]> git.proxmox.com Git - mirror_qemu.git/blob - target-arm/helper.c
Merge remote-tracking branch 'kraxel/seabios-1.6.3.2' into staging
[mirror_qemu.git] / target-arm / helper.c
1 #include "cpu.h"
2 #include "gdbstub.h"
3 #include "helper.h"
4 #include "host-utils.h"
5 #if !defined(CONFIG_USER_ONLY)
6 #include "hw/loader.h"
7 #endif
8 #include "sysemu.h"
9
10 static uint32_t cortexa15_cp15_c0_c1[8] = {
11 0x00001131, 0x00011011, 0x02010555, 0x00000000,
12 0x10201105, 0x20000000, 0x01240000, 0x02102211
13 };
14
15 static uint32_t cortexa15_cp15_c0_c2[8] = {
16 0x02101110, 0x13112111, 0x21232041, 0x11112131, 0x10011142, 0, 0, 0
17 };
18
19 static uint32_t cortexa9_cp15_c0_c1[8] =
20 { 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
21
22 static uint32_t cortexa9_cp15_c0_c2[8] =
23 { 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
24
25 static uint32_t cortexa8_cp15_c0_c1[8] =
26 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
27
28 static uint32_t cortexa8_cp15_c0_c2[8] =
29 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
30
31 static uint32_t mpcore_cp15_c0_c1[8] =
32 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
33
34 static uint32_t mpcore_cp15_c0_c2[8] =
35 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
36
37 static uint32_t arm1136_cp15_c0_c1[8] =
38 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
39
40 static uint32_t arm1136_cp15_c0_c2[8] =
41 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
42
43 static uint32_t arm1176_cp15_c0_c1[8] =
44 { 0x111, 0x11, 0x33, 0, 0x01130003, 0x10030302, 0x01222100, 0 };
45
46 static uint32_t arm1176_cp15_c0_c2[8] =
47 { 0x0140011, 0x12002111, 0x11231121, 0x01102131, 0x01141, 0, 0, 0 };
48
49 static uint32_t cpu_arm_find_by_name(const char *name);
50
51 static inline void set_feature(CPUARMState *env, int feature)
52 {
53 env->features |= 1u << feature;
54 }
55
56 static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
57 {
58 env->cp15.c0_cpuid = id;
59 switch (id) {
60 case ARM_CPUID_ARM926:
61 set_feature(env, ARM_FEATURE_V5);
62 set_feature(env, ARM_FEATURE_VFP);
63 env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
64 env->cp15.c0_cachetype = 0x1dd20d2;
65 env->cp15.c1_sys = 0x00090078;
66 break;
67 case ARM_CPUID_ARM946:
68 set_feature(env, ARM_FEATURE_V5);
69 set_feature(env, ARM_FEATURE_MPU);
70 env->cp15.c0_cachetype = 0x0f004006;
71 env->cp15.c1_sys = 0x00000078;
72 break;
73 case ARM_CPUID_ARM1026:
74 set_feature(env, ARM_FEATURE_V5);
75 set_feature(env, ARM_FEATURE_VFP);
76 set_feature(env, ARM_FEATURE_AUXCR);
77 env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
78 env->cp15.c0_cachetype = 0x1dd20d2;
79 env->cp15.c1_sys = 0x00090078;
80 break;
81 case ARM_CPUID_ARM1136:
82 /* This is the 1136 r1, which is a v6K core */
83 set_feature(env, ARM_FEATURE_V6K);
84 /* Fall through */
85 case ARM_CPUID_ARM1136_R2:
86 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
87 * older core than plain "arm1136". In particular this does not
88 * have the v6K features.
89 */
90 set_feature(env, ARM_FEATURE_V6);
91 set_feature(env, ARM_FEATURE_VFP);
92 /* These ID register values are correct for 1136 but may be wrong
93 * for 1136_r2 (in particular r0p2 does not actually implement most
94 * of the ID registers).
95 */
96 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
97 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
98 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
99 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
100 memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
101 env->cp15.c0_cachetype = 0x1dd20d2;
102 env->cp15.c1_sys = 0x00050078;
103 break;
104 case ARM_CPUID_ARM1176:
105 set_feature(env, ARM_FEATURE_V6K);
106 set_feature(env, ARM_FEATURE_VFP);
107 set_feature(env, ARM_FEATURE_VAPA);
108 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b5;
109 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
110 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
111 memcpy(env->cp15.c0_c1, arm1176_cp15_c0_c1, 8 * sizeof(uint32_t));
112 memcpy(env->cp15.c0_c2, arm1176_cp15_c0_c2, 8 * sizeof(uint32_t));
113 env->cp15.c0_cachetype = 0x1dd20d2;
114 env->cp15.c1_sys = 0x00050078;
115 break;
116 case ARM_CPUID_ARM11MPCORE:
117 set_feature(env, ARM_FEATURE_V6K);
118 set_feature(env, ARM_FEATURE_VFP);
119 set_feature(env, ARM_FEATURE_VAPA);
120 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
121 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
122 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
123 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
124 memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
125 env->cp15.c0_cachetype = 0x1dd20d2;
126 break;
127 case ARM_CPUID_CORTEXA8:
128 set_feature(env, ARM_FEATURE_V7);
129 set_feature(env, ARM_FEATURE_VFP3);
130 set_feature(env, ARM_FEATURE_NEON);
131 set_feature(env, ARM_FEATURE_THUMB2EE);
132 env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
133 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
134 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
135 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
136 memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
137 env->cp15.c0_cachetype = 0x82048004;
138 env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
139 env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
140 env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
141 env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
142 env->cp15.c1_sys = 0x00c50078;
143 break;
144 case ARM_CPUID_CORTEXA9:
145 set_feature(env, ARM_FEATURE_V7);
146 set_feature(env, ARM_FEATURE_VFP3);
147 set_feature(env, ARM_FEATURE_VFP_FP16);
148 set_feature(env, ARM_FEATURE_NEON);
149 set_feature(env, ARM_FEATURE_THUMB2EE);
150 /* Note that A9 supports the MP extensions even for
151 * A9UP and single-core A9MP (which are both different
152 * and valid configurations; we don't model A9UP).
153 */
154 set_feature(env, ARM_FEATURE_V7MP);
155 env->vfp.xregs[ARM_VFP_FPSID] = 0x41033090;
156 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
157 env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111;
158 memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t));
159 memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t));
160 env->cp15.c0_cachetype = 0x80038003;
161 env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3;
162 env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */
163 env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */
164 env->cp15.c1_sys = 0x00c50078;
165 break;
166 case ARM_CPUID_CORTEXA15:
167 set_feature(env, ARM_FEATURE_V7);
168 set_feature(env, ARM_FEATURE_VFP4);
169 set_feature(env, ARM_FEATURE_VFP_FP16);
170 set_feature(env, ARM_FEATURE_NEON);
171 set_feature(env, ARM_FEATURE_THUMB2EE);
172 set_feature(env, ARM_FEATURE_ARM_DIV);
173 set_feature(env, ARM_FEATURE_V7MP);
174 set_feature(env, ARM_FEATURE_GENERIC_TIMER);
175 env->vfp.xregs[ARM_VFP_FPSID] = 0x410430f0;
176 env->vfp.xregs[ARM_VFP_MVFR0] = 0x10110222;
177 env->vfp.xregs[ARM_VFP_MVFR1] = 0x11111111;
178 memcpy(env->cp15.c0_c1, cortexa15_cp15_c0_c1, 8 * sizeof(uint32_t));
179 memcpy(env->cp15.c0_c2, cortexa15_cp15_c0_c2, 8 * sizeof(uint32_t));
180 env->cp15.c0_cachetype = 0x8444c004;
181 env->cp15.c0_clid = 0x0a200023;
182 env->cp15.c0_ccsid[0] = 0x701fe00a; /* 32K L1 dcache */
183 env->cp15.c0_ccsid[1] = 0x201fe00a; /* 32K L1 icache */
184 env->cp15.c0_ccsid[2] = 0x711fe07a; /* 4096K L2 unified cache */
185 env->cp15.c1_sys = 0x00c50078;
186 break;
187 case ARM_CPUID_CORTEXM3:
188 set_feature(env, ARM_FEATURE_V7);
189 set_feature(env, ARM_FEATURE_M);
190 break;
191 case ARM_CPUID_ANY: /* For userspace emulation. */
192 set_feature(env, ARM_FEATURE_V7);
193 set_feature(env, ARM_FEATURE_VFP4);
194 set_feature(env, ARM_FEATURE_VFP_FP16);
195 set_feature(env, ARM_FEATURE_NEON);
196 set_feature(env, ARM_FEATURE_THUMB2EE);
197 set_feature(env, ARM_FEATURE_ARM_DIV);
198 set_feature(env, ARM_FEATURE_V7MP);
199 break;
200 case ARM_CPUID_TI915T:
201 case ARM_CPUID_TI925T:
202 set_feature(env, ARM_FEATURE_V4T);
203 set_feature(env, ARM_FEATURE_OMAPCP);
204 env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */
205 env->cp15.c0_cachetype = 0x5109149;
206 env->cp15.c1_sys = 0x00000070;
207 env->cp15.c15_i_max = 0x000;
208 env->cp15.c15_i_min = 0xff0;
209 break;
210 case ARM_CPUID_PXA250:
211 case ARM_CPUID_PXA255:
212 case ARM_CPUID_PXA260:
213 case ARM_CPUID_PXA261:
214 case ARM_CPUID_PXA262:
215 set_feature(env, ARM_FEATURE_V5);
216 set_feature(env, ARM_FEATURE_XSCALE);
217 /* JTAG_ID is ((id << 28) | 0x09265013) */
218 env->cp15.c0_cachetype = 0xd172172;
219 env->cp15.c1_sys = 0x00000078;
220 break;
221 case ARM_CPUID_PXA270_A0:
222 case ARM_CPUID_PXA270_A1:
223 case ARM_CPUID_PXA270_B0:
224 case ARM_CPUID_PXA270_B1:
225 case ARM_CPUID_PXA270_C0:
226 case ARM_CPUID_PXA270_C5:
227 set_feature(env, ARM_FEATURE_V5);
228 set_feature(env, ARM_FEATURE_XSCALE);
229 /* JTAG_ID is ((id << 28) | 0x09265013) */
230 set_feature(env, ARM_FEATURE_IWMMXT);
231 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
232 env->cp15.c0_cachetype = 0xd172172;
233 env->cp15.c1_sys = 0x00000078;
234 break;
235 case ARM_CPUID_SA1100:
236 case ARM_CPUID_SA1110:
237 set_feature(env, ARM_FEATURE_STRONGARM);
238 env->cp15.c1_sys = 0x00000070;
239 break;
240 default:
241 cpu_abort(env, "Bad CPU ID: %x\n", id);
242 break;
243 }
244
245 /* Some features automatically imply others: */
246 if (arm_feature(env, ARM_FEATURE_V7)) {
247 set_feature(env, ARM_FEATURE_VAPA);
248 set_feature(env, ARM_FEATURE_THUMB2);
249 if (!arm_feature(env, ARM_FEATURE_M)) {
250 set_feature(env, ARM_FEATURE_V6K);
251 } else {
252 set_feature(env, ARM_FEATURE_V6);
253 }
254 }
255 if (arm_feature(env, ARM_FEATURE_V6K)) {
256 set_feature(env, ARM_FEATURE_V6);
257 }
258 if (arm_feature(env, ARM_FEATURE_V6)) {
259 set_feature(env, ARM_FEATURE_V5);
260 if (!arm_feature(env, ARM_FEATURE_M)) {
261 set_feature(env, ARM_FEATURE_AUXCR);
262 }
263 }
264 if (arm_feature(env, ARM_FEATURE_V5)) {
265 set_feature(env, ARM_FEATURE_V4T);
266 }
267 if (arm_feature(env, ARM_FEATURE_M)) {
268 set_feature(env, ARM_FEATURE_THUMB_DIV);
269 }
270 if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
271 set_feature(env, ARM_FEATURE_THUMB_DIV);
272 }
273 if (arm_feature(env, ARM_FEATURE_VFP4)) {
274 set_feature(env, ARM_FEATURE_VFP3);
275 }
276 if (arm_feature(env, ARM_FEATURE_VFP3)) {
277 set_feature(env, ARM_FEATURE_VFP);
278 }
279 }
280
281 void cpu_state_reset(CPUARMState *env)
282 {
283 uint32_t id;
284 uint32_t tmp = 0;
285
286 if (qemu_loglevel_mask(CPU_LOG_RESET)) {
287 qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
288 log_cpu_state(env, 0);
289 }
290
291 id = env->cp15.c0_cpuid;
292 tmp = env->cp15.c15_config_base_address;
293 memset(env, 0, offsetof(CPUARMState, breakpoints));
294 if (id)
295 cpu_reset_model_id(env, id);
296 env->cp15.c15_config_base_address = tmp;
297 #if defined (CONFIG_USER_ONLY)
298 env->uncached_cpsr = ARM_CPU_MODE_USR;
299 /* For user mode we must enable access to coprocessors */
300 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
301 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
302 env->cp15.c15_cpar = 3;
303 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
304 env->cp15.c15_cpar = 1;
305 }
306 #else
307 /* SVC mode with interrupts disabled. */
308 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
309 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
310 clear at reset. Initial SP and PC are loaded from ROM. */
311 if (IS_M(env)) {
312 uint32_t pc;
313 uint8_t *rom;
314 env->uncached_cpsr &= ~CPSR_I;
315 rom = rom_ptr(0);
316 if (rom) {
317 /* We should really use ldl_phys here, in case the guest
318 modified flash and reset itself. However images
319 loaded via -kernel have not been copied yet, so load the
320 values directly from there. */
321 env->regs[13] = ldl_p(rom);
322 pc = ldl_p(rom + 4);
323 env->thumb = pc & 1;
324 env->regs[15] = pc & ~1;
325 }
326 }
327 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
328 env->cp15.c2_base_mask = 0xffffc000u;
329 /* v7 performance monitor control register: same implementor
330 * field as main ID register, and we implement no event counters.
