]> git.proxmox.com Git - mirror_qemu.git/blob - target-arm/kvm32.c
spapr: Move RMA memory region registration code
[mirror_qemu.git] / target-arm / kvm32.c
1 /*
2 * ARM implementation of KVM hooks, 32 bit specific code.
3 *
4 * Copyright Christoffer Dall 2009-2010
5 *
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
8 *
9 */
10
11 #include <stdio.h>
12 #include <sys/types.h>
13 #include <sys/ioctl.h>
14 #include <sys/mman.h>
15
16 #include <linux/kvm.h>
17
18 #include "qemu-common.h"
19 #include "qemu/timer.h"
20 #include "sysemu/sysemu.h"
21 #include "sysemu/kvm.h"
22 #include "kvm_arm.h"
23 #include "cpu.h"
24 #include "internals.h"
25 #include "hw/arm/arm.h"
26
27 static inline void set_feature(uint64_t *features, int feature)
28 {
29 *features |= 1ULL << feature;
30 }
31
32 bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
33 {
34 /* Identify the feature bits corresponding to the host CPU, and
35 * fill out the ARMHostCPUClass fields accordingly. To do this
36 * we have to create a scratch VM, create a single CPU inside it,
37 * and then query that CPU for the relevant ID registers.
38 */
39 int i, ret, fdarray[3];
40 uint32_t midr, id_pfr0, id_isar0, mvfr1;
41 uint64_t features = 0;
42 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
43 * we know these will only support creating one kind of guest CPU,
44 * which is its preferred CPU type.
45 */
46 static const uint32_t cpus_to_try[] = {
47 QEMU_KVM_ARM_TARGET_CORTEX_A15,
48 QEMU_KVM_ARM_TARGET_NONE
49 };
50 struct kvm_vcpu_init init;
51 struct kvm_one_reg idregs[] = {
52 {
53 .id = KVM_REG_ARM | KVM_REG_SIZE_U32
54 | ENCODE_CP_REG(15, 0, 0, 0, 0, 0),
55 .addr = (uintptr_t)&midr,
56 },
57 {
58 .id = KVM_REG_ARM | KVM_REG_SIZE_U32
59 | ENCODE_CP_REG(15, 0, 0, 1, 0, 0),
60 .addr = (uintptr_t)&id_pfr0,
61 },
62 {
63 .id = KVM_REG_ARM | KVM_REG_SIZE_U32
64 | ENCODE_CP_REG(15, 0, 0, 2, 0, 0),
65 .addr = (uintptr_t)&id_isar0,
66 },
67 {
68 .id = KVM_REG_ARM | KVM_REG_SIZE_U32
69 | KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR1,
70 .addr = (uintptr_t)&mvfr1,
71 },
72 };
73
74 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
75 return false;
76 }
77
78 ahcc->target = init.target;
79
80 /* This is not strictly blessed by the device tree binding docs yet,
81 * but in practice the kernel does not care about this string so
82 * there is no point maintaining an KVM_ARM_TARGET_* -> string table.
83 */
84 ahcc->dtb_compatible = "arm,arm-v7";
85
86 for (i = 0; i < ARRAY_SIZE(idregs); i++) {
87 ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &idregs[i]);
88 if (ret) {
89 break;
90 }
91 }
92
93 kvm_arm_destroy_scratch_host_vcpu(fdarray);
94
95 if (ret) {
96 return false;
97 }
98
99 /* Now we've retrieved all the register information we can
100 * set the feature bits based on the ID register fields.
101 * We can assume any KVM supporting CPU is at least a v7
102 * with VFPv3, LPAE and the generic timers; this in turn implies
103 * most of the other feature bits, but a few must be tested.
