]> git.proxmox.com Git - mirror_qemu.git/blob - target-arm/internals.h
target-arm: Add ARMMMUFaultInfo
[mirror_qemu.git] / target-arm / internals.h
1 /*
2 * QEMU ARM CPU -- internal functions and types
3 *
4 * Copyright (c) 2014 Linaro Ltd
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 *
20 * This header defines functions, types, etc which need to be shared
21 * between different source files within target-arm/ but which are
22 * private to it and not required by the rest of QEMU.
23 */
24
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27
28 static inline bool excp_is_internal(int excp)
29 {
30 /* Return true if this exception number represents a QEMU-internal
31 * exception that will not be passed to the guest.
32 */
33 return excp == EXCP_INTERRUPT
34 || excp == EXCP_HLT
35 || excp == EXCP_DEBUG
36 || excp == EXCP_HALTED
37 || excp == EXCP_EXCEPTION_EXIT
38 || excp == EXCP_KERNEL_TRAP
39 || excp == EXCP_SEMIHOST
40 || excp == EXCP_STREX;
41 }
42
43 /* Exception names for debug logging; note that not all of these
44 * precisely correspond to architectural exceptions.
45 */
46 static const char * const excnames[] = {
47 [EXCP_UDEF] = "Undefined Instruction",
48 [EXCP_SWI] = "SVC",
49 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
50 [EXCP_DATA_ABORT] = "Data Abort",
51 [EXCP_IRQ] = "IRQ",
52 [EXCP_FIQ] = "FIQ",
53 [EXCP_BKPT] = "Breakpoint",
54 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
55 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
56 [EXCP_STREX] = "QEMU intercept of STREX",
57 [EXCP_HVC] = "Hypervisor Call",
58 [EXCP_HYP_TRAP] = "Hypervisor Trap",
59 [EXCP_SMC] = "Secure Monitor Call",
60 [EXCP_VIRQ] = "Virtual IRQ",
61 [EXCP_VFIQ] = "Virtual FIQ",
62 [EXCP_SEMIHOST] = "Semihosting call",
63 };
64
65 static inline void arm_log_exception(int idx)
66 {
67 if (qemu_loglevel_mask(CPU_LOG_INT)) {
68 const char *exc = NULL;
69
70 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
71 exc = excnames[idx];
72 }
73 if (!exc) {
74 exc = "unknown";
75 }
76 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
77 }
78 }
79
80 /* Scale factor for generic timers, ie number of ns per tick.
81 * This gives a 62.5MHz timer.
82 */
83 #define GTIMER_SCALE 16
84
85 /*
86 * For AArch64, map a given EL to an index in the banked_spsr array.
87 * Note that this mapping and the AArch32 mapping defined in bank_number()
88 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
89 * mandated mapping between each other.
90 */
91 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
92 {
93 static const unsigned int map[4] = {
94 [1] = 1, /* EL1. */
95 [2] = 6, /* EL2. */
96 [3] = 7, /* EL3. */
97 };
98 assert(el >= 1 && el <= 3);
99 return map[el];
100 }
101
102 int bank_number(int mode);
103 void switch_mode(CPUARMState *, int);
104 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
105 void arm_translate_init(void);
106
107 enum arm_fprounding {
108 FPROUNDING_TIEEVEN,
109 FPROUNDING_POSINF,
110 FPROUNDING_NEGINF,
111 FPROUNDING_ZERO,
112 FPROUNDING_TIEAWAY,
113 FPROUNDING_ODD
114 };
115
116 int arm_rmode_to_sf(int rmode);
117
118 static inline void aarch64_save_sp(CPUARMState *env, int el)
119 {
120 if (env->pstate & PSTATE_SP) {
121 env->sp_el[el] = env->xregs[31];
122 } else {
123 env->sp_el[0] = env->xregs[31];
124 }
125 }
126
127 static inline void aarch64_restore_sp(CPUARMState *env, int el)
128 {
129 if (env->pstate & PSTATE_SP) {
130 env->xregs[31] = env->sp_el[el];
131 } else {
132 env->xregs[31] = env->sp_el[0];
133 }
134 }
135
136 static inline void update_spsel(CPUARMState *env, uint32_t imm)
137 {
138 unsigned int cur_el = arm_current_el(env);
139 /* Update PSTATE SPSel bit; this requires us to update the
140 * working stack pointer in xregs[31].
141 */
142 if (!((imm ^ env->pstate) & PSTATE_SP)) {
143 return;
144 }
145 aarch64_save_sp(env, cur_el);
146 env->pstate = deposit32(env->pstate, 0, 1, imm);
147
148 /* We rely on illegal updates to SPsel from EL0 to get trapped
149 * at translation time.