331 */
332 env->cp15.c9_pmcr = (id & 0xff000000);
333 #endif
334 set_flush_to_zero(1, &env->vfp.standard_fp_status);
335 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
336 set_default_nan_mode(1, &env->vfp.standard_fp_status);
337 set_float_detect_tininess(float_tininess_before_rounding,
338 &env->vfp.fp_status);
339 set_float_detect_tininess(float_tininess_before_rounding,
340 &env->vfp.standard_fp_status);
341 tlb_flush(env, 1);
342 /* Reset is a state change for some CPUARMState fields which we
343 * bake assumptions about into translated code, so we need to
344 * tb_flush().
345 */
346 tb_flush(env);
347 }
348
349 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
350 {
351 int nregs;
352
353 /* VFP data registers are always little-endian. */
354 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
355 if (reg < nregs) {
356 stfq_le_p(buf, env->vfp.regs[reg]);
357 return 8;
358 }
359 if (arm_feature(env, ARM_FEATURE_NEON)) {
360 /* Aliases for Q regs. */
361 nregs += 16;
362 if (reg < nregs) {
363 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
364 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
365 return 16;
366 }
367 }
368 switch (reg - nregs) {
369 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
370 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
371 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
372 }
373 return 0;
374 }
375
376 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
377 {
378 int nregs;
379
380 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
381 if (reg < nregs) {
382 env->vfp.regs[reg] = ldfq_le_p(buf);
383 return 8;
384 }
385 if (arm_feature(env, ARM_FEATURE_NEON)) {
386 nregs += 16;
387 if (reg < nregs) {
388 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
389 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
390 return 16;
391 }
392 }
393 switch (reg - nregs) {
394 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
395 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
396 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
397 }
398 return 0;
399 }
400
401 CPUARMState *cpu_arm_init(const char *cpu_model)
402 {
403 CPUARMState *env;
404 uint32_t id;
405 static int inited = 0;
406
407 id = cpu_arm_find_by_name(cpu_model);
408 if (id == 0)
409 return NULL;
410 env = g_malloc0(sizeof(CPUARMState));
411 cpu_exec_init(env);
412 if (tcg_enabled() && !inited) {
413 inited = 1;
414 arm_translate_init();
415 }
416
417 env->cpu_model_str = cpu_model;
418 env->cp15.c0_cpuid = id;
419 cpu_state_reset(env);
420 if (arm_feature(env, ARM_FEATURE_NEON)) {
421 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
422 51, "arm-neon.xml", 0);
423 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
424 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
425 35, "arm-vfp3.xml", 0);
426 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
427 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
428 19, "arm-vfp.xml", 0);
429 }
430 qemu_init_vcpu(env);
431 return env;
432 }
433
434 struct arm_cpu_t {
435 uint32_t id;
436 const char *name;
437 };
438
439 static const struct arm_cpu_t arm_cpu_names[] = {
440 { ARM_CPUID_ARM926, "arm926"},
441 { ARM_CPUID_ARM946, "arm946"},
442 { ARM_CPUID_ARM1026, "arm1026"},
443 { ARM_CPUID_ARM1136, "arm1136"},
444 { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
445 { ARM_CPUID_ARM1176, "arm1176"},
446 { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
447 { ARM_CPUID_CORTEXM3, "cortex-m3"},
448 { ARM_CPUID_CORTEXA8, "cortex-a8"},
449 { ARM_CPUID_CORTEXA9, "cortex-a9"},
450 { ARM_CPUID_CORTEXA15, "cortex-a15" },
451 { ARM_CPUID_TI925T, "ti925t" },
452 { ARM_CPUID_PXA250, "pxa250" },
453 { ARM_CPUID_SA1100, "sa1100" },
454 { ARM_CPUID_SA1110, "sa1110" },
455 { ARM_CPUID_PXA255, "pxa255" },
456 { ARM_CPUID_PXA260, "pxa260" },
457 { ARM_CPUID_PXA261, "pxa261" },
458 { ARM_CPUID_PXA262, "pxa262" },
459 { ARM_CPUID_PXA270, "pxa270" },
460 { ARM_CPUID_PXA270_A0, "pxa270-a0" },
461 { ARM_CPUID_PXA270_A1, "pxa270-a1" },
462 { ARM_CPUID_PXA270_B0, "pxa270-b0" },
463 { ARM_CPUID_PXA270_B1, "pxa270-b1" },
464 { ARM_CPUID_PXA270_C0, "pxa270-c0" },
465 { ARM_CPUID_PXA270_C5, "pxa270-c5" },
466 { ARM_CPUID_ANY, "any"},
467 { 0, NULL}
468 };
469
470 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
471 {
472 int i;
473
474 (*cpu_fprintf)(f, "Available CPUs:\n");
475 for (i = 0; arm_cpu_names[i].name; i++) {
476 (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name);
477 }
478 }
479
480 /* return 0 if not found */
481 static uint32_t cpu_arm_find_by_name(const char *name)
482 {
483 int i;
484 uint32_t id;
485
486 id = 0;
487 for (i = 0; arm_cpu_names[i].name; i++) {
488 if (strcmp(name, arm_cpu_names[i].name) == 0) {
489 id = arm_cpu_names[i].id;
490 break;
491 }
492 }
493 return id;
494 }
495
496 void cpu_arm_close(CPUARMState *env)
497 {
498 g_free(env);
499 }
500
501 static int bad_mode_switch(CPUARMState *env, int mode)
502 {
503 /* Return true if it is not valid for us to switch to
504 * this CPU mode (ie all the UNPREDICTABLE cases in
505 * the ARM ARM CPSRWriteByInstr pseudocode).
506 */
507 switch (mode) {
508 case ARM_CPU_MODE_USR:
509 case ARM_CPU_MODE_SYS:
510 case ARM_CPU_MODE_SVC:
511 case ARM_CPU_MODE_ABT:
512 case ARM_CPU_MODE_UND:
513 case ARM_CPU_MODE_IRQ:
514 case ARM_CPU_MODE_FIQ:
515 return 0;
516 default:
517 return 1;
518 }
519 }
520
521 uint32_t cpsr_read(CPUARMState *env)
522 {
523 int ZF;
524 ZF = (env->ZF == 0);
525 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
526 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
527 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
528 | ((env->condexec_bits & 0xfc) << 8)
529 | (env->GE << 16);
530 }
531
532 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
533 {
534 if (mask & CPSR_NZCV) {
535 env->ZF = (~val) & CPSR_Z;
536 env->NF = val;
537 env->CF = (val >> 29) & 1;
538 env->VF = (val << 3) & 0x80000000;
539 }
540 if (mask & CPSR_Q)
541 env->QF = ((val & CPSR_Q) != 0);
542 if (mask & CPSR_T)
543 env->thumb = ((val & CPSR_T) != 0);
544 if (mask & CPSR_IT_0_1) {
545 env->condexec_bits &= ~3;
546 env->condexec_bits |= (val >> 25) & 3;
547 }
548 if (mask & CPSR_IT_2_7) {
549 env->condexec_bits &= 3;
550 env->condexec_bits |= (val >> 8) & 0xfc;
551 }
552 if (mask & CPSR_GE) {
553 env->GE = (val >> 16) & 0xf;
554 }
555
556 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
557 if (bad_mode_switch(env, val & CPSR_M)) {
558 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
559 * We choose to ignore the attempt and leave the CPSR M field
560 * untouched.
561 */
562 mask &= ~CPSR_M;
563 } else {
564 switch_mode(env, val & CPSR_M);
565 }
566 }
567 mask &= ~CACHED_CPSR_BITS;
568 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
569 }
570
571 /* Sign/zero extend */
572 uint32_t HELPER(sxtb16)(uint32_t x)
573 {
574 uint32_t res;
575 res = (uint16_t)(int8_t)x;
576 res |= (uint32_t)(int8_t)(x >> 16) << 16;
577 return res;
578 }
579
580 uint32_t HELPER(uxtb16)(uint32_t x)
581 {
582 uint32_t res;
583 res = (uint16_t)(uint8_t)x;
584 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
585 return res;
586 }
587
588 uint32_t HELPER(clz)(uint32_t x)
589 {
590 return clz32(x);
591 }
592
593 int32_t HELPER(sdiv)(int32_t num, int32_t den)
594 {
595 if (den == 0)
596 return 0;
597 if (num == INT_MIN && den == -1)
598 return INT_MIN;
599 return num / den;
600 }
601
602 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
603 {
604 if (den == 0)
605 return 0;
606 return num / den;
607 }
608
609 uint32_t HELPER(rbit)(uint32_t x)
610 {
611 x = ((x & 0xff000000) >> 24)
612 | ((x & 0x00ff0000) >> 8)
613 | ((x & 0x0000ff00) << 8)
614 | ((x & 0x000000ff) << 24);
615 x = ((x & 0xf0f0f0f0) >> 4)
616 | ((x & 0x0f0f0f0f) << 4);
617 x = ((x & 0x88888888) >> 3)
618 | ((x & 0x44444444) >> 1)
619 | ((x & 0x22222222) << 1)
620 | ((x & 0x11111111) << 3);
621 return x;
622 }
623
624 uint32_t HELPER(abs)(uint32_t x)
625 {
626 return ((int32_t)x < 0) ? -x : x;
627 }
628
629 #if defined(CONFIG_USER_ONLY)
630
631 void do_interrupt (CPUARMState *env)
632 {
633 env->exception_index = -1;
634 }
635
636 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
637 int mmu_idx)
638 {
639 if (rw == 2) {
640 env->exception_index = EXCP_PREFETCH_ABORT;
641 env->cp15.c6_insn = address;
642 } else {
643 env->exception_index = EXCP_DATA_ABORT;
644 env->cp15.c6_data = address;
645 }
646 return 1;
647 }
648
649 /* These should probably raise undefined insn exceptions. */
650 void HELPER(set_cp)(CPUARMState *env, uint32_t insn, uint32_t val)
651 {
652 int op1 = (insn >> 8) & 0xf;
653 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
654 return;
655 }
656
657 uint32_t HELPER(get_cp)(CPUARMState *env, uint32_t insn)
658 {
659 int op1 = (insn >> 8) & 0xf;
660 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
661 return 0;
662 }
663
664 void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val)
665 {
666 cpu_abort(env, "cp15 insn %08x\n", insn);
667 }
668
669 uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn)
670 {
671 cpu_abort(env, "cp15 insn %08x\n", insn);
672 }
673
674 /* These should probably raise undefined insn exceptions. */
675 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
676 {
677 cpu_abort(env, "v7m_mrs %d\n", reg);
678 }
679
680 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
681 {
682 cpu_abort(env, "v7m_mrs %d\n", reg);
683 return 0;
684 }
685
686 void switch_mode(CPUARMState *env, int mode)
687 {
688 if (mode != ARM_CPU_MODE_USR)
689 cpu_abort(env, "Tried to switch out of user mode\n");
690 }
691
692 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
693 {
694 cpu_abort(env, "banked r13 write\n");
695 }
696
697 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
698 {
699 cpu_abort(env, "banked r13 read\n");
700 return 0;
701 }
702
703 #else
704
705 /* Map CPU modes onto saved register banks. */
706 static inline int bank_number(CPUARMState *env, int mode)
707 {
708 switch (mode) {
709 case ARM_CPU_MODE_USR:
710 case ARM_CPU_MODE_SYS:
711 return 0;
712 case ARM_CPU_MODE_SVC:
713 return 1;
714 case ARM_CPU_MODE_ABT:
715 return 2;
716 case ARM_CPU_MODE_UND:
717 return 3;
718 case ARM_CPU_MODE_IRQ:
719 return 4;
720 case ARM_CPU_MODE_FIQ:
721 return 5;
722 }
723 cpu_abort(env, "Bad mode %x\n", mode);
724 return -1;
725 }
726
727 void switch_mode(CPUARMState *env, int mode)
728 {
729 int old_mode;
730 int i;
731
732 old_mode = env->uncached_cpsr & CPSR_M;
733 if (mode == old_mode)
734 return;
735