104 */
105 set_feature(&features, ARM_FEATURE_V7);
106 set_feature(&features, ARM_FEATURE_VFP3);
107 set_feature(&features, ARM_FEATURE_LPAE);
108 set_feature(&features, ARM_FEATURE_GENERIC_TIMER);
109
110 switch (extract32(id_isar0, 24, 4)) {
111 case 1:
112 set_feature(&features, ARM_FEATURE_THUMB_DIV);
113 break;
114 case 2:
115 set_feature(&features, ARM_FEATURE_ARM_DIV);
116 set_feature(&features, ARM_FEATURE_THUMB_DIV);
117 break;
118 default:
119 break;
120 }
121
122 if (extract32(id_pfr0, 12, 4) == 1) {
123 set_feature(&features, ARM_FEATURE_THUMB2EE);
124 }
125 if (extract32(mvfr1, 20, 4) == 1) {
126 set_feature(&features, ARM_FEATURE_VFP_FP16);
127 }
128 if (extract32(mvfr1, 12, 4) == 1) {
129 set_feature(&features, ARM_FEATURE_NEON);
130 }
131 if (extract32(mvfr1, 28, 4) == 1) {
132 /* FMAC support implies VFPv4 */
133 set_feature(&features, ARM_FEATURE_VFP4);
134 }
135
136 ahcc->features = features;
137
138 return true;
139 }
140
141 static bool reg_syncs_via_tuple_list(uint64_t regidx)
142 {
143 /* Return true if the regidx is a register we should synchronize
144 * via the cpreg_tuples array (ie is not a core reg we sync by
145 * hand in kvm_arch_get/put_registers())
146 */
147 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
148 case KVM_REG_ARM_CORE:
149 case KVM_REG_ARM_VFP:
150 return false;
151 default:
152 return true;
153 }
154 }
155
156 static int compare_u64(const void *a, const void *b)
157 {
158 if (*(uint64_t *)a > *(uint64_t *)b) {
159 return 1;
160 }
161 if (*(uint64_t *)a < *(uint64_t *)b) {
162 return -1;
163 }
164 return 0;
165 }
166
167 int kvm_arch_init_vcpu(CPUState *cs)
168 {
169 int i, ret, arraylen;
170 uint64_t v;
171 struct kvm_one_reg r;
172 struct kvm_reg_list rl;
173 struct kvm_reg_list *rlp;
174 ARMCPU *cpu = ARM_CPU(cs);
175
176 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) {
177 fprintf(stderr, "KVM is not supported for this guest CPU type\n");
178 return -EINVAL;
179 }
180
181 /* Determine init features for this CPU */
182 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
183 if (cpu->start_powered_off) {
184 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
185 }
186 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
187 cpu->psci_version = 2;
188 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
189 }
190
191 /* Do KVM_ARM_VCPU_INIT ioctl */
192 ret = kvm_arm_vcpu_init(cs);
193 if (ret) {
194 return ret;
195 }
196
197 /* Query the kernel to make sure it supports 32 VFP
198 * registers: QEMU's "cortex-a15" CPU is always a
199 * VFP-D32 core. The simplest way to do this is just
200 * to attempt to read register d31.
201 */
202 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
203 r.addr = (uintptr_t)(&v);
204 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
205 if (ret == -ENOENT) {
206 return -EINVAL;
207 }
208
209 /* Populate the cpreg list based on the kernel's idea
210 * of what registers exist (and throw away the TCG-created list).
211 */
212 rl.n = 0;
213 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
214 if (ret != -E2BIG) {
215 return ret;
216 }
217 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
218 rlp->n = rl.n;
219 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
220 if (ret) {
221 goto out;
222 }
223 /* Sort the list we get back from the kernel, since cpreg_tuples
224 * must be in strictly ascending order.
