_type << 2) | level;
2607 }
2608
2609 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
2610 int access_type, int is_user,
2611 hwaddr *phys_ptr, int *prot)
2612 {
2613 int n;
2614 uint32_t mask;
2615 uint32_t base;
2616
2617 *phys_ptr = address;
2618 for (n = 7; n >= 0; n--) {
2619 base = env->cp15.c6_region[n];
2620 if ((base & 1) == 0)
2621 continue;
2622 mask = 1 << ((base >> 1) & 0x1f);
2623 /* Keep this shift separate from the above to avoid an
2624 (undefined) << 32. */
2625 mask = (mask << 1) - 1;
2626 if (((base ^ address) & ~mask) == 0)
2627 break;
2628 }
2629 if (n < 0)
2630 return 2;
2631
2632 if (access_type == 2) {
2633 mask = env->cp15.c5_insn;
2634 } else {
2635 mask = env->cp15.c5_data;
2636 }
2637 mask = (mask >> (n * 4)) & 0xf;
2638 switch (mask) {
2639 case 0:
2640 return 1;
2641 case 1:
2642 if (is_user)
2643 return 1;
2644 *prot = PAGE_READ | PAGE_WRITE;
2645 break;
2646 case 2:
2647 *prot = PAGE_READ;
2648 if (!is_user)
2649 *prot |= PAGE_WRITE;
2650 break;
2651 case 3:
2652 *prot = PAGE_READ | PAGE_WRITE;
2653 break;
2654 case 5:
2655 if (is_user)
2656 return 1;
2657 *prot = PAGE_READ;
2658 break;
2659 case 6:
2660 *prot = PAGE_READ;
2661 break;
2662 default:
2663 /* Bad permission. */
2664 return 1;
2665 }
2666 *prot |= PAGE_EXEC;
2667 return 0;
2668 }
2669
2670 /* get_phys_addr - get the physical address for this virtual address
2671 *
2672 * Find the physical address corresponding to the given virtual address,
2673 * by doing a translation table walk on MMU based systems or using the
2674 * MPU state on MPU based systems.
2675 *
2676 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
2677 * prot and page_size are not filled in, and the return value provides
2678 * information on why the translation aborted, in the format of a
2679 * DFSR/IFSR fault register, with the following caveats:
2680 * * we honour the short vs long DFSR format differences.
2681 * * the WnR bit is never set (the caller must do this).
2682 * * for MPU based systems we don't bother to return a full FSR format
2683 * value.
2684 *
2685 * @env: CPUARMState
2686 * @address: virtual address to get physical address for
2687 * @access_type: 0 for read, 1 for write, 2 for execute
2688 * @is_user: 0 for privileged access, 1 for user
2689 * @phys_ptr: set to the physical address corresponding to the virtual address
2690 * @prot: set to the permissions for the page containing phys_ptr
2691 * @page_size: set to the size of the page containing phys_ptr
2692 */
2693 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
2694 int access_type, int is_user,
2695 hwaddr *phys_ptr, int *prot,
2696 target_ulong *page_size)
2697 {
2698 /* Fast Context Switch Extension. */
2699 if (address < 0x02000000)
2700 address += env->cp15.c13_fcse;
2701
2702 if ((env->cp15.c1_sys & 1) == 0) {
2703 /* MMU/MPU disabled. */
2704 *phys_ptr = address;
2705 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2706 *page_size = TARGET_PAGE_SIZE;
2707 return 0;
2708 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
2709 *page_size = TARGET_PAGE_SIZE;
2710 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
2711 prot);
2712 } else if (extended_addresses_enabled(env)) {
2713 return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
2714 prot, page_size);
2715 } else if (env->cp15.c1_sys & (1 << 23)) {
2716 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
2717 prot, page_size);
2718 } else {
2719 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
2720 prot, page_size);
2721 }
2722 }
2723
2724 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
2725 int access_type, int mmu_idx)
2726 {
2727 hwaddr phys_addr;
2728 target_ulong page_size;
2729 int prot;
2730 int ret, is_user;
2731
2732 is_user = mmu_idx == MMU_USER_IDX;
2733 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
2734 &page_size);
2735 if (ret == 0) {
2736 /* Map a single [sub]page. */
2737 phys_addr &= ~(hwaddr)0x3ff;
2738 address &= ~(uint32_t)0x3ff;
2739 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
2740 return 0;
2741 }
2742
2743 if (access_type == 2) {