736 if (old_mode == ARM_CPU_MODE_FIQ) {
737 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
738 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
739 } else if (mode == ARM_CPU_MODE_FIQ) {
740 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
741 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
742 }
743
744 i = bank_number(env, old_mode);
745 env->banked_r13[i] = env->regs[13];
746 env->banked_r14[i] = env->regs[14];
747 env->banked_spsr[i] = env->spsr;
748
749 i = bank_number(env, mode);
750 env->regs[13] = env->banked_r13[i];
751 env->regs[14] = env->banked_r14[i];
752 env->spsr = env->banked_spsr[i];
753 }
754
755 static void v7m_push(CPUARMState *env, uint32_t val)
756 {
757 env->regs[13] -= 4;
758 stl_phys(env->regs[13], val);
759 }
760
761 static uint32_t v7m_pop(CPUARMState *env)
762 {
763 uint32_t val;
764 val = ldl_phys(env->regs[13]);
765 env->regs[13] += 4;
766 return val;
767 }
768
769 /* Switch to V7M main or process stack pointer. */
770 static void switch_v7m_sp(CPUARMState *env, int process)
771 {
772 uint32_t tmp;
773 if (env->v7m.current_sp != process) {
774 tmp = env->v7m.other_sp;
775 env->v7m.other_sp = env->regs[13];
776 env->regs[13] = tmp;
777 env->v7m.current_sp = process;
778 }
779 }
780
781 static void do_v7m_exception_exit(CPUARMState *env)
782 {
783 uint32_t type;
784 uint32_t xpsr;
785
786 type = env->regs[15];
787 if (env->v7m.exception != 0)
788 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
789
790 /* Switch to the target stack. */
791 switch_v7m_sp(env, (type & 4) != 0);
792 /* Pop registers. */
793 env->regs[0] = v7m_pop(env);
794 env->regs[1] = v7m_pop(env);
795 env->regs[2] = v7m_pop(env);
796 env->regs[3] = v7m_pop(env);
797 env->regs[12] = v7m_pop(env);
798 env->regs[14] = v7m_pop(env);
799 env->regs[15] = v7m_pop(env);
800 xpsr = v7m_pop(env);
801 xpsr_write(env, xpsr, 0xfffffdff);
802 /* Undo stack alignment. */
803 if (xpsr & 0x200)
804 env->regs[13] |= 4;
805 /* ??? The exception return type specifies Thread/Handler mode. However
806 this is also implied by the xPSR value. Not sure what to do
807 if there is a mismatch. */
808 /* ??? Likewise for mismatches between the CONTROL register and the stack
809 pointer. */
810 }
811
812 static void do_interrupt_v7m(CPUARMState *env)
813 {
814 uint32_t xpsr = xpsr_read(env);
815 uint32_t lr;
816 uint32_t addr;
817
818 lr = 0xfffffff1;
819 if (env->v7m.current_sp)
820 lr |= 4;
821 if (env->v7m.exception == 0)
822 lr |= 8;
823
824 /* For exceptions we just mark as pending on the NVIC, and let that
825 handle it. */
826 /* TODO: Need to escalate if the current priority is higher than the
827 one we're raising. */
828 switch (env->exception_index) {
829 case EXCP_UDEF:
830 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
831 return;
832 case EXCP_SWI:
833 env->regs[15] += 2;
834 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
835 return;
836 case EXCP_PREFETCH_ABORT:
837 case EXCP_DATA_ABORT:
838 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
839 return;
840 case EXCP_BKPT:
841 if (semihosting_enabled) {
842 int nr;
843 nr = lduw_code(env->regs[15]) & 0xff;
844 if (nr == 0xab) {
845 env->regs[15] += 2;
846 env->regs[0] = do_arm_semihosting(env);
847 return;
848 }
849 }
850 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
851 return;
852 case EXCP_IRQ:
853 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
854 break;
855 case EXCP_EXCEPTION_EXIT:
856 do_v7m_exception_exit(env);
857 return;
858 default:
859 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
860 return; /* Never happens. Keep compiler happy. */
861 }
862
863 /* Align stack pointer. */
864 /* ??? Should only do this if Configuration Control Register
865 STACKALIGN bit is set. */
866 if (env->regs[13] & 4) {
867 env->regs[13] -= 4;
868 xpsr |= 0x200;
869 }
870 /* Switch to the handler mode. */
871 v7m_push(env, xpsr);
872 v7m_push(env, env->regs[15]);
873 v7m_push(env, env->regs[14]);
874 v7m_push(env, env->regs[12]);
875 v7m_push(env, env->regs[3]);
876 v7m_push(env, env->regs[2]);
877 v7m_push(env, env->regs[1]);
878 v7m_push(env, env->regs[0]);
879 switch_v7m_sp(env, 0);
880 env->uncached_cpsr &= ~CPSR_IT;
881 env->regs[14] = lr;
882 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
883 env->regs[15] = addr & 0xfffffffe;
884 env->thumb = addr & 1;
885 }
886
887 /* Handle a CPU exception. */
888 void do_interrupt(CPUARMState *env)
889 {
890 uint32_t addr;
891 uint32_t mask;
892 int new_mode;
893 uint32_t offset;
894
895 if (IS_M(env)) {
896 do_interrupt_v7m(env);
897 return;
898 }
899 /* TODO: Vectored interrupt controller. */
900 switch (env->exception_index) {
901 case EXCP_UDEF:
902 new_mode = ARM_CPU_MODE_UND;
903 addr = 0x04;
904 mask = CPSR_I;
905 if (env->thumb)
906 offset = 2;
907 else
908 offset = 4;
909 break;
910 case EXCP_SWI:
911 if (semihosting_enabled) {
912 /* Check for semihosting interrupt. */
913 if (env->thumb) {
914 mask = lduw_code(env->regs[15] - 2) & 0xff;
915 } else {
916 mask = ldl_code(env->regs[15] - 4) & 0xffffff;
917 }
918 /* Only intercept calls from privileged modes, to provide some
919 semblance of security. */
920 if (((mask == 0x123456 && !env->thumb)
921 || (mask == 0xab && env->thumb))
922 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
923 env->regs[0] = do_arm_semihosting(env);
924 return;
925 }
926 }
927 new_mode = ARM_CPU_MODE_SVC;
928 addr = 0x08;
929 mask = CPSR_I;
930 /* The PC already points to the next instruction. */
931 offset = 0;
932 break;
933 case EXCP_BKPT:
934 /* See if this is a semihosting syscall. */
935 if (env->thumb && semihosting_enabled) {
936 mask = lduw_code(env->regs[15]) & 0xff;
937 if (mask == 0xab
938 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
939 env->regs[15] += 2;
940 env->regs[0] = do_arm_semihosting(env);
941 return;
942 }
943 }
944 env->cp15.c5_insn = 2;
945 /* Fall through to prefetch abort. */
946 case EXCP_PREFETCH_ABORT:
947 new_mode = ARM_CPU_MODE_ABT;
948 addr = 0x0c;
949 mask = CPSR_A | CPSR_I;
950 offset = 4;
951 break;
952 case EXCP_DATA_ABORT:
953 new_mode = ARM_CPU_MODE_ABT;
954 addr = 0x10;
955 mask = CPSR_A | CPSR_I;
956 offset = 8;
957 break;
958 case EXCP_IRQ:
959 new_mode = ARM_CPU_MODE_IRQ;
960 addr = 0x18;
961 /* Disable IRQ and imprecise data aborts. */
962 mask = CPSR_A | CPSR_I;
963 offset = 4;
964 break;
965 case EXCP_FIQ:
966 new_mode = ARM_CPU_MODE_FIQ;
967 addr = 0x1c;
968 /* Disable FIQ, IRQ and imprecise data aborts. */
969 mask = CPSR_A | CPSR_I | CPSR_F;
970 offset = 4;
971 break;
972 default:
973 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
974 return; /* Never happens. Keep compiler happy. */
975 }
976 /* High vectors. */
977 if (env->cp15.c1_sys & (1 << 13)) {
978 addr += 0xffff0000;
979 }
980 switch_mode (env, new_mode);
981 env->spsr = cpsr_read(env);
982 /* Clear IT bits. */
983 env->condexec_bits = 0;
984 /* Switch to the new mode, and to the correct instruction set. */
985 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
986 env->uncached_cpsr |= mask;
987 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
988 * and we should just guard the thumb mode on V4 */
989 if (arm_feature(env, ARM_FEATURE_V4T)) {
990 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
991 }
992 env->regs[14] = env->regs[15] + offset;
993 env->regs[15] = addr;
994 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
995 }
996
997 /* Check section/page access permissions.
998 Returns the page protection flags, or zero if the access is not
999 permitted. */
1000 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
1001 int access_type, int is_user)
1002 {
1003 int prot_ro;
1004
1005 if (domain_prot == 3) {
1006 return PAGE_READ | PAGE_WRITE;
1007 }
1008
1009 if (access_type == 1)
1010 prot_ro = 0;
1011 else
1012 prot_ro = PAGE_READ;
1013
1014 switch (ap) {
1015 case 0:
1016 if (access_type == 1)
1017 return 0;
1018 switch ((env->cp15.c1_sys >> 8) & 3) {
1019 case 1:
1020 return is_user ? 0 : PAGE_READ;
1021 case 2:
1022 return PAGE_READ;
1023 default:
1024 return 0;
1025 }
1026 case 1:
1027 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
1028 case 2:
1029 if (is_user)
1030 return prot_ro;
1031 else
1032 return PAGE_READ | PAGE_WRITE;
1033 case 3:
1034 return PAGE_READ | PAGE_WRITE;
1035 case 4: /* Reserved. */
1036 return 0;
1037 case 5:
1038 return is_user ? 0 : prot_ro;
1039 case 6:
1040 return prot_ro;
1041 case 7:
1042 if (!arm_feature (env, ARM_FEATURE_V6K))
1043 return 0;
1044 return prot_ro;
1045 default:
1046 abort();
1047 }
1048 }
1049
1050 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
1051 {
1052 uint32_t table;
1053
1054 if (address & env->cp15.c2_mask)
1055 table = env->cp15.c2_base1 & 0xffffc000;
1056 else
1057 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
1058
1059 table |= (address >> 18) & 0x3ffc;
1060 return table;
1061 }
1062
1063 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
1064 int is_user, uint32_t *phys_ptr, int *prot,
1065 target_ulong *page_size)
1066 {
1067 int code;
1068 uint32_t table;
1069 uint32_t desc;
1070 int type;
1071 int ap;
1072 int domain;
1073 int domain_prot;
1074 uint32_t phys_addr;
1075
1076 /* Pagetable walk. */
1077 /* Lookup l1 descriptor. */
1078 table = get_level1_table_address(env, address);
1079 desc = ldl_phys(table);
1080 type = (desc & 3);
1081 domain = (desc >> 5) & 0x0f;
1082 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
1083 if (type == 0) {
1084 /* Section translation fault. */
1085 code = 5;
1086 goto do_fault;
1087 }
1088 if (domain_prot == 0 || domain_prot == 2) {
1089 if (type == 2)
1090 code = 9; /* Section domain fault. */
1091 else
1092 code = 11; /* Page domain fault. */
1093 goto do_fault;
1094 }
1095 if (type == 2) {
1096 /* 1Mb section. */
1097 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1098 ap = (desc >> 10) & 3;
1099 code = 13;
1100 *page_size = 1024 * 1024;
1101 } else {
1102 /* Lookup l2 entry. */
1103 if (type == 1) {
1104 /* Coarse pagetable. */
1105 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1106 } else {
1107 /* Fine pagetable. */
1108 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
1109 }
1110 desc = ldl_phys(table);
1111 switch (desc & 3) {
1112 case 0: /* Page translation fault. */
1113 code = 7;
1114 goto do_fault;
1115 case 1: /* 64k page. */
1116 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1117 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1118 *page_size = 0x10000;
1119 break;
1120 case 2: /* 4k page. */