150 */
151 assert(cur_el >= 1 && cur_el <= 3);
152 aarch64_restore_sp(env, cur_el);
153 }
154
155 /*
156 * arm_pamax
157 * @cpu: ARMCPU
158 *
159 * Returns the implementation defined bit-width of physical addresses.
160 * The ARMv8 reference manuals refer to this as PAMax().
161 */
162 static inline unsigned int arm_pamax(ARMCPU *cpu)
163 {
164 static const unsigned int pamax_map[] = {
165 [0] = 32,
166 [1] = 36,
167 [2] = 40,
168 [3] = 42,
169 [4] = 44,
170 [5] = 48,
171 };
172 unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4);
173
174 /* id_aa64mmfr0 is a read-only register so values outside of the
175 * supported mappings can be considered an implementation error. */
176 assert(parange < ARRAY_SIZE(pamax_map));
177 return pamax_map[parange];
178 }
179
180 /* Return true if extended addresses are enabled.
181 * This is always the case if our translation regime is 64 bit,
182 * but depends on TTBCR.EAE for 32 bit.
183 */
184 static inline bool extended_addresses_enabled(CPUARMState *env)
185 {
186 TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
187 return arm_el_is_aa64(env, 1) ||
188 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
189 }
190
191 /* Valid Syndrome Register EC field values */
192 enum arm_exception_class {
193 EC_UNCATEGORIZED = 0x00,
194 EC_WFX_TRAP = 0x01,
195 EC_CP15RTTRAP = 0x03,
196 EC_CP15RRTTRAP = 0x04,
197 EC_CP14RTTRAP = 0x05,
198 EC_CP14DTTRAP = 0x06,
199 EC_ADVSIMDFPACCESSTRAP = 0x07,
200 EC_FPIDTRAP = 0x08,
201 EC_CP14RRTTRAP = 0x0c,
202 EC_ILLEGALSTATE = 0x0e,
203 EC_AA32_SVC = 0x11,
204 EC_AA32_HVC = 0x12,
205 EC_AA32_SMC = 0x13,
206 EC_AA64_SVC = 0x15,
207 EC_AA64_HVC = 0x16,
208 EC_AA64_SMC = 0x17,
209 EC_SYSTEMREGISTERTRAP = 0x18,
210 EC_INSNABORT = 0x20,
211 EC_INSNABORT_SAME_EL = 0x21,
212 EC_PCALIGNMENT = 0x22,
213 EC_DATAABORT = 0x24,
214 EC_DATAABORT_SAME_EL = 0x25,
215 EC_SPALIGNMENT = 0x26,
216 EC_AA32_FPTRAP = 0x28,
217 EC_AA64_FPTRAP = 0x2c,
218 EC_SERROR = 0x2f,
219 EC_BREAKPOINT = 0x30,
220 EC_BREAKPOINT_SAME_EL = 0x31,
221 EC_SOFTWARESTEP = 0x32,
222 EC_SOFTWARESTEP_SAME_EL = 0x33,
223 EC_WATCHPOINT = 0x34,
224 EC_WATCHPOINT_SAME_EL = 0x35,
225 EC_AA32_BKPT = 0x38,
226 EC_VECTORCATCH = 0x3a,
227 EC_AA64_BKPT = 0x3c,
228 };
229
230 #define ARM_EL_EC_SHIFT 26
231 #define ARM_EL_IL_SHIFT 25
232 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
233
234 /* Utility functions for constructing various kinds of syndrome value.
235 * Note that in general we follow the AArch64 syndrome values; in a
236 * few cases the value in HSR for exceptions taken to AArch32 Hyp
237 * mode differs slightly, so if we ever implemented Hyp mode then the
238 * syndrome value would need some massaging on exception entry.
239 * (One example of this is that AArch64 defaults to IL bit set for
240 * exceptions which don't specifically indicate information about the
241 * trapping instruction, whereas AArch32 defaults to IL bit clear.)