2744 env->cp15.c5_insn = ret;
2745 env->cp15.c6_insn = address;
2746 env->exception_index = EXCP_PREFETCH_ABORT;
2747 } else {
2748 env->cp15.c5_data = ret;
2749 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
2750 env->cp15.c5_data |= (1 << 11);
2751 env->cp15.c6_data = address;
2752 env->exception_index = EXCP_DATA_ABORT;
2753 }
2754 return 1;
2755 }
2756
2757 hwaddr cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
2758 {
2759 hwaddr phys_addr;
2760 target_ulong page_size;
2761 int prot;
2762 int ret;
2763
2764 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
2765
2766 if (ret != 0)
2767 return -1;
2768
2769 return phys_addr;
2770 }
2771
2772 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2773 {
2774 if ((env->uncached_cpsr & CPSR_M) == mode) {
2775 env->regs[13] = val;
2776 } else {
2777 env->banked_r13[bank_number(mode)] = val;
2778 }
2779 }
2780
2781 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2782 {
2783 if ((env->uncached_cpsr & CPSR_M) == mode) {
2784 return env->regs[13];
2785 } else {
2786 return env->banked_r13[bank_number(mode)];
2787 }
2788 }
2789
2790 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2791 {
2792 switch (reg) {
2793 case 0: /* APSR */
2794 return xpsr_read(env) & 0xf8000000;
2795 case 1: /* IAPSR */
2796 return xpsr_read(env) & 0xf80001ff;
2797 case 2: /* EAPSR */
2798 return xpsr_read(env) & 0xff00fc00;
2799 case 3: /* xPSR */
2800 return xpsr_read(env) & 0xff00fdff;
2801 case 5: /* IPSR */
2802 return xpsr_read(env) & 0x000001ff;
2803 case 6: /* EPSR */
2804 return xpsr_read(env) & 0x0700fc00;
2805 case 7: /* IEPSR */
2806 return xpsr_read(env) & 0x0700edff;
2807 case 8: /* MSP */
2808 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2809 case 9: /* PSP */
2810 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2811 case 16: /* PRIMASK */
2812 return (env->uncached_cpsr & CPSR_I) != 0;
2813 case 17: /* BASEPRI */
2814 case 18: /* BASEPRI_MAX */
2815 return env->v7m.basepri;
2816 case 19: /* FAULTMASK */
2817 return (env->uncached_cpsr & CPSR_F) != 0;
2818 case 20: /* CONTROL */
2819 return env->v7m.control;
2820 default:
2821 /* ??? For debugging only. */
2822 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2823 return 0;
2824 }
2825 }
2826
2827 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2828 {
2829 switch (reg) {
2830 case 0: /* APSR */
2831 xpsr_write(env, val, 0xf8000000);
2832 break;
2833 case 1: /* IAPSR */
2834 xpsr_write(env, val, 0xf8000000);
2835 break;
2836 case 2: /* EAPSR */
2837 xpsr_write(env, val, 0xfe00fc00);
2838 break;
2839 case 3: /* xPSR */
2840 xpsr_write(env, val, 0xfe00fc00);
2841 break;
2842 case 5: /* IPSR */
2843 /* IPSR bits are readonly. */
2844 break;
2845 case 6: /* EPSR */
2846 xpsr_write(env, val, 0x0600fc00);
2847 break;
2848 case 7: /* IEPSR */
2849 xpsr_write(env, val, 0x0600fc00);
2850 break;
2851 case 8: /* MSP */
2852 if (env->v7m.current_sp)
2853 env->v7m.other_sp = val;
2854 else
2855 env->regs[13] = val;
2856 break;
2857 case 9: /* PSP */
2858 if (env->v7m.current_sp)
2859 env->regs[13] = val;
2860 else
2861 env->v7m.other_sp = val;
2862 break;
2863 case 16: /* PRIMASK */
2864 if (val & 1)
2865 env->uncached_cpsr |= CPSR_I;
2866 else
2867 env->uncached_cpsr &= ~CPSR_I;
2868 break;
2869 case 17: /* BASEPRI */
2870 env->v7m.basepri = val & 0xff;
2871 break;
2872 case 18: /* BASEPRI_MAX */
2873 val &= 0xff;
2874 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2875 env->v7m.basepri = val;
2876 break;
2877 case 19: /* FAULTMASK */
2878 if (val & 1)
2879 env->uncached_cpsr |= CPSR_F;
2880 else
2881 env->uncached_cpsr &= ~CPSR_F;
2882 break;
2883 case 20: /* CONTROL */
2884 env->v7m.control = val & 3;
2885 switch_v7m_sp(env, (val & 2) != 0);
2886 break;
2887 default:
2888 /* ??? For debugging only. */
2889 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2890 return;
2891 }
2892 }
2893
2894 #endif
2895
2896 /* Note that signed overflow is undefined in C. The following routines are
2897 careful to use unsigned types where modulo arithmetic is required.