1121 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1122 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1123 *page_size = 0x1000;
1124 break;
1125 case 3: /* 1k page. */
1126 if (type == 1) {
1127 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1128 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1129 } else {
1130 /* Page translation fault. */
1131 code = 7;
1132 goto do_fault;
1133 }
1134 } else {
1135 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1136 }
1137 ap = (desc >> 4) & 3;
1138 *page_size = 0x400;
1139 break;
1140 default:
1141 /* Never happens, but compiler isn't smart enough to tell. */
1142 abort();
1143 }
1144 code = 15;
1145 }
1146 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
1147 if (!*prot) {
1148 /* Access permission fault. */
1149 goto do_fault;
1150 }
1151 *prot |= PAGE_EXEC;
1152 *phys_ptr = phys_addr;
1153 return 0;
1154 do_fault:
1155 return code | (domain << 4);
1156 }
1157
1158 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
1159 int is_user, uint32_t *phys_ptr, int *prot,
1160 target_ulong *page_size)
1161 {
1162 int code;
1163 uint32_t table;
1164 uint32_t desc;
1165 uint32_t xn;
1166 int type;
1167 int ap;
1168 int domain;
1169 int domain_prot;
1170 uint32_t phys_addr;
1171
1172 /* Pagetable walk. */
1173 /* Lookup l1 descriptor. */
1174 table = get_level1_table_address(env, address);
1175 desc = ldl_phys(table);
1176 type = (desc & 3);
1177 if (type == 0) {
1178 /* Section translation fault. */
1179 code = 5;
1180 domain = 0;
1181 goto do_fault;
1182 } else if (type == 2 && (desc & (1 << 18))) {
1183 /* Supersection. */
1184 domain = 0;
1185 } else {
1186 /* Section or page. */
1187 domain = (desc >> 5) & 0x0f;
1188 }
1189 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
1190 if (domain_prot == 0 || domain_prot == 2) {
1191 if (type == 2)
1192 code = 9; /* Section domain fault. */
1193 else
1194 code = 11; /* Page domain fault. */
1195 goto do_fault;
1196 }
1197 if (type == 2) {
1198 if (desc & (1 << 18)) {
1199 /* Supersection. */
1200 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1201 *page_size = 0x1000000;
1202 } else {
1203 /* Section. */
1204 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1205 *page_size = 0x100000;
1206 }
1207 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1208 xn = desc & (1 << 4);
1209 code = 13;
1210 } else {
1211 /* Lookup l2 entry. */
1212 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1213 desc = ldl_phys(table);
1214 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1215 switch (desc & 3) {
1216 case 0: /* Page translation fault. */
1217 code = 7;
1218 goto do_fault;
1219 case 1: /* 64k page. */
1220 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1221 xn = desc & (1 << 15);
1222 *page_size = 0x10000;
1223 break;
1224 case 2: case 3: /* 4k page. */
1225 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1226 xn = desc & 1;
1227 *page_size = 0x1000;
1228 break;
1229 default:
1230 /* Never happens, but compiler isn't smart enough to tell. */
1231 abort();
1232 }
1233 code = 15;
1234 }
1235 if (domain_prot == 3) {
1236 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1237 } else {
1238 if (xn && access_type == 2)
1239 goto do_fault;
1240
1241 /* The simplified model uses AP[0] as an access control bit. */
1242 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1243 /* Access flag fault. */
1244 code = (code == 15) ? 6 : 3;
1245 goto do_fault;
1246 }
1247 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
1248 if (!*prot) {
1249 /* Access permission fault. */
1250 goto do_fault;
1251 }
1252 if (!xn) {
1253 *prot |= PAGE_EXEC;
1254 }
1255 }
1256 *phys_ptr = phys_addr;
1257 return 0;
1258 do_fault:
1259 return code | (domain << 4);
1260 }
1261
1262 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, int access_type,
1263 int is_user, uint32_t *phys_ptr, int *prot)
1264 {
1265 int n;
1266 uint32_t mask;
1267 uint32_t base;
1268
1269 *phys_ptr = address;
1270 for (n = 7; n >= 0; n--) {
1271 base = env->cp15.c6_region[n];
1272 if ((base & 1) == 0)
1273 continue;
1274 mask = 1 << ((base >> 1) & 0x1f);
1275 /* Keep this shift separate from the above to avoid an
1276 (undefined) << 32. */
1277 mask = (mask << 1) - 1;
1278 if (((base ^ address) & ~mask) == 0)
1279 break;
1280 }
1281 if (n < 0)
1282 return 2;
1283
1284 if (access_type == 2) {
1285 mask = env->cp15.c5_insn;
1286 } else {
1287 mask = env->cp15.c5_data;
1288 }
1289 mask = (mask >> (n * 4)) & 0xf;
1290 switch (mask) {
1291 case 0:
1292 return 1;
1293 case 1:
1294 if (is_user)
1295 return 1;
1296 *prot = PAGE_READ | PAGE_WRITE;
1297 break;
1298 case 2:
1299 *prot = PAGE_READ;
1300 if (!is_user)
1301 *prot |= PAGE_WRITE;
1302 break;
1303 case 3:
1304 *prot = PAGE_READ | PAGE_WRITE;
1305 break;
1306 case 5:
1307 if (is_user)
1308 return 1;
1309 *prot = PAGE_READ;
1310 break;
1311 case 6:
1312 *prot = PAGE_READ;
1313 break;
1314 default:
1315 /* Bad permission. */
1316 return 1;
1317 }
1318 *prot |= PAGE_EXEC;
1319 return 0;
1320 }
1321
1322 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
1323 int access_type, int is_user,
1324 uint32_t *phys_ptr, int *prot,
1325 target_ulong *page_size)
1326 {
1327 /* Fast Context Switch Extension. */
1328 if (address < 0x02000000)
1329 address += env->cp15.c13_fcse;
1330
1331 if ((env->cp15.c1_sys & 1) == 0) {
1332 /* MMU/MPU disabled. */
1333 *phys_ptr = address;
1334 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1335 *page_size = TARGET_PAGE_SIZE;
1336 return 0;
1337 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1338 *page_size = TARGET_PAGE_SIZE;
1339 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1340 prot);
1341 } else if (env->cp15.c1_sys & (1 << 23)) {
1342 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1343 prot, page_size);
1344 } else {
1345 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1346 prot, page_size);
1347 }
1348 }
1349
1350 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
1351 int access_type, int mmu_idx)
1352 {
1353 uint32_t phys_addr;
1354 target_ulong page_size;
1355 int prot;
1356 int ret, is_user;
1357
1358 is_user = mmu_idx == MMU_USER_IDX;
1359 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
1360 &page_size);
1361 if (ret == 0) {
1362 /* Map a single [sub]page. */
1363 phys_addr &= ~(uint32_t)0x3ff;
1364 address &= ~(uint32_t)0x3ff;
1365 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
1366 return 0;
1367 }
1368
1369 if (access_type == 2) {
1370 env->cp15.c5_insn = ret;
1371 env->cp15.c6_insn = address;
1372 env->exception_index = EXCP_PREFETCH_ABORT;
1373 } else {
1374 env->cp15.c5_data = ret;
1375 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1376 env->cp15.c5_data |= (1 << 11);
1377 env->cp15.c6_data = address;
1378 env->exception_index = EXCP_DATA_ABORT;
1379 }
1380 return 1;
1381 }
1382
1383 target_phys_addr_t cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
1384 {
1385 uint32_t phys_addr;
1386 target_ulong page_size;
1387 int prot;
1388 int ret;
1389
1390 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
1391
1392 if (ret != 0)
1393 return -1;
1394
1395 return phys_addr;
1396 }
1397
1398 void HELPER(set_cp)(CPUARMState *env, uint32_t insn, uint32_t val)
1399 {
1400 int cp_num = (insn >> 8) & 0xf;
1401 int cp_info = (insn >> 5) & 7;
1402 int src = (insn >> 16) & 0xf;
1403 int operand = insn & 0xf;
1404
1405 if (env->cp[cp_num].cp_write)
1406 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1407 cp_info, src, operand, val);
1408 }
1409
1410 uint32_t HELPER(get_cp)(CPUARMState *env, uint32_t insn)
1411 {
1412 int cp_num = (insn >> 8) & 0xf;
1413 int cp_info = (insn >> 5) & 7;
1414 int dest = (insn >> 16) & 0xf;
1415 int operand = insn & 0xf;
1416
1417 if (env->cp[cp_num].cp_read)
1418 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1419 cp_info, dest, operand);
1420 return 0;
1421 }
1422
1423 /* Return basic MPU access permission bits. */
1424 static uint32_t simple_mpu_ap_bits(uint32_t val)
1425 {
1426 uint32_t ret;
1427 uint32_t mask;
1428 int i;
1429 ret = 0;
1430 mask = 3;
1431 for (i = 0; i < 16; i += 2) {
1432 ret |= (val >> i) & mask;
1433 mask <<= 2;
1434 }
1435 return ret;
1436 }
1437
1438 /* Pad basic MPU access permission bits to extended format. */
1439 static uint32_t extended_mpu_ap_bits(uint32_t val)
1440 {
1441 uint32_t ret;
1442 uint32_t mask;
1443 int i;
1444 ret = 0;
1445 mask = 3;
1446 for (i = 0; i < 16; i += 2) {
1447 ret |= (val & mask) << i;
1448 mask <<= 2;
1449 }
1450 return ret;
1451 }
1452
1453 void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val)
1454 {
1455 int op1;
1456 int op2;
1457 int crm;
1458
1459 op1 = (insn >> 21) & 7;
1460 op2 = (insn >> 5) & 7;
1461 crm = insn & 0xf;
1462 switch ((insn >> 16) & 0xf) {
1463 case 0:
1464 /* ID codes. */
1465 if (arm_feature(env, ARM_FEATURE_XSCALE))
1466 break;
1467 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1468 break;
1469 if (arm_feature(env, ARM_FEATURE_V7)
1470 && op1 == 2 && crm == 0 && op2 == 0) {
1471 env->cp15.c0_cssel = val & 0xf;
1472 break;
1473 }
1474 goto bad_reg;
1475 case 1: /* System configuration. */
1476 if (arm_feature(env, ARM_FEATURE_V7)
1477 && op1 == 0 && crm == 1 && op2 == 0) {
1478 env->cp15.c1_scr = val;
1479 break;
1480 }
1481 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1482 op2 = 0;
1483 switch (op2) {
1484 case 0:
1485 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1486 env->cp15.c1_sys = val;
1487 /* ??? Lots of these bits are not implemented. */
1488 /* This may enable/disable the MMU, so do a TLB flush. */
1489 tlb_flush(env, 1);
1490 break;
1491 case 1: /* Auxiliary control register. */
1492 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1493 env->cp15.c1_xscaleauxcr = val;
1494 break;
1495 }
1496 /* Not implemented. */
1497 break;
1498 case 2:
1499 if (arm_feature(env, ARM_FEATURE_XSCALE))
1500 goto bad_reg;
1501 if (env->cp15.c1_coproc != val) {
1502 env->cp15.c1_coproc = val;
1503 /* ??? Is this safe when called from within a TB? */
1504 tb_flush(env);
1505 }
1506 break;
1507 default:
1508 goto bad_reg;
1509 }
1510 break;
1511 case 2: /* MMU Page table control / MPU cache control. */
1512 if (arm_feature(env, ARM_FEATURE_MPU)) {
1513 switch (op2) {
1514 case 0:
1515 env->cp15.c2_data = val;
1516 break;
1517 case 1:
1518 env->cp15.c2_insn = val;
1519 break;
1520 default:
1521 goto bad_reg;
1522 }
1523 } else {
1524 switch (op2) {
1525 case 0:
1526 env->cp15.c2_base0 = val;
1527 break;
1528 case 1:
1529 env->cp15.c2_base1 = val;
1530 break;
1531 case 2:
1532 val &= 7;
1533 env->cp15.c2_control = val;
1534 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1535 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1536 break;
1537 default:
1538 goto bad_reg;
1539 }
1540 }
1541 break;
1542 case 3: /* MMU Domain access control / MPU write buffer control. */
1543 env->cp15.c3 = val;
1544 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1545 break;
1546 case 4: /* Reserved. */
1547 goto bad_reg;
1548 case 5: /* MMU Fault status / MPU access permission. */
1549 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1550 op2 = 0;
1551 switch (op2) {
1552 case 0:
1553 if (arm_feature(env, ARM_FEATURE_MPU))
1554 val = extended_mpu_ap_bits(val);
1555 env->cp15.c5_data = val;
1556 break;
1557 case 1:
1558 if (arm_feature(env, ARM_FEATURE_MPU))
1559 val = extended_mpu_ap_bits(val);
1560 env->cp15.c5_insn = val;
1561 break;
1562 case 2:
1563 if (!arm_feature(env, ARM_FEATURE_MPU))
1564 goto bad_reg;
1565 env->cp15.c5_data = val;
1566 break;
1567 case 3:
1568 if (!arm_feature(env, ARM_FEATURE_MPU))
1569 goto bad_reg;
1570 env->cp15.c5_insn = val;
1571 break;
1572 default:
1573 goto bad_reg;
1574 }
1575 break;
1576 case 6: /* MMU Fault address / MPU base/size. */
1577 if (arm_feature(env, ARM_FEATURE_MPU)) {
1578 if (crm >= 8)
1579 goto bad_reg;
1580 env->cp15.c6_region[crm] = val;
1581 } else {
1582 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1583 op2 = 0;
1584 switch (op2) {
1585 case 0:
1586 env->cp15.c6_data = val;
1587 break;
1588 case 1: /* ??? This is WFAR on armv6 */
1589 case 2:
1590 env->cp15.c6_insn = val;
1591 break;
1592 default:
1593 goto bad_reg;
1594 }
1595 }
1596 break;
1597 case 7: /* Cache control. */
1598 env->cp15.c15_i_max = 0x000;
1599 env->cp15.c15_i_min = 0xff0;
1600 if (op1 != 0) {
1601 goto bad_reg;
1602 }
1603 /* No cache, so nothing to do except VA->PA translations. */
1604 if (arm_feature(env, ARM_FEATURE_VAPA)) {
1605 switch (crm) {
1606 case 4:
1607 if (arm_feature(env, ARM_FEATURE_V7)) {
1608 env->cp15.c7_par = val & 0xfffff6ff;
1609 } else {
1610 env->cp15.c7_par = val & 0xfffff1ff;
1611 }
1612 break;
1613 case 8: {
1614 uint32_t phys_addr;
1615 target_ulong page_size;
1616 int prot;
1617 int ret, is_user = op2 & 2;
1618 int access_type = op2 & 1;
1619
1620 if (op2 & 4) {
1621 /* Other states are only available with TrustZone */
1622 goto bad_reg;
1623 }
1624 ret = get_phys_addr(env, val, access_type, is_user,
1625 &phys_addr, &prot, &page_size);
1626 if (ret == 0) {
1627 /* We do not set any attribute bits in the PAR */
1628 if (page_size == (1 << 24)
1629 && arm_feature(env, ARM_FEATURE_V7)) {
1630 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
1631 } else {
1632 env->cp15.c7_par = phys_addr & 0xfffff000;
1633 }
1634 } else {
1635 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
1636 ((ret & (12 << 1)) >> 6) |
1637 ((ret & 0xf) << 1) | 1;
1638 }
1639 break;
1640 }
1641 }
1642 }
1643 break;
1644 case 8: /* MMU TLB control. */
1645 switch (op2) {
1646 case 0: /* Invalidate all (TLBIALL) */
1647 tlb_flush(env, 1);
1648 break;
1649 case 1: /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
1650 tlb_flush_page(env, val & TARGET_PAGE_MASK);
1651 break;
1652 case 2: /* Invalidate by ASID (TLBIASID) */
1653 tlb_flush(env, val == 0);
1654 break;
1655 case 3: /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
1656 tlb_flush_page(env, val & TARGET_PAGE_MASK);
1657 break;
1658 default:
1659 goto bad_reg;
1660 }
1661 break;
1662 case 9:
1663 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1664 break;
1665 if (arm_feature(env, ARM_FEATURE_STRONGARM))
1666 break; /* Ignore ReadBuffer access */
1667 switch (crm) {
1668 case 0: /* Cache lockdown. */
1669 switch (op1) {
1670 case 0: /* L1 cache. */
1671 switch (op2) {
1672 case 0:
1673 env->cp15.c9_data = val;
1674 break;
1675 case 1:
1676 env->cp15.c9_insn = val;
1677 break;
1678 default:
1679 goto bad_reg;
1680 }
1681 break;
1682 case 1: /* L2 cache. */
1683 /* Ignore writes to L2 lockdown/auxiliary registers. */
1684 break;
1685 default:
1686 goto bad_reg;
1687 }
1688 break;
1689 case 1: /* TCM memory region registers. */
1690 /* Not implemented. */
1691 goto bad_reg;
1692 case 12: /* Performance monitor control */
1693 /* Performance monitors are implementation defined in v7,
1694 * but with an ARM recommended set of registers, which we
1695 * follow (although we don't actually implement any counters)
1696 */
1697 if (!arm_feature(env, ARM_FEATURE_V7)) {
1698 goto bad_reg;
1699 }
1700 switch (op2) {
1701 case 0: /* performance monitor control register */
1702 /* only the DP, X, D and E bits are writable */
1703 env->cp15.c9_pmcr &= ~0x39;
1704 env->cp15.c9_pmcr |= (val & 0x39);
1705 break;
1706 case 1: /* Count enable set register */
1707 val &= (1 << 31);
1708 env->cp15.c9_pmcnten |= val;
1709 break;
1710 case 2: /* Count enable clear */
1711 val &= (1 << 31);
1712 env->cp15.c9_pmcnten &= ~val;
1713 break;
1714 case 3: /* Overflow flag status */
1715 env->cp15.c9_pmovsr &= ~val;
1716 break;
1717 case 4: /* Software increment */
1718 /* RAZ/WI since we don't implement the software-count event */
1719 break;
1720 case 5: /* Event counter selection register */
1721 /* Since we don't implement any events, writing to this register
1722 * is actually UNPREDICTABLE. So we choose to RAZ/WI.
1723 */
1724 break;
1725 default:
1726 goto bad_reg;
1727 }
1728 break;
1729 case 13: /* Performance counters */
1730 if (!arm_feature(env, ARM_FEATURE_V7)) {
1731 goto bad_reg;
1732 }
1733 switch (op2) {
1734 case 0: /* Cycle count register: not implemented, so RAZ/WI */
1735 break;
1736 case 1: /* Event type select */
1737 env->cp15.c9_pmxevtyper = val & 0xff;
1738 break;
1739 case 2: /* Event count register */
1740 /* Unimplemented (we have no events), RAZ/WI */
1741 break;
1742 default:
1743 goto bad_reg;
1744 }
1745 break;
1746 case 14: /* Performance monitor control */
1747 if (!arm_feature(env, ARM_FEATURE_V7)) {
1748 goto bad_reg;
1749 }
1750 switch (op2) {
1751 case 0: /* user enable */
1752 env->cp15.c9_pmuserenr = val & 1;
1753 /* changes access rights for cp registers, so flush tbs */
1754 tb_flush(env);
1755 break;
1756 case 1: /* interrupt enable set */
1757 /* We have no event counters so only the C bit can be changed */
1758 val &= (1 << 31);
1759 env->cp15.c9_pminten |= val;
1760 break;
1761 case 2: /* interrupt enable clear */
1762 val &= (1 << 31);
1763 env->cp15.c9_pminten &= ~val;
1764 break;
1765 }
1766 break;
1767 default:
1768 goto bad_reg;
1769 }
1770 break;
1771 case 10: /* MMU TLB lockdown. */
1772 /* ??? TLB lockdown not implemented. */
1773 break;
1774 case 12: /* Reserved. */
1775 goto bad_reg;
1776 case 13: /* Process ID. */
1777 switch (op2) {
1778 case 0:
1779 /* Unlike real hardware the qemu TLB uses virtual addresses,
1780 not modified virtual addresses, so this causes a TLB flush.
1781 */
1782 if (env->cp15.c13_fcse != val)
1783 tlb_flush(env, 1);
1784 env->cp15.c13_fcse = val;
1785 break;
1786 case 1:
1787 /* This changes the ASID, so do a TLB flush. */
1788 if (env->cp15.c13_context != val
1789 && !arm_feature(env, ARM_FEATURE_MPU))
1790 tlb_flush(env, 0);
1791 env->cp15.c13_context = val;
1792 break;
1793 default:
1794 goto bad_reg;
1795 }
1796 break;
1797 case 14: /* Generic timer */
1798 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1799 /* Dummy implementation: RAZ/WI for all */
1800 break;
1801 }
1802 goto bad_reg;
1803 case 15: /* Implementation specific. */
1804 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1805 if (op2 == 0 && crm == 1) {
1806 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1807 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1808 tb_flush(env);
1809 env->cp15.c15_cpar = val & 0x3fff;
1810 }
1811 break;
1812 }
1813 goto bad_reg;
1814 }
1815 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1816 switch (crm) {
1817 case 0:
1818 break;
1819 case 1: /* Set TI925T configuration. */
1820 env->cp15.c15_ticonfig = val & 0xe7;
1821 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1822 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1823 break;
1824 case 2: /* Set I_max. */
1825 env->cp15.c15_i_max = val;
1826 break;
1827 case 3: /* Set I_min. */
1828 env->cp15.c15_i_min = val;
1829 break;
1830 case 4: /* Set thread-ID. */
1831 env->cp15.c15_threadid = val & 0xffff;
1832 break;
1833 case 8: /* Wait-for-interrupt (deprecated). */
1834 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1835 break;
1836 default:
1837 goto bad_reg;
1838 }
1839 }
1840 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
1841 switch (crm) {
1842 case 0:
1843 if ((op1 == 0) && (op2 == 0)) {
1844 env->cp15.c15_power_control = val;
1845 } else if ((op1 == 0) && (op2 == 1)) {
1846 env->cp15.c15_diagnostic = val;
1847 } else if ((op1 == 0) && (op2 == 2)) {
1848 env->cp15.c15_power_diagnostic = val;
1849 }
1850 default:
1851 break;
1852 }
1853 }
1854 break;
1855 }
1856 return;
1857 bad_reg:
1858 /* ??? For debugging only. Should raise illegal instruction exception. */
1859 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1860 (insn >> 16) & 0xf, crm, op1, op2);
1861 }
1862
1863 uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn)
1864 {
1865 int op1;
1866 int op2;
1867 int crm;
1868
1869 op1 = (insn >> 21) & 7;
1870 op2 = (insn >> 5) & 7;
1871 crm = insn & 0xf;
1872 switch ((insn >> 16) & 0xf) {
1873 case 0: /* ID codes. */
1874 switch (op1) {
1875 case 0:
1876 switch (crm) {
1877 case 0:
1878 switch (op2) {
1879 case 0: /* Device ID. */
1880 return env->cp15.c0_cpuid;
1881 case 1: /* Cache Type. */
1882 return env->cp15.c0_cachetype;
1883 case 2: /* TCM status. */
1884 return 0;
1885 case 3: /* TLB type register. */
1886 return 0; /* No lockable TLB entries. */
1887 case 5: /* MPIDR */
1888 /* The MPIDR was standardised in v7; prior to
1889 * this it was implemented only in the 11MPCore.
1890 * For all other pre-v7 cores it does not exist.
1891 */
1892 if (arm_feature(env, ARM_FEATURE_V7) ||
1893 ARM_CPUID(env) == ARM_CPUID_ARM11MPCORE) {
1894 int mpidr = env->cpu_index;
1895 /* We don't support setting cluster ID ([8..11])
1896 * so these bits always RAZ.
1897 */
1898 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1899 mpidr |= (1 << 31);
1900 /* Cores which are uniprocessor (non-coherent)
1901 * but still implement the MP extensions set
1902 * bit 30. (For instance, A9UP.) However we do
1903 * not currently model any of those cores.