242 */
243 static inline uint32_t syn_uncategorized(void)
244 {
245 return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
246 }
247
248 static inline uint32_t syn_aa64_svc(uint32_t imm16)
249 {
250 return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
251 }
252
253 static inline uint32_t syn_aa64_hvc(uint32_t imm16)
254 {
255 return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
256 }
257
258 static inline uint32_t syn_aa64_smc(uint32_t imm16)
259 {
260 return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
261 }
262
263 static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_thumb)
264 {
265 return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
266 | (is_thumb ? 0 : ARM_EL_IL);
267 }
268
269 static inline uint32_t syn_aa32_hvc(uint32_t imm16)
270 {
271 return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
272 }
273
274 static inline uint32_t syn_aa32_smc(void)
275 {
276 return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
277 }
278
279 static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
280 {
281 return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
282 }
283
284 static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_thumb)
285 {
286 return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
287 | (is_thumb ? 0 : ARM_EL_IL);
288 }
289
290 static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
291 int crn, int crm, int rt,
292 int isread)
293 {
294 return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
295 | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
296 | (crm << 1) | isread;
297 }
298
299 static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
300 int crn, int crm, int rt, int isread,
301 bool is_thumb)
302 {
303 return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
304 | (is_thumb ? 0 : ARM_EL_IL)
305 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
306 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
307 }
308
309 static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
310 int crn, int crm, int rt, int isread,
311 bool is_thumb)
312 {
313 return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
314 | (is_thumb ? 0 : ARM_EL_IL)
315 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
316 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
317 }
318
319 static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
320 int rt, int rt2, int isread,
321 bool is_thumb)
322 {
323 return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
324 | (is_thumb ? 0 : ARM_EL_IL)
325 | (cv << 24) | (cond << 20) | (opc1 << 16)
326 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
327 }
328
329 static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
330 int rt, int rt2, int isread,
331 bool is_thumb)
332 {
333 return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
334 | (is_thumb ? 0 : ARM_EL_IL)
335 | (cv << 24) | (cond << 20) | (opc1 << 16)
336 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
337 }
338
339 static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_thumb)
340 {
341 return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
342 | (is_thumb ? 0 : ARM_EL_IL)
343 | (cv << 24) | (cond << 20);
344 }
345
346 static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
347 {
348 return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
349 | (ea << 9) | (s1ptw << 7) | fsc;
350 }
351
352 static inline uint32_t syn_data_abort(int same_el, int ea, int cm, int s1ptw,
353 int wnr, int fsc)
354 {
355 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
356 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
357 }
358
359 static inline uint32_t syn_swstep(int same_el, int isv, int ex)
360 {
361 return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
362 | (isv << 24) | (ex << 6) | 0x22;
363 }
364
365 static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
366 {
367 return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
368 | (cm << 8) | (wnr << 6) | 0x22;
369 }
370
371 static inline uint32_t syn_breakpoint(int same_el)
372 {
373 return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
374 | ARM_EL_IL | 0x22;
375 }
376
377 static inline uint32_t syn_wfx(int cv, int cond, int ti)
378 {
379 return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
380 (cv << 24) | (cond << 20) | ti;
381 }
382
383 /* Update a QEMU watchpoint based on the information the guest has set in the
384 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
385 */
386 void hw_watchpoint_update(ARMCPU *cpu, int n);
387 /* Update the QEMU watchpoints for every guest watchpoint. This does a
388 * complete delete-and-reinstate of the QEMU watchpoint list and so is
389 * suitable for use after migration or on reset.
390 */
391 void hw_watchpoint_update_all(ARMCPU *cpu);
392 /* Update a QEMU breakpoint based on the information the guest has set in the
393 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
394 */
395 void hw_breakpoint_update(ARMCPU *cpu, int n);
396 /* Update the QEMU breakpoints for every guest breakpoint. This does a
397 * complete delete-and-reinstate of the QEMU breakpoint list and so is
398 * suitable for use after migration or on reset.
399 */
400 void hw_breakpoint_update_all(ARMCPU *cpu);
401
402 /* Callback function for when a watchpoint or breakpoint triggers. */
403 void arm_debug_excp_handler(CPUState *cs);
404
405 #ifdef CONFIG_USER_ONLY
406 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
407 {
408 return false;
409 }
410 #else
411 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
412 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
413 /* Actually handle a PSCI call */
414 void arm_handle_psci_call(ARMCPU *cpu);
415 #endif
416
417 /**
418 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
419 * @s2addr: Address that caused a fault at stage 2
420 * @stage2: True if we faulted at stage 2
421 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
422 */
423 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
424 struct ARMMMUFaultInfo {
425 target_ulong s2addr;
426 bool stage2;
427 bool s1ptw;
428 };
429
430 /* Do a page table walk and add page to TLB if possible */
431 bool arm_tlb_fill(CPUState *cpu, vaddr address, int rw, int mmu_idx,
432 uint32_t *fsr, ARMMMUFaultInfo *fi);
433
434 #endif