2898 Failure to do so _will_ break on newer gcc. */
2899
2900 /* Signed saturating arithmetic. */
2901
2902 /* Perform 16-bit signed saturating addition. */
2903 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2904 {
2905 uint16_t res;
2906
2907 res = a + b;
2908 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2909 if (a & 0x8000)
2910 res = 0x8000;
2911 else
2912 res = 0x7fff;
2913 }
2914 return res;
2915 }
2916
2917 /* Perform 8-bit signed saturating addition. */
2918 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2919 {
2920 uint8_t res;
2921
2922 res = a + b;
2923 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2924 if (a & 0x80)
2925 res = 0x80;
2926 else
2927 res = 0x7f;
2928 }
2929 return res;
2930 }
2931
2932 /* Perform 16-bit signed saturating subtraction. */
2933 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2934 {
2935 uint16_t res;
2936
2937 res = a - b;
2938 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2939 if (a & 0x8000)
2940 res = 0x8000;
2941 else
2942 res = 0x7fff;
2943 }
2944 return res;
2945 }
2946
2947 /* Perform 8-bit signed saturating subtraction. */
2948 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2949 {
2950 uint8_t res;
2951
2952 res = a - b;
2953 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2954 if (a & 0x80)
2955 res = 0x80;
2956 else
2957 res = 0x7f;
2958 }
2959 return res;
2960 }
2961
2962 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2963 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2964 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2965 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2966 #define PFX q
2967
2968 #include "op_addsub.h"
2969
2970 /* Unsigned saturating arithmetic. */
2971 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2972 {
2973 uint16_t res;
2974 res = a + b;
2975 if (res < a)
2976 res = 0xffff;
2977 return res;
2978 }
2979
2980 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2981 {
2982 if (a > b)
2983 return a - b;
2984 else
2985 return 0;
2986 }
2987
2988 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2989 {
2990 uint8_t res;
2991 res = a + b;
2992 if (res < a)
2993 res = 0xff;
2994 return res;
2995 }
2996
2997 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2998 {
2999 if (a > b)
3000 return a - b;
3001 else
3002 return 0;
3003 }
3004
3005 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
3006 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
3007 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
3008 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
3009 #define PFX uq
3010
3011 #include "op_addsub.h"
3012
3013 /* Signed modulo arithmetic. */
3014 #define SARITH16(a, b, n, op) do { \
3015 int32_t sum; \
3016 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
3017 RESULT(sum, n, 16); \
3018 if (sum >= 0) \
3019 ge |= 3 << (n * 2); \
3020 } while(0)
3021
3022 #define SARITH8(a, b, n, op) do { \
3023 int32_t sum; \
3024 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
3025 RESULT(sum, n, 8); \
3026 if (sum >= 0) \
3027 ge |= 1 << n; \
3028 } while(0)
3029
3030
3031 #define ADD16(a, b, n) SARITH16(a, b, n, +)
3032 #define SUB16(a, b, n) SARITH16(a, b, n, -)
3033 #define ADD8(a, b, n) SARITH8(a, b, n, +)
3034 #define SUB8(a, b, n) SARITH8(a, b, n, -)
3035 #define PFX s
3036 #define ARITH_GE
3037
3038 #include "op_addsub.h"
3039
3040 /* Unsigned modulo arithmetic. */
3041 #define ADD16(a, b, n) do { \
3042 uint32_t sum; \
3043 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
3044 RESULT(sum, n, 16); \
3045 if ((sum >> 16) == 1) \
3046 ge |= 3 << (n * 2); \
3047 } while(0)
3048
3049 #define ADD8(a, b, n) do { \
3050 uint32_t sum; \
3051 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
3052 RESULT(sum, n, 8); \
3053 if ((sum >> 8) == 1) \
3054 ge |= 1 << n; \
3055 } while(0)
3056
3057 #define SUB16(a, b, n) do { \
3058 uint32_t sum; \
3059 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
3060 RESULT(sum, n, 16); \
3061 if ((sum >> 16) == 0) \
3062 ge |= 3 << (n * 2); \
3063 } while(0)
3064
3065 #define SUB8(a, b, n) do { \
3066 uint32_t sum; \
3067 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
3068 RESULT(sum, n, 8); \
3069 if ((sum >> 8) == 0) \