1904 */
1905 }
1906 return mpidr;
1907 }
1908 /* otherwise fall through to the unimplemented-reg case */
1909 default:
1910 goto bad_reg;
1911 }
1912 case 1:
1913 if (!arm_feature(env, ARM_FEATURE_V6))
1914 goto bad_reg;
1915 return env->cp15.c0_c1[op2];
1916 case 2:
1917 if (!arm_feature(env, ARM_FEATURE_V6))
1918 goto bad_reg;
1919 return env->cp15.c0_c2[op2];
1920 case 3: case 4: case 5: case 6: case 7:
1921 return 0;
1922 default:
1923 goto bad_reg;
1924 }
1925 case 1:
1926 /* These registers aren't documented on arm11 cores. However
1927 Linux looks at them anyway. */
1928 if (!arm_feature(env, ARM_FEATURE_V6))
1929 goto bad_reg;
1930 if (crm != 0)
1931 goto bad_reg;
1932 if (!arm_feature(env, ARM_FEATURE_V7))
1933 return 0;
1934
1935 switch (op2) {
1936 case 0:
1937 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1938 case 1:
1939 return env->cp15.c0_clid;
1940 case 7:
1941 return 0;
1942 }
1943 goto bad_reg;
1944 case 2:
1945 if (op2 != 0 || crm != 0)
1946 goto bad_reg;
1947 return env->cp15.c0_cssel;
1948 default:
1949 goto bad_reg;
1950 }
1951 case 1: /* System configuration. */
1952 if (arm_feature(env, ARM_FEATURE_V7)
1953 && op1 == 0 && crm == 1 && op2 == 0) {
1954 return env->cp15.c1_scr;
1955 }
1956 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1957 op2 = 0;
1958 switch (op2) {
1959 case 0: /* Control register. */
1960 return env->cp15.c1_sys;
1961 case 1: /* Auxiliary control register. */
1962 if (arm_feature(env, ARM_FEATURE_XSCALE))
1963 return env->cp15.c1_xscaleauxcr;
1964 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1965 goto bad_reg;
1966 switch (ARM_CPUID(env)) {
1967 case ARM_CPUID_ARM1026:
1968 return 1;
1969 case ARM_CPUID_ARM1136:
1970 case ARM_CPUID_ARM1136_R2:
1971 case ARM_CPUID_ARM1176:
1972 return 7;
1973 case ARM_CPUID_ARM11MPCORE:
1974 return 1;
1975 case ARM_CPUID_CORTEXA8:
1976 return 2;
1977 case ARM_CPUID_CORTEXA9:
1978 case ARM_CPUID_CORTEXA15:
1979 return 0;
1980 default:
1981 goto bad_reg;
1982 }
1983 case 2: /* Coprocessor access register. */
1984 if (arm_feature(env, ARM_FEATURE_XSCALE))
1985 goto bad_reg;
1986 return env->cp15.c1_coproc;
1987 default:
1988 goto bad_reg;
1989 }
1990 case 2: /* MMU Page table control / MPU cache control. */
1991 if (arm_feature(env, ARM_FEATURE_MPU)) {
1992 switch (op2) {
1993 case 0:
1994 return env->cp15.c2_data;
1995 break;
1996 case 1:
1997 return env->cp15.c2_insn;
1998 break;
1999 default:
2000 goto bad_reg;
2001 }
2002 } else {
2003 switch (op2) {
2004 case 0:
2005 return env->cp15.c2_base0;
2006 case 1:
2007 return env->cp15.c2_base1;
2008 case 2:
2009 return env->cp15.c2_control;
2010 default:
2011 goto bad_reg;
2012 }
2013 }
2014 case 3: /* MMU Domain access control / MPU write buffer control. */
2015 return env->cp15.c3;
2016 case 4: /* Reserved. */
2017 goto bad_reg;
2018 case 5: /* MMU Fault status / MPU access permission. */
2019 if (arm_feature(env, ARM_FEATURE_OMAPCP))
2020 op2 = 0;
2021 switch (op2) {
2022 case 0:
2023 if (arm_feature(env, ARM_FEATURE_MPU))
2024 return simple_mpu_ap_bits(env->cp15.c5_data);
2025 return env->cp15.c5_data;
2026 case 1:
2027 if (arm_feature(env, ARM_FEATURE_MPU))
2028 return simple_mpu_ap_bits(env->cp15.c5_data);
2029 return env->cp15.c5_insn;
2030 case 2:
2031 if (!arm_feature(env, ARM_FEATURE_MPU))
2032 goto bad_reg;
2033 return env->cp15.c5_data;
2034 case 3:
2035 if (!arm_feature(env, ARM_FEATURE_MPU))
2036 goto bad_reg;
2037 return env->cp15.c5_insn;
2038 default:
2039 goto bad_reg;
2040 }
2041 case 6: /* MMU Fault address. */
2042 if (arm_feature(env, ARM_FEATURE_MPU)) {
2043 if (crm >= 8)
2044 goto bad_reg;
2045 return env->cp15.c6_region[crm];
2046 } else {
2047 if (arm_feature(env, ARM_FEATURE_OMAPCP))
2048 op2 = 0;
2049 switch (op2) {
2050 case 0:
2051 return env->cp15.c6_data;
2052 case 1:
2053 if (arm_feature(env, ARM_FEATURE_V6)) {
2054 /* Watchpoint Fault Adrress. */
2055 return 0; /* Not implemented. */
2056 } else {
2057 /* Instruction Fault Adrress. */
2058 /* Arm9 doesn't have an IFAR, but implementing it anyway
2059 shouldn't do any harm. */
2060 return env->cp15.c6_insn;
2061 }
2062 case 2:
2063 if (arm_feature(env, ARM_FEATURE_V6)) {
2064 /* Instruction Fault Adrress. */
2065 return env->cp15.c6_insn;
2066 } else {
2067 goto bad_reg;
2068 }
2069 default:
2070 goto bad_reg;
2071 }
2072 }
2073 case 7: /* Cache control. */
2074 if (crm == 4 && op1 == 0 && op2 == 0) {
2075 return env->cp15.c7_par;
2076 }
2077 /* FIXME: Should only clear Z flag if destination is r15. */
2078 env->ZF = 0;
2079 return 0;
2080 case 8: /* MMU TLB control. */
2081 goto bad_reg;
2082 case 9:
2083 switch (crm) {
2084 case 0: /* Cache lockdown */
2085 switch (op1) {
2086 case 0: /* L1 cache. */
2087 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
2088 return 0;
2089 }
2090 switch (op2) {
2091 case 0:
2092 return env->cp15.c9_data;
2093 case 1:
2094 return env->cp15.c9_insn;
2095 default:
2096 goto bad_reg;
2097 }
2098 case 1: /* L2 cache */
2099 /* L2 Lockdown and Auxiliary control. */
2100 switch (op2) {
2101 case 0:
2102 /* L2 cache lockdown (A8 only) */
2103 return 0;
2104 case 2:
2105 /* L2 cache auxiliary control (A8) or control (A15) */
2106 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA15) {
2107 /* Linux wants the number of processors from here.
2108 * Might as well set the interrupt-controller bit too.
2109 */
2110 return ((smp_cpus - 1) << 24) | (1 << 23);
2111 }
2112 return 0;
2113 case 3:
2114 /* L2 cache extended control (A15) */
2115 return 0;
2116 default:
2117 goto bad_reg;
2118 }
2119 default:
2120 goto bad_reg;
2121 }
2122 break;
2123 case 12: /* Performance monitor control */
2124 if (!arm_feature(env, ARM_FEATURE_V7)) {
2125 goto bad_reg;
2126 }
2127 switch (op2) {
2128 case 0: /* performance monitor control register */
2129 return env->cp15.c9_pmcr;
2130 case 1: /* count enable set */
2131 case 2: /* count enable clear */
2132 return env->cp15.c9_pmcnten;
2133 case 3: /* overflow flag status */
2134 return env->cp15.c9_pmovsr;
2135 case 4: /* software increment */
2136 case 5: /* event counter selection register */
2137 return 0; /* Unimplemented, RAZ/WI */
2138 default:
2139 goto bad_reg;
2140 }
2141 case 13: /* Performance counters */
2142 if (!arm_feature(env, ARM_FEATURE_V7)) {
2143 goto bad_reg;
2144 }
2145 switch (op2) {
2146 case 1: /* Event type select */
2147 return env->cp15.c9_pmxevtyper;
2148 case 0: /* Cycle count register */
2149 case 2: /* Event count register */
2150 /* Unimplemented, so RAZ/WI */
2151 return 0;
2152 default:
2153 goto bad_reg;
2154 }
2155 case 14: /* Performance monitor control */
2156 if (!arm_feature(env, ARM_FEATURE_V7)) {
2157 goto bad_reg;
2158 }
2159 switch (op2) {
2160 case 0: /* user enable */
2161 return env->cp15.c9_pmuserenr;
2162 case 1: /* interrupt enable set */
2163 case 2: /* interrupt enable clear */
2164 return env->cp15.c9_pminten;
2165 default:
2166 goto bad_reg;
2167 }
2168 default:
2169 goto bad_reg;
2170 }
2171 break;
2172 case 10: /* MMU TLB lockdown. */
2173 /* ??? TLB lockdown not implemented. */
2174 return 0;
2175 case 11: /* TCM DMA control. */
2176 case 12: /* Reserved. */
2177 goto bad_reg;
2178 case 13: /* Process ID. */
2179 switch (op2) {
2180 case 0:
2181 return env->cp15.c13_fcse;
2182 case 1:
2183 return env->cp15.c13_context;
2184 default:
2185 goto bad_reg;
2186 }
2187 case 14: /* Generic timer */
2188 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
2189 /* Dummy implementation: RAZ/WI for all */
2190 return 0;
2191 }
2192 goto bad_reg;
2193 case 15: /* Implementation specific. */
2194 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2195 if (op2 == 0 && crm == 1)
2196 return env->cp15.c15_cpar;
2197
2198 goto bad_reg;
2199 }
2200 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
2201 switch (crm) {
2202 case 0:
2203 return 0;
2204 case 1: /* Read TI925T configuration. */
2205 return env->cp15.c15_ticonfig;
2206 case 2: /* Read I_max. */
2207 return env->cp15.c15_i_max;
2208 case 3: /* Read I_min. */
2209 return env->cp15.c15_i_min;
2210 case 4: /* Read thread-ID. */
2211 return env->cp15.c15_threadid;
2212 case 8: /* TI925T_status */
2213 return 0;
2214 }
2215 /* TODO: Peripheral port remap register:
2216 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
2217 * controller base address at $rn & ~0xfff and map size of
2218 * 0x200 << ($rn & 0xfff), when MMU is off. */
2219 goto bad_reg;
2220 }
2221 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
2222 switch (crm) {
2223 case 0:
2224 if ((op1 == 4) && (op2 == 0)) {
2225 /* The config_base_address should hold the value of
2226 * the peripheral base. ARM should get this from a CPU
2227 * object property, but that support isn't available in
2228 * December 2011. Default to 0 for now and board models
2229 * that care can set it by a private hook */
2230 return env->cp15.c15_config_base_address;
2231 } else if ((op1 == 0) && (op2 == 0)) {
2232 /* power_control should be set to maximum latency. Again,
2233 default to 0 and set by private hook */
2234 return env->cp15.c15_power_control;
2235 } else if ((op1 == 0) && (op2 == 1)) {
2236 return env->cp15.c15_diagnostic;
2237 } else if ((op1 == 0) && (op2 == 2)) {
2238 return env->cp15.c15_power_diagnostic;
2239 }
2240 break;
2241 case 1: /* NEON Busy */
2242 return 0;
2243 case 5: /* tlb lockdown */
2244 case 6:
2245 case 7:
2246 if ((op1 == 5) && (op2 == 2)) {
2247 return 0;
2248 }
2249 break;
2250 default:
2251 break;
2252 }
2253 goto bad_reg;
2254 }
2255 return 0;
2256 }
2257 bad_reg:
2258 /* ??? For debugging only. Should raise illegal instruction exception. */
2259 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
2260 (insn >> 16) & 0xf, crm, op1, op2);
2261 return 0;
2262 }
2263
2264 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2265 {
2266 if ((env->uncached_cpsr & CPSR_M) == mode) {
2267 env->regs[13] = val;
2268 } else {
2269 env->banked_r13[bank_number(env, mode)] = val;
2270 }
2271 }
2272
2273 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2274 {
2275 if ((env->uncached_cpsr & CPSR_M) == mode) {
2276 return env->regs[13];
2277 } else {
2278 return env->banked_r13[bank_number(env, mode)];
2279 }
2280 }
2281
2282 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2283 {
2284 switch (reg) {
2285 case 0: /* APSR */
2286 return xpsr_read(env) & 0xf8000000;
2287 case 1: /* IAPSR */
2288 return xpsr_read(env) & 0xf80001ff;
2289 case 2: /* EAPSR */
2290 return xpsr_read(env) & 0xff00fc00;
2291 case 3: /* xPSR */
2292 return xpsr_read(env) & 0xff00fdff;
2293 case 5: /* IPSR */
2294 return xpsr_read(env) & 0x000001ff;
2295 case 6: /* EPSR */
2296 return xpsr_read(env) & 0x0700fc00;
2297 case 7: /* IEPSR */
2298 return xpsr_read(env) & 0x0700edff;
2299 case 8: /* MSP */
2300 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2301 case 9: /* PSP */
2302 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2303 case 16: /* PRIMASK */
2304 return (env->uncached_cpsr & CPSR_I) != 0;
2305 case 17: /* BASEPRI */
2306 case 18: /* BASEPRI_MAX */
2307 return env->v7m.basepri;
2308 case 19: /* FAULTMASK */
2309 return (env->uncached_cpsr & CPSR_F) != 0;
2310 case 20: /* CONTROL */
2311 return env->v7m.control;
2312 default:
2313 /* ??? For debugging only. */
2314 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2315 return 0;
2316 }
2317 }
2318
2319 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2320 {
2321 switch (reg) {
2322 case 0: /* APSR */
2323 xpsr_write(env, val, 0xf8000000);
2324 break;
2325 case 1: /* IAPSR */
2326 xpsr_write(env, val, 0xf8000000);
2327 break;
2328 case 2: /* EAPSR */
2329 xpsr_write(env, val, 0xfe00fc00);
2330 break;
2331 case 3: /* xPSR */
2332 xpsr_write(env, val, 0xfe00fc00);
2333 break;
2334 case 5: /* IPSR */
2335 /* IPSR bits are readonly. */
2336 break;
2337 case 6: /* EPSR */
2338 xpsr_write(env, val, 0x0600fc00);
2339 break;
2340 case 7: /* IEPSR */
2341 xpsr_write(env, val, 0x0600fc00);
2342 break;
2343 case 8: /* MSP */
2344 if (env->v7m.current_sp)
2345 env->v7m.other_sp = val;
2346 else
2347 env->regs[13] = val;
2348 break;
2349 case 9: /* PSP */
2350 if (env->v7m.current_sp)
2351 env->regs[13] = val;
2352 else
2353 env->v7m.other_sp = val;
2354 break;
2355 case 16: /* PRIMASK */
2356 if (val & 1)
2357 env->uncached_cpsr |= CPSR_I;
2358 else
2359 env->uncached_cpsr &= ~CPSR_I;
2360 break;
2361 case 17: /* BASEPRI */
2362 env->v7m.basepri = val & 0xff;
2363 break;
2364 case 18: /* BASEPRI_MAX */
2365 val &= 0xff;
2366 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2367 env->v7m.basepri = val;
2368 break;
2369 case 19: /* FAULTMASK */
2370 if (val & 1)
2371 env->uncached_cpsr |= CPSR_F;
2372 else
2373 env->uncached_cpsr &= ~CPSR_F;
2374 break;
2375 case 20: /* CONTROL */
2376 env->v7m.control = val & 3;
2377 switch_v7m_sp(env, (val & 2) != 0);
2378 break;
2379 default:
2380 /* ??? For debugging only. */
2381 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2382 return;
2383 }
2384 }
2385
2386 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
2387 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
2388 void *opaque)
2389 {
2390 if (cpnum < 0 || cpnum > 14) {
2391 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
2392 return;
2393 }
2394
2395 env->cp[cpnum].cp_read = cp_read;
2396 env->cp[cpnum].cp_write = cp_write;
2397 env->cp[cpnum].opaque = opaque;
2398 }
2399
2400 #endif
2401
2402 /* Note that signed overflow is undefined in C. The following routines are
2403 careful to use unsigned types where modulo arithmetic is required.