225 */
226 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
227
228 for (i = 0, arraylen = 0; i < rlp->n; i++) {
229 if (!reg_syncs_via_tuple_list(rlp->reg[i])) {
230 continue;
231 }
232 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
233 case KVM_REG_SIZE_U32:
234 case KVM_REG_SIZE_U64:
235 break;
236 default:
237 fprintf(stderr, "Can't handle size of register in kernel list\n");
238 ret = -EINVAL;
239 goto out;
240 }
241
242 arraylen++;
243 }
244
245 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
246 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
247 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
248 arraylen);
249 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
250 arraylen);
251 cpu->cpreg_array_len = arraylen;
252 cpu->cpreg_vmstate_array_len = arraylen;
253
254 for (i = 0, arraylen = 0; i < rlp->n; i++) {
255 uint64_t regidx = rlp->reg[i];
256 if (!reg_syncs_via_tuple_list(regidx)) {
257 continue;
258 }
259 cpu->cpreg_indexes[arraylen] = regidx;
260 arraylen++;
261 }
262 assert(cpu->cpreg_array_len == arraylen);
263
264 if (!write_kvmstate_to_list(cpu)) {
265 /* Shouldn't happen unless kernel is inconsistent about
266 * what registers exist.
267 */
268 fprintf(stderr, "Initial read of kernel register state failed\n");
269 ret = -EINVAL;
270 goto out;
271 }
272
273 out:
274 g_free(rlp);
275 return ret;
276 }
277
278 typedef struct Reg {
279 uint64_t id;
280 int offset;
281 } Reg;
282
283 #define COREREG(KERNELNAME, QEMUFIELD) \
284 { \
285 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
286 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
287 offsetof(CPUARMState, QEMUFIELD) \
288 }
289
290 #define VFPSYSREG(R) \
291 { \
292 KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
293 KVM_REG_ARM_VFP_##R, \
294 offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
295 }
296
297 /* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */
298 #define COREREG64(KERNELNAME, QEMUFIELD) \
299 { \
300 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
301 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
302 offsetoflow32(CPUARMState, QEMUFIELD) \
303 }
304
305 static const Reg regs[] = {
306 /* R0_usr .. R14_usr */
307 COREREG(usr_regs.uregs[0], regs[0]),
308 COREREG(usr_regs.uregs[1], regs[1]),
309 COREREG(usr_regs.uregs[2], regs[2]),
310 COREREG(usr_regs.uregs[3], regs[3]),
311 COREREG(usr_regs.uregs[4], regs[4]),
312 COREREG(usr_regs.uregs[5], regs[5]),
313 COREREG(usr_regs.uregs[6], regs[6]),
314 COREREG(usr_regs.uregs[7], regs[7]),
315 COREREG(usr_regs.uregs[8], usr_regs[0]),
316 COREREG(usr_regs.uregs[9], usr_regs[1]),
317 COREREG(usr_regs.uregs[10], usr_regs[2]),
318 COREREG(usr_regs.uregs[11], usr_regs[3]),
319 COREREG(usr_regs.uregs[12], usr_regs[4]),
320 COREREG(usr_regs.uregs[13], banked_r13[0]),
321 COREREG(usr_regs.uregs[14], banked_r14[0]),
322 /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
323 COREREG(svc_regs[0], banked_r13[1]),
324 COREREG(svc_regs[1], banked_r14[1]),
325 COREREG64(svc_regs[2], banked_spsr[1]),
326 COREREG(abt_regs[0], banked_r13[2]),
327 COREREG(abt_regs[1], banked_r14[2]),
328 COREREG64(abt_regs[2], banked_spsr[2]),
329 COREREG(und_regs[0], banked_r13[3]),
330 COREREG(und_regs[1], banked_r14[3]),
331 COREREG64(und_regs[2], banked_spsr[3]),
332 COREREG(irq_regs[0], banked_r13[4]),
333 COREREG(irq_regs[1], banked_r14[4]),
334 COREREG64(irq_regs[2], banked_spsr[4]),
335 /* R8_fiq .. R14_fiq and SPSR_fiq */
336 COREREG(fiq_regs[0], fiq_regs[0]),
337 COREREG(fiq_regs[1], fiq_regs[1]),
338 COREREG(fiq_regs[2], fiq_regs[2]),
339 COREREG(fiq_regs[3], fiq_regs[3]),
340 COREREG(fiq_regs[4], fiq_regs[4]),
341 COREREG(fiq_regs[5], banked_r13[5]),
342 COREREG(fiq_regs[6], banked_r14[5]),
343 COREREG64(fiq_regs[7], banked_spsr[5]),
344 /* R15 