3070 ge |= 1 << n; \
3071 } while(0)
3072
3073 #define PFX u
3074 #define ARITH_GE
3075
3076 #include "op_addsub.h"
3077
3078 /* Halved signed arithmetic. */
3079 #define ADD16(a, b, n) \
3080 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
3081 #define SUB16(a, b, n) \
3082 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
3083 #define ADD8(a, b, n) \
3084 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
3085 #define SUB8(a, b, n) \
3086 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
3087 #define PFX sh
3088
3089 #include "op_addsub.h"
3090
3091 /* Halved unsigned arithmetic. */
3092 #define ADD16(a, b, n) \
3093 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3094 #define SUB16(a, b, n) \
3095 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3096 #define ADD8(a, b, n) \
3097 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3098 #define SUB8(a, b, n) \
3099 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3100 #define PFX uh
3101
3102 #include "op_addsub.h"
3103
3104 static inline uint8_t do_usad(uint8_t a, uint8_t b)
3105 {
3106 if (a > b)
3107 return a - b;
3108 else
3109 return b - a;
3110 }
3111
3112 /* Unsigned sum of absolute byte differences. */
3113 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
3114 {
3115 uint32_t sum;
3116 sum = do_usad(a, b);
3117 sum += do_usad(a >> 8, b >> 8);
3118 sum += do_usad(a >> 16, b >>16);
3119 sum += do_usad(a >> 24, b >> 24);
3120 return sum;
3121 }
3122
3123 /* For ARMv6 SEL instruction. */
3124 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
3125 {
3126 uint32_t mask;
3127
3128 mask = 0;
3129 if (flags & 1)
3130 mask |= 0xff;
3131 if (flags & 2)
3132 mask |= 0xff00;
3133 if (flags & 4)
3134 mask |= 0xff0000;
3135 if (flags & 8)
3136 mask |= 0xff000000;
3137 return (a & mask) | (b & ~mask);
3138 }
3139
3140 /* VFP support. We follow the convention used for VFP instructions:
3141 Single precision routines have a "s" suffix, double precision a
3142 "d" suffix. */
3143
3144 /* Convert host exception flags to vfp form. */
3145 static inline int vfp_exceptbits_from_host(int host_bits)
3146 {
3147 int target_bits = 0;
3148
3149 if (host_bits & float_flag_invalid)
3150 target_bits |= 1;
3151 if (host_bits & float_flag_divbyzero)
3152 target_bits |= 2;
3153 if (host_bits & float_flag_overflow)
3154 target_bits |= 4;
3155 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
3156 target_bits |= 8;
3157 if (host_bits & float_flag_inexact)
3158 target_bits |= 0x10;
3159 if (host_bits & float_flag_input_denormal)
3160 target_bits |= 0x80;
3161 return target_bits;
3162 }
3163
3164 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
3165 {
3166 int i;
3167 uint32_t fpscr;
3168
3169 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
3170 | (env->vfp.vec_len << 16)
3171 | (env->vfp.vec_stride << 20);
3172 i = get_float_exception_flags(&env->vfp.fp_status);
3173 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
3174 fpscr |= vfp_exceptbits_from_host(i);
3175 return fpscr;
3176 }
3177
3178 uint32_t vfp_get_fpscr(CPUARMState *env)
3179 {
3180 return HELPER(vfp_get_fpscr)(env);
3181 }
3182
3183 /* Convert vfp exception flags to target form. */
3184 static inline int vfp_exceptbits_to_host(int target_bits)
3185 {
3186 int host_bits = 0;
3187
3188 if (target_bits & 1)
3189 host_bits |= float_flag_invalid;
3190 if (target_bits & 2)
3191 host_bits |= float_flag_divbyzero;
3192 if (target_bits & 4)
3193 host_bits |= float_flag_overflow;
3194 if (target_bits & 8)
3195 host_bits |= float_flag_underflow;
3196 if (target_bits & 0x10)
3197 host_bits |= float_flag_inexact;
3198 if (target_bits & 0x80)
3199 host_bits |= float_flag_input_denormal;
3200 return host_bits;
3201 }
3202
3203 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
3204 {
3205 int i;
3206 uint32_t changed;
3207
3208 changed = env->vfp.xregs[ARM_VFP_FPSCR];
3209 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
3210 env->vfp.vec_len = (val >> 16) & 7;
3211 env->vfp.vec_stride = (val >> 20) & 3;
3212
3213 changed ^= val;
3214 if (changed & (3 << 22)) {
3215 i = (val >> 22) & 3;
3216 switch (i) {
3217 case 0:
3218 i = float_round_nearest_even;
3219 break;
3220 case 1:
3221 i = float_round_up;
3222 break;
3223 case 2:
3224 i = float_round_down;
3225 break;
3226 case 3:
3227 i = float_round_to_zero;
3228 break;
3229 }
3230 set_float_rounding_mode(i, &env->vfp.fp_status);
3231 }
3232 if (changed & (1 << 24)) {
3233 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
3234 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
3235 }
3236 if (changed & (1 << 25))
3237 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
3238
3239 i = vfp_exceptbits_to_host(val);
3240 set_float_exception_flags(i, &env->vfp.fp_status);
3241 set_float_exception_flags(0, &env->vfp.standard_fp_status);
3242 }
3243
3244 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
3245 {
3246 HELPER(vfp_set_fpscr)(env, val);
3247 }
3248
3249 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
3250
3251 #define VFP_BINOP(name) \
3252 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
3253 { \
3254 float_status *fpst = fpstp; \
3255 return float32_ ## name(a, b, fpst); \
3256 } \
3257 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
3258 { \
3259 float_status *fpst = fpstp; \
3260 return float64_ ## name(a, b, fpst); \
3261 }
3262 VFP_BINOP(add)
3263 VFP_BINOP(sub)
3264 VFP_BINOP(mul)
3265 VFP_BINOP(div)
3266 #undef VFP_BINOP
3267
3268 float32 VFP_HELPER(neg, s)(float32 a)
3269 {
3270 return float32_chs(a);
3271 }
3272
3273 float64 VFP_HELPER(neg, d)(float64 a)
3274 {
3275 return float64_chs(a);
3276 }
3277
3278 float32 VFP_HELPER(abs, s)(float32 a)
3279 {
3280 return float32_abs(a);
3281 }
3282
3283 float64 VFP_HELPER(abs, d)(float64 a)
3284 {
3285 return float64_abs(a);
3286 }
3287
3288 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
3289 {
3290 return float32_sqrt(a, &env->vfp.fp_status);
3291 }
3292
3293 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
3294 {
3295 return float64_sqrt(a, &env->vfp.fp_status);
3296 }
3297
3298 /* XXX: check quiet/signaling case */
3299 #define DO_VFP_cmp(p, type) \
3300 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
3301 { \
3302 uint32_t flags; \
3303 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
3304 case 0: flags = 0x6; break; \
3305 case -1: flags = 0x8; break; \
3306 case 1: flags = 0x2; break; \
3307 default: case 2: flags = 0x3; break; \
3308 } \
3309 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3310 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3311 } \
3312 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
3313 { \
3314 uint32_t flags; \
3315 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
3316 case 0: flags = 0x6; break; \
3317 case -1: flags = 0x8; break; \
3318 case 1: flags = 0x2; break; \
3319 default: case 2: flags = 0x3; break; \
3320 } \
3321 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3322 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3323 }
3324 DO_VFP_cmp(s, float32)
3325 DO_VFP_cmp(d, float64)
3326 #undef DO_VFP_cmp
3327
3328 /* Integer to float and float to integer conversions */
3329
3330 #define CONV_ITOF(name, fsz, sign) \
3331 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
3332 { \
3333 float_status *fpst = fpstp; \
3334 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
3335 }
3336
3337 #define CONV_FTOI(name, fsz, sign, round) \
3338 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
3339 { \
3340 float_status *fpst = fpstp; \
3341 if (float##fsz##_is_any_nan(x)) { \
3342 float_raise(float_flag_invalid, fpst); \
3343 return 0; \
3344 } \
3345 return float##fsz##_to_##sign##int32##round(x, fpst); \
3346 }
3347
3348 #define FLOAT_CONVS(name, p, fsz, sign) \
3349 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
3350 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
3351 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
3352
3353 FLOAT_CONVS(si, s, 32, )
3354 FLOAT_CONVS(si, d, 64, )
3355 FLOAT_CONVS(ui, s, 32, u)
3356 FLOAT_CONVS(ui, d, 64, u)
3357
3358 #undef CONV_ITOF
3359 #undef CONV_FTOI
3360 #undef FLOAT_CONVS
3361
3362 /* floating point conversion */
3363 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
3364 {
3365 float64 r = float32_to_float64(x, &env->vfp.fp_status);
3366 /* ARM requires that S<->D conversion of any kind of NaN generates