2404 Failure to do so _will_ break on newer gcc. */
2405
2406 /* Signed saturating arithmetic. */
2407
2408 /* Perform 16-bit signed saturating addition. */
2409 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2410 {
2411 uint16_t res;
2412
2413 res = a + b;
2414 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2415 if (a & 0x8000)
2416 res = 0x8000;
2417 else
2418 res = 0x7fff;
2419 }
2420 return res;
2421 }
2422
2423 /* Perform 8-bit signed saturating addition. */
2424 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2425 {
2426 uint8_t res;
2427
2428 res = a + b;
2429 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2430 if (a & 0x80)
2431 res = 0x80;
2432 else
2433 res = 0x7f;
2434 }
2435 return res;
2436 }
2437
2438 /* Perform 16-bit signed saturating subtraction. */
2439 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2440 {
2441 uint16_t res;
2442
2443 res = a - b;
2444 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2445 if (a & 0x8000)
2446 res = 0x8000;
2447 else
2448 res = 0x7fff;
2449 }
2450 return res;
2451 }
2452
2453 /* Perform 8-bit signed saturating subtraction. */
2454 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2455 {
2456 uint8_t res;
2457
2458 res = a - b;
2459 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2460 if (a & 0x80)
2461 res = 0x80;
2462 else
2463 res = 0x7f;
2464 }
2465 return res;
2466 }
2467
2468 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2469 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2470 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2471 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2472 #define PFX q
2473
2474 #include "op_addsub.h"
2475
2476 /* Unsigned saturating arithmetic. */
2477 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2478 {
2479 uint16_t res;
2480 res = a + b;
2481 if (res < a)
2482 res = 0xffff;
2483 return res;
2484 }
2485
2486 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2487 {
2488 if (a > b)
2489 return a - b;
2490 else
2491 return 0;
2492 }
2493
2494 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2495 {
2496 uint8_t res;
2497 res = a + b;
2498 if (res < a)
2499 res = 0xff;
2500 return res;
2501 }
2502
2503 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2504 {
2505 if (a > b)
2506 return a - b;
2507 else
2508 return 0;
2509 }
2510
2511 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2512 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2513 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2514 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2515 #define PFX uq
2516
2517 #include "op_addsub.h"
2518
2519 /* Signed modulo arithmetic. */
2520 #define SARITH16(a, b, n, op) do { \
2521 int32_t sum; \
2522 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
2523 RESULT(sum, n, 16); \
2524 if (sum >= 0) \
2525 ge |= 3 << (n * 2); \
2526 } while(0)
2527
2528 #define SARITH8(a, b, n, op) do { \
2529 int32_t sum; \
2530 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
2531 RESULT(sum, n, 8); \
2532 if (sum >= 0) \
2533 ge |= 1 << n; \
2534 } while(0)
2535
2536
2537 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2538 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2539 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2540 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2541 #define PFX s
2542 #define ARITH_GE
2543
2544 #include "op_addsub.h"
2545
2546 /* Unsigned modulo arithmetic. */
2547 #define ADD16(a, b, n) do { \
2548 uint32_t sum; \
2549 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2550 RESULT(sum, n, 16); \
2551 if ((sum >> 16) == 1) \
2552 ge |= 3 << (n * 2); \
2553 } while(0)
2554
2555 #define ADD8(a, b, n) do { \
2556 uint32_t sum; \
2557 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2558 RESULT(sum, n, 8); \
2559 if ((sum >> 8) == 1) \
2560 ge |= 1 << n; \
2561 } while(0)
2562
2563 #define SUB16(a, b, n) do { \
2564 uint32_t sum; \
2565 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2566 RESULT(sum, n, 16); \
2567 if ((sum >> 16) == 0) \
2568 ge |= 3 << (n * 2); \
2569 } while(0)
2570
2571 #define SUB8(a, b, n) do { \
2572 uint32_t sum; \
2573 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2574 RESULT(sum, n, 8); \
2575 if ((sum >> 8) == 0) \
2576 ge |= 1 << n; \
2577 } while(0)
2578
2579 #define PFX u
2580 #define ARITH_GE
2581
2582 #include "op_addsub.h"
2583
2584 /* Halved signed arithmetic. */
2585 #define ADD16(a, b, n) \
2586 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2587 #define SUB16(a, b, n) \
2588 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2589 #define ADD8(a, b, n) \
2590 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2591 #define SUB8(a, b, n) \
2592 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2593 #define PFX sh
2594
2595 #include "op_addsub.h"
2596
2597 /* Halved unsigned arithmetic. */
2598 #define ADD16(a, b, n) \
2599 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2600 #define SUB16(a, b, n) \
2601 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2602 #define ADD8(a, b, n) \
2603 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2604 #define SUB8(a, b, n) \
2605 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2606 #define PFX uh
2607
2608 #include "op_addsub.h"
2609
2610 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2611 {
2612 if (a > b)
2613 return a - b;
2614 else
2615 return b - a;
2616 }
2617
2618 /* Unsigned sum of absolute byte differences. */
2619 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2620 {
2621 uint32_t sum;
2622 sum = do_usad(a, b);
2623 sum += do_usad(a >> 8, b >> 8);
2624 sum += do_usad(a >> 16, b >>16);
2625 sum += do_usad(a >> 24, b >> 24);
2626 return sum;
2627 }
2628
2629 /* For ARMv6 SEL instruction. */
2630 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2631 {
2632 uint32_t mask;
2633
2634 mask = 0;
2635 if (flags & 1)
2636 mask |= 0xff;
2637 if (flags & 2)
2638 mask |= 0xff00;
2639 if (flags & 4)
2640 mask |= 0xff0000;
2641 if (flags & 8)
2642 mask |= 0xff000000;
2643 return (a & mask) | (b & ~mask);
2644 }
2645
2646 uint32_t HELPER(logicq_cc)(uint64_t val)
2647 {
2648 return (val >> 32) | (val != 0);
2649 }
2650
2651 /* VFP support. We follow the convention used for VFP instrunctions:
2652 Single precition routines have a "s" suffix, double precision a
2653 "d" suffix. */
2654
2655 /* Convert host exception flags to vfp form. */
2656 static inline int vfp_exceptbits_from_host(int host_bits)
2657 {
2658 int target_bits = 0;
2659
2660 if (host_bits & float_flag_invalid)
2661 target_bits |= 1;
2662 if (host_bits & float_flag_divbyzero)
2663 target_bits |= 2;
2664 if (host_bits & float_flag_overflow)
2665 target_bits |= 4;
2666 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
2667 target_bits |= 8;
2668 if (host_bits & float_flag_inexact)
2669 target_bits |= 0x10;
2670 if (host_bits & float_flag_input_denormal)
2671 target_bits |= 0x80;
2672 return target_bits;
2673 }
2674
2675 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
2676 {
2677 int i;
2678 uint32_t fpscr;
2679
2680 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2681 | (env->vfp.vec_len << 16)
2682 | (env->vfp.vec_stride << 20);
2683 i = get_float_exception_flags(&env->vfp.fp_status);
2684 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
2685 fpscr |= vfp_exceptbits_from_host(i);
2686 return fpscr;
2687 }
2688
2689 uint32_t vfp_get_fpscr(CPUARMState *env)
2690 {
2691 return HELPER(vfp_get_fpscr)(env);
2692 }
2693
2694 /* Convert vfp exception flags to target form. */
2695 static inline int vfp_exceptbits_to_host(int target_bits)
2696 {
2697 int host_bits = 0;
2698
2699 if (target_bits & 1)
2700 host_bits |= float_flag_invalid;
2701 if (target_bits & 2)
2702 host_bits |= float_flag_divbyzero;
2703 if (target_bits & 4)
2704 host_bits |= float_flag_overflow;
2705 if (target_bits & 8)
2706 host_bits |= float_flag_underflow;
2707 if (target_bits & 0x10)
2708 host_bits |= float_flag_inexact;
2709 if (target_bits & 0x80)
2710 host_bits |= float_flag_input_denormal;
2711 return host_bits;
2712 }
2713
2714 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
2715 {
2716 int i;
2717 uint32_t changed;
2718
2719 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2720 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2721 env->vfp.vec_len = (val >> 16) & 7;
2722 env->vfp.vec_stride = (val >> 20) & 3;
2723
2724 changed ^= val;
2725 if (changed & (3 << 22)) {
2726 i = (val >> 22) & 3;
2727 switch (i) {
2728 case 0:
2729 i = float_round_nearest_even;
2730 break;
2731 case 1:
2732 i = float_round_up;
2733 break;
2734 case 2:
2735 i = float_round_down;
2736 break;
2737 case 3:
2738 i = float_round_to_zero;
2739 break;
2740 }
2741 set_float_rounding_mode(i, &env->vfp.fp_status);
2742 }
2743 if (changed & (1 << 24)) {
2744 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2745 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2746 }
2747 if (changed & (1 << 25))
2748 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2749
2750 i = vfp_exceptbits_to_host(val);
2751 set_float_exception_flags(i, &env->vfp.fp_status);
2752 set_float_exception_flags(0, &env->vfp.standard_fp_status);
2753 }
2754
2755 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
2756 {
2757 HELPER(vfp_set_fpscr)(env, val);
2758 }
2759
2760 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2761
2762 #define VFP_BINOP(name) \
2763 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
2764 { \
2765 float_status *fpst = fpstp; \
2766 return float32_ ## name(a, b, fpst); \
2767 } \
2768 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
2769 { \
2770 float_status *fpst = fpstp; \
2771 return float64_ ## name(a, b, fpst); \
2772 }
2773 VFP_BINOP(add)
2774 VFP_BINOP(sub)
2775 VFP_BINOP(mul)
2776 VFP_BINOP(div)
2777 #undef VFP_BINOP
2778
2779 float32 VFP_HELPER(neg, s)(float32 a)
2780 {
2781 return float32_chs(a);
2782 }
2783
2784 float64 VFP_HELPER(neg, d)(float64 a)
2785 {
2786 return float64_chs(a);
2787 }
2788
2789 float32 VFP_HELPER(abs, s)(float32 a)
2790 {
2791 return float32_abs(a);
2792 }
2793
2794 float64 VFP_HELPER(abs, d)(float64 a)
2795 {
2796 return float64_abs(a);
2797 }
2798
2799 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
2800 {
2801 return float32_sqrt(a, &env->vfp.fp_status);
2802 }
2803
2804 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
2805 {
2806 return float64_sqrt(a, &env->vfp.fp_status);
2807 }
2808
2809 /* XXX: check quiet/signaling case */
2810 #define DO_VFP_cmp(p, type) \
2811 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
2812 { \
2813 uint32_t flags; \
2814 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2815 case 0: flags = 0x6; break; \
2816 case -1: flags = 0x8; break; \
2817 case 1: flags = 0x2; break; \
2818 default: case 2: flags = 0x3; break; \
2819 } \
2820 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2821 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2822 } \
2823 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
2824 { \
2825 uint32_t flags; \
2826 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2827 case 0: flags = 0x6; break; \
2828 case -1: flags = 0x8; break; \
2829 case 1: flags = 0x2; break; \
2830 default: case 2: flags = 0x3; break; \
2831 } \
2832 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2833 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2834 }
2835 DO_VFP_cmp(s, float32)
2836 DO_VFP_cmp(d, float64)
2837 #undef DO_VFP_cmp
2838
2839 /* Integer to float and float to integer conversions */
2840
2841 #define CONV_ITOF(name, fsz, sign) \
2842 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
2843 { \
2844 float_status *fpst = fpstp; \
2845 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
2846 }
2847
2848 #define CONV_FTOI(name, fsz, sign, round) \
2849 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
2850 { \
2851 float_status *fpst = fpstp; \
2852 if (float##fsz##_is_any_nan(x)) { \
2853 float_raise(float_flag_invalid, fpst); \
2854 return 0; \
2855 } \
2856 return float##fsz##_to_##sign##int32##round(x, fpst); \
2857 }
2858
2859 #define FLOAT_CONVS(name, p, fsz, sign) \
2860 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
2861 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
2862 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
2863
2864 FLOAT_CONVS(si, s, 32, )
2865 FLOAT_CONVS(si, d, 64, )
2866 FLOAT_CONVS(ui, s, 32, u)
2867 FLOAT_CONVS(ui, d, 64, u)
2868
2869 #undef CONV_ITOF
2870 #undef CONV_FTOI
2871 #undef FLOAT_CONVS
2872
2873 /* floating point conversion */
2874 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
2875 {
2876 float64 r = float32_to_float64(x, &env->vfp.fp_status);
2877 /* ARM requires that S<->D conversion of any kind of NaN generates
2878 * a quiet NaN by forcing the most significant frac bit to 1.