3367 * a quiet NaN by forcing the most significant frac bit to 1.
3368 */
3369 return float64_maybe_silence_nan(r);
3370 }
3371
3372 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
3373 {
3374 float32 r = float64_to_float32(x, &env->vfp.fp_status);
3375 /* ARM requires that S<->D conversion of any kind of NaN generates
3376 * a quiet NaN by forcing the most significant frac bit to 1.
3377 */
3378 return float32_maybe_silence_nan(r);
3379 }
3380
3381 /* VFP3 fixed point conversion. */
3382 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
3383 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
3384 void *fpstp) \
3385 { \
3386 float_status *fpst = fpstp; \
3387 float##fsz tmp; \
3388 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
3389 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
3390 } \
3391 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
3392 void *fpstp) \
3393 { \
3394 float_status *fpst = fpstp; \
3395 float##fsz tmp; \
3396 if (float##fsz##_is_any_nan(x)) { \
3397 float_raise(float_flag_invalid, fpst); \
3398 return 0; \
3399 } \
3400 tmp = float##fsz##_scalbn(x, shift, fpst); \
3401 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
3402 }
3403
3404 VFP_CONV_FIX(sh, d, 64, int16, )
3405 VFP_CONV_FIX(sl, d, 64, int32, )
3406 VFP_CONV_FIX(uh, d, 64, uint16, u)
3407 VFP_CONV_FIX(ul, d, 64, uint32, u)
3408 VFP_CONV_FIX(sh, s, 32, int16, )
3409 VFP_CONV_FIX(sl, s, 32, int32, )
3410 VFP_CONV_FIX(uh, s, 32, uint16, u)
3411 VFP_CONV_FIX(ul, s, 32, uint32, u)
3412 #undef VFP_CONV_FIX
3413
3414 /* Half precision conversions. */
3415 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
3416 {
3417 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3418 float32 r = float16_to_float32(make_float16(a), ieee, s);
3419 if (ieee) {
3420 return float32_maybe_silence_nan(r);
3421 }
3422 return r;
3423 }
3424
3425 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
3426 {
3427 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3428 float16 r = float32_to_float16(a, ieee, s);
3429 if (ieee) {
3430 r = float16_maybe_silence_nan(r);
3431 }
3432 return float16_val(r);
3433 }
3434
3435 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3436 {
3437 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
3438 }
3439
3440 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3441 {
3442 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
3443 }
3444
3445 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3446 {
3447 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
3448 }
3449
3450 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3451 {
3452 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
3453 }
3454
3455 #define float32_two make_float32(0x40000000)
3456 #define float32_three make_float32(0x40400000)
3457 #define float32_one_point_five make_float32(0x3fc00000)
3458
3459 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
3460 {
3461 float_status *s = &env->vfp.standard_fp_status;
3462 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3463 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3464 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3465 float_raise(float_flag_input_denormal, s);
3466 }
3467 return float32_two;
3468 }
3469 return float32_sub(float32_two, float32_mul(a, b, s), s);
3470 }
3471
3472 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
3473 {
3474 float_status *s = &env->vfp.standard_fp_status;
3475 float32 product;
3476 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3477 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3478 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3479 float_raise(float_flag_input_denormal, s);
3480 }
3481 return float32_one_point_five;
3482 }
3483 product = float32_mul(a, b, s);
3484 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
3485 }
3486
3487 /* NEON helpers. */
3488
3489 /* Constants 256 and 512 are used in some helpers; we avoid relying on
3490 * int->float conversions at run-time. */
3491 #define float64_256 make_float64(0x4070000000000000LL)
3492 #define float64_512 make_float64(0x4080000000000000LL)
3493
3494 /* The algorithm that must be used to calculate the estimate
3495 * is specified by the ARM ARM.