2879 */
2880 return float64_maybe_silence_nan(r);
2881 }
2882
2883 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
2884 {
2885 float32 r = float64_to_float32(x, &env->vfp.fp_status);
2886 /* ARM requires that S<->D conversion of any kind of NaN generates
2887 * a quiet NaN by forcing the most significant frac bit to 1.
2888 */
2889 return float32_maybe_silence_nan(r);
2890 }
2891
2892 /* VFP3 fixed point conversion. */
2893 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
2894 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
2895 void *fpstp) \
2896 { \
2897 float_status *fpst = fpstp; \
2898 float##fsz tmp; \
2899 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
2900 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
2901 } \
2902 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
2903 void *fpstp) \
2904 { \
2905 float_status *fpst = fpstp; \
2906 float##fsz tmp; \
2907 if (float##fsz##_is_any_nan(x)) { \
2908 float_raise(float_flag_invalid, fpst); \
2909 return 0; \
2910 } \
2911 tmp = float##fsz##_scalbn(x, shift, fpst); \
2912 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
2913 }
2914
2915 VFP_CONV_FIX(sh, d, 64, int16, )
2916 VFP_CONV_FIX(sl, d, 64, int32, )
2917 VFP_CONV_FIX(uh, d, 64, uint16, u)
2918 VFP_CONV_FIX(ul, d, 64, uint32, u)
2919 VFP_CONV_FIX(sh, s, 32, int16, )
2920 VFP_CONV_FIX(sl, s, 32, int32, )
2921 VFP_CONV_FIX(uh, s, 32, uint16, u)
2922 VFP_CONV_FIX(ul, s, 32, uint32, u)
2923 #undef VFP_CONV_FIX
2924
2925 /* Half precision conversions. */
2926 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
2927 {
2928 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2929 float32 r = float16_to_float32(make_float16(a), ieee, s);
2930 if (ieee) {
2931 return float32_maybe_silence_nan(r);
2932 }
2933 return r;
2934 }
2935
2936 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
2937 {
2938 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2939 float16 r = float32_to_float16(a, ieee, s);
2940 if (ieee) {
2941 r = float16_maybe_silence_nan(r);
2942 }
2943 return float16_val(r);
2944 }
2945
2946 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2947 {
2948 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
2949 }
2950
2951 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2952 {
2953 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
2954 }
2955
2956 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2957 {
2958 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
2959 }
2960
2961 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2962 {
2963 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
2964 }
2965
2966 #define float32_two make_float32(0x40000000)
2967 #define float32_three make_float32(0x40400000)
2968 #define float32_one_point_five make_float32(0x3fc00000)
2969
2970 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
2971 {
2972 float_status *s = &env->vfp.standard_fp_status;
2973 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2974 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2975 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2976 float_raise(float_flag_input_denormal, s);
2977 }
2978 return float32_two;
2979 }
2980 return float32_sub(float32_two, float32_mul(a, b, s), s);
2981 }
2982
2983 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
2984 {
2985 float_status *s = &env->vfp.standard_fp_status;
2986 float32 product;
2987 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2988 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2989 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2990 float_raise(float_flag_input_denormal, s);
2991 }
2992 return float32_one_point_five;
2993 }
2994 product = float32_mul(a, b, s);
2995 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
2996 }
2997
2998 /* NEON helpers. */
2999
3000 /* Constants 256 and 512 are used in some helpers; we avoid relying on
3001 * int->float conversions at run-time. */
3002 #define float64_256 make_float64(0x4070000000000000LL)
3003 #define float64_512 make_float64(0x4080000000000000LL)
3004
3005 /* The algorithm that must be used to calculate the estimate
3006 * is specified by the ARM ARM.
3007 */
3008 static float64 recip_estimate(float64 a, CPUARMState *env)
3009 {
3010 /* These calculations mustn't set any fp exception flags,
3011 * so we use a local copy of the fp_status.
3012 */
3013 float_status dummy_status = env->vfp.standard_fp_status;
3014 float_status *s = &dummy_status;
3015 /* q = (int)(a * 512.0) */
3016 float64 q = float64_mul(float64_512, a, s);
3017 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3018
3019 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
3020 q = int64_to_float64(q_int, s);
3021 q = float64_add(q, float64_half, s);
3022 q = float64_div(q, float64_512, s);
3023 q = float64_div(float64_one, q, s);
3024
3025 /* s = (int)(256.0 * r + 0.5) */
3026 q = float64_mul(q, float64_256, s);
3027 q = float64_add(q, float64_half, s);
3028 q_int = float64_to_int64_round_to_zero(q, s);
3029
3030 /* return (double)s / 256.0 */
3031 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3032 }
3033
3034 float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
3035 {
3036 float_status *s = &env->vfp.standard_fp_status;
3037 float64 f64;
3038 uint32_t val32 = float32_val(a);
3039
3040 int result_exp;
3041 int a_exp = (val32 & 0x7f800000) >> 23;
3042 int sign = val32 & 0x80000000;
3043
3044 if (float32_is_any_nan(a)) {
3045 if (float32_is_signaling_nan(a)) {
3046 float_raise(float_flag_invalid, s);
3047 }
3048 return float32_default_nan;
3049 } else if (float32_is_infinity(a)) {
3050 return float32_set_sign(float32_zero, float32_is_neg(a));
3051 } else if (float32_is_zero_or_denormal(a)) {
3052 if (!float32_is_zero(a)) {
3053 float_raise(float_flag_input_denormal, s);
3054 }
3055 float_raise(float_flag_divbyzero, s);
3056 return float32_set_sign(float32_infinity, float32_is_neg(a));
3057 } else if (a_exp >= 253) {
3058 float_raise(float_flag_underflow, s);
3059 return float32_set_sign(float32_zero, float32_is_neg(a));
3060 }
3061
3062 f64 = make_float64((0x3feULL << 52)
3063 | ((int64_t)(val32 & 0x7fffff) << 29));
3064
3065 result_exp = 253 - a_exp;
3066
3067 f64 = recip_estimate(f64, env);
3068
3069 val32 = sign
3070 | ((result_exp & 0xff) << 23)
3071 | ((float64_val(f64) >> 29) & 0x7fffff);
3072 return make_float32(val32);
3073 }
3074
3075 /* The algorithm that must be used to calculate the estimate
3076 * is specified by the ARM ARM.
3077 */
3078 static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
3079 {
3080 /* These calculations mustn't set any fp exception flags,
3081 * so we use a local copy of the fp_status.
3082 */
3083 float_status dummy_status = env->vfp.standard_fp_status;
3084 float_status *s = &dummy_status;
3085 float64 q;
3086 int64_t q_int;
3087
3088 if (float64_lt(a, float64_half, s)) {
3089 /* range 0.25 <= a < 0.5 */
3090
3091 /* a in units of 1/512 rounded down */
3092 /* q0 = (int)(a * 512.0); */
3093 q = float64_mul(float64_512, a, s);
3094 q_int = float64_to_int64_round_to_zero(q, s);
3095
3096 /* reciprocal root r */
3097 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
3098 q = int64_to_float64(q_int, s);
3099 q = float64_add(q, float64_half, s);
3100 q = float64_div(q, float64_512, s);
3101 q = float64_sqrt(q, s);
3102 q = float64_div(float64_one, q, s);
3103 } else {
3104 /* range 0.5 <= a < 1.0 */
3105
3106 /* a in units of 1/256 rounded down */
3107 /* q1 = (int)(a * 256.0); */
3108 q = float64_mul(float64_256, a, s);
3109 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3110
3111 /* reciprocal root r */
3112 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3113 q = int64_to_float64(q_int, s);
3114 q = float64_add(q, float64_half, s);
3115 q = float64_div(q, float64_256, s);
3116 q = float64_sqrt(q, s);
3117 q = float64_div(float64_one, q, s);
3118 }
3119 /* r in units of 1/256 rounded to nearest */
3120 /* s = (int)(256.0 * r + 0.5); */
3121
3122 q = float64_mul(q, float64_256,s );
3123 q = float64_add(q, float64_half, s);
3124 q_int = float64_to_int64_round_to_zero(q, s);
3125
3126 /* return (double)s / 256.0;*/
3127 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3128 }
3129
3130 float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
3131 {
3132 float_status *s = &env->vfp.standard_fp_status;
3133 int result_exp;
3134 float64 f64;
3135 uint32_t val;
3136 uint64_t val64;
3137
3138 val = float32_val(a);
3139
3140 if (float32_is_any_nan(a)) {
3141 if (float32_is_signaling_nan(a)) {
3142 float_raise(float_flag_invalid, s);
3143 }
3144 return float32_default_nan;
3145 } else if (float32_is_zero_or_denormal(a)) {
3146 if (!float32_is_zero(a)) {
3147 float_raise(float_flag_input_denormal, s);
3148 }
3149 float_raise(float_flag_divbyzero, s);
3150 return float32_set_sign(float32_infinity, float32_is_neg(a));
3151 } else if (float32_is_neg(a)) {
3152 float_raise(float_flag_invalid, s);
3153 return float32_default_nan;
3154 } else if (float32_is_infinity(a)) {
3155 return float32_zero;
3156 }
3157
3158 /* Normalize to a double-precision value between 0.25 and 1.0,
3159 * preserving the parity of the exponent. */
3160 if ((val & 0x800000) == 0) {
3161 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3162 | (0x3feULL << 52)
3163 | ((uint64_t)(val & 0x7fffff) << 29));
3164 } else {
3165 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3166 | (0x3fdULL << 52)
3167 | ((uint64_t)(val & 0x7fffff) << 29));
3168 }
3169
3170 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
3171
3172 f64 = recip_sqrt_estimate(f64, env);
3173
3174 val64 = float64_val(f64);
3175
3176 val = ((result_exp & 0xff) << 23)
3177 | ((val64 >> 29) & 0x7fffff);
3178 return make_float32(val);
3179 }
3180
3181 uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
3182 {
3183 float64 f64;
3184
3185 if ((a & 0x80000000) == 0) {
3186 return 0xffffffff;
3187 }
3188
3189 f64 = make_float64((0x3feULL << 52)
3190 | ((int64_t)(a & 0x7fffffff) << 21));
3191
3192 f64 = recip_estimate (f64, env);
3193
3194 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3195 }
3196
3197 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
3198 {
3199 float64 f64;
3200
3201 if ((a & 0xc0000000) == 0) {
3202 return 0xffffffff;
3203 }
3204
3205 if (a & 0x80000000) {
3206 f64 = make_float64((0x3feULL << 52)
3207 | ((uint64_t)(a & 0x7fffffff) << 21));
3208 } else { /* bits 31-30 == '01' */
3209 f64 = make_float64((0x3fdULL << 52)
3210 | ((uint64_t)(a & 0x3fffffff) << 22));
3211 }
3212
3213 f64 = recip_sqrt_estimate(f64, env);
3214
3215 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3216 }
3217
3218 /* VFPv4 fused multiply-accumulate */
3219 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
3220 {
3221 float_status *fpst = fpstp;
3222 return float32_muladd(a, b, c, 0, fpst);
3223 }
3224
3225 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
3226 {
3227 float_status *fpst = fpstp;
3228 return float64_muladd(a, b, c, 0, fpst);
3229 }
3230
3231 void HELPER(set_teecr)(CPUARMState *env, uint32_t val)
3232 {
3233 val &= 1;
3234 if (env->teecr != val) {
3235 env->teecr = val;
3236 tb_flush(env);
3237 }
3238 }