3496 */
3497 static float64 recip_estimate(float64 a, CPUARMState *env)
3498 {
3499 /* These calculations mustn't set any fp exception flags,
3500 * so we use a local copy of the fp_status.
3501 */
3502 float_status dummy_status = env->vfp.standard_fp_status;
3503 float_status *s = &dummy_status;
3504 /* q = (int)(a * 512.0) */
3505 float64 q = float64_mul(float64_512, a, s);
3506 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3507
3508 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
3509 q = int64_to_float64(q_int, s);
3510 q = float64_add(q, float64_half, s);
3511 q = float64_div(q, float64_512, s);
3512 q = float64_div(float64_one, q, s);
3513
3514 /* s = (int)(256.0 * r + 0.5) */
3515 q = float64_mul(q, float64_256, s);
3516 q = float64_add(q, float64_half, s);
3517 q_int = float64_to_int64_round_to_zero(q, s);
3518
3519 /* return (double)s / 256.0 */
3520 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3521 }
3522
3523 float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
3524 {
3525 float_status *s = &env->vfp.standard_fp_status;
3526 float64 f64;
3527 uint32_t val32 = float32_val(a);
3528
3529 int result_exp;
3530 int a_exp = (val32 & 0x7f800000) >> 23;
3531 int sign = val32 & 0x80000000;
3532
3533 if (float32_is_any_nan(a)) {
3534 if (float32_is_signaling_nan(a)) {
3535 float_raise(float_flag_invalid, s);
3536 }
3537 return float32_default_nan;
3538 } else if (float32_is_infinity(a)) {
3539 return float32_set_sign(float32_zero, float32_is_neg(a));
3540 } else if (float32_is_zero_or_denormal(a)) {
3541 if (!float32_is_zero(a)) {
3542 float_raise(float_flag_input_denormal, s);
3543 }
3544 float_raise(float_flag_divbyzero, s);
3545 return float32_set_sign(float32_infinity, float32_is_neg(a));
3546 } else if (a_exp >= 253) {
3547 float_raise(float_flag_underflow, s);
3548 return float32_set_sign(float32_zero, float32_is_neg(a));
3549 }
3550
3551 f64 = make_float64((0x3feULL << 52)
3552 | ((int64_t)(val32 & 0x7fffff) << 29));
3553
3554 result_exp = 253 - a_exp;
3555
3556 f64 = recip_estimate(f64, env);
3557
3558 val32 = sign
3559 | ((result_exp & 0xff) << 23)
3560 | ((float64_val(f64) >> 29) & 0x7fffff);
3561 return make_float32(val32);
3562 }
3563
3564 /* The algorithm that must be used to calculate the estimate
3565 * is specified by the ARM ARM.
3566 */
3567 static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
3568 {
3569 /* These calculations mustn't set any fp exception flags,
3570 * so we use a local copy of the fp_status.
3571 */
3572 float_status dummy_status = env->vfp.standard_fp_status;
3573 float_status *s = &dummy_status;
3574 float64 q;
3575 int64_t q_int;
3576
3577 if (float64_lt(a, float64_half, s)) {
3578 /* range 0.25 <= a < 0.5 */
3579
3580 /* a in units of 1/512 rounded down */
3581 /* q0 = (int)(a * 512.0); */
3582 q = float64_mul(float64_512, a, s);
3583 q_int = float64_to_int64_round_to_zero(q, s);
3584
3585 /* reciprocal root r */
3586 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
3587 q = int64_to_float64(q_int, s);
3588 q = float64_add(q, float64_half, s);
3589 q = float64_div(q, float64_512, s);
3590 q = float64_sqrt(q, s);
3591 q = float64_div(float64_one, q, s);
3592 } else {
3593 /* range 0.5 <= a < 1.0 */
3594
3595 /* a in units of 1/256 rounded down */
3596 /* q1 = (int)(a * 256.0); */
3597 q = float64_mul(float64_256, a, s);
3598 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3599
3600 /* reciprocal root r */
3601 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3602 q = int64_to_float64(q_int, s);
3603 q = float64_add(q, float64_half, s);
3604 q = float64_div(q, float64_256, s);
3605 q = float64_sqrt(q, s);
3606 q = float64_div(float64_one, q, s);
3607 }
3608 /* r in units of 1/256 rounded to nearest */
3609 /* s = (int)(256.0 * r + 0.5); */
3610
3611 q = float64_mul(q, float64_256,s );
3612 q = float64_add(q, float64_half, s);
3613 q_int = float64_to_int64_round_to_zero(q, s);
3614
3615 /* return (double)s / 256.0;*/
3616 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3617 }
3618
3619 float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
3620 {
3621 float_status *s = &env->vfp.standard_fp_status;
3622 int result_exp;
3623 float64 f64;
3624 uint32_t val;
3625 uint64_t val64;
3626
3627 val = float32_val(a);
3628
3629 if (float32_is_any_nan(a)) {
3630 if (float32_is_signaling_nan(a)) {
3631 float_raise(float_flag_invalid, s);
3632 }
3633 return float32_default_nan;
3634 } else if (float32_is_zero_or_denormal(a)) {
3635 if (!float32_is_zero(a)) {
3636 float_raise(float_flag_input_denormal, s);
3637 }
3638 float_raise(float_flag_divbyzero, s);
3639 return float32_set_sign(float32_infinity, float32_is_neg(a));
3640 } else if (float32_is_neg(a)) {
3641 float_raise(float_flag_invalid, s);
3642 return float32_default_nan;
3643 } else if (float32_is_infinity(a)) {
3644 return float32_zero;
3645 }
3646
3647 /* Normalize to a double-precision value between 0.25 and 1.0,
3648 * preserving the parity of the exponent. */
3649 if ((val & 0x800000) == 0) {
3650 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3651 | (0x3feULL << 52)
3652 | ((uint64_t)(val & 0x7fffff) << 29));
3653 } else {
3654 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3655 | (0x3fdULL << 52)
3656 | ((uint64_t)(val & 0x7fffff) << 29));
3657 }
3658
3659 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
3660
3661 f64 = recip_sqrt_estimate(f64, env);
3662
3663 val64 = float64_val(f64);
3664
3665 val = ((result_exp & 0xff) << 23)
3666 | ((val64 >> 29) & 0x7fffff);
3667 return make_float32(val);
3668 }
3669
3670 uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
3671 {
3672 float64 f64;
3673
3674 if ((a & 0x80000000) == 0) {
3675 return 0xffffffff;
3676 }
3677
3678 f64 = make_float64((0x3feULL << 52)
3679 | ((int64_t)(a & 0x7fffffff) << 21));
3680
3681 f64 = recip_estimate (f64, env);
3682
3683 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3684 }
3685
3686 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
3687 {
3688 float64 f64;
3689
3690 if ((a & 0xc0000000) == 0) {
3691 return 0xffffffff;
3692 }
3693
3694 if (a & 0x80000000) {
3695 f64 = make_float64((0x3feULL << 52)
3696 | ((uint64_t)(a & 0x7fffffff) << 21));
3697 } else { /* bits 31-30 == '01' */
3698 f64 = make_float64((0x3fdULL << 52)
3699 | ((uint64_t)(a & 0x3fffffff) << 22));
3700 }
3701
3702 f64 = recip_sqrt_estimate(f64, env);
3703
3704 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3705 }
3706
3707 /* VFPv4 fused multiply-accumulate */
3708 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
3709 {
3710 float_status *fpst = fpstp;
3711 return float32_muladd(a, b, c, 0, fpst);
3712 }
3713
3714 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
3715 {
3716 float_status *fpst = fpstp;
3717 return float64_muladd(a, b, c, 0, fpst);
3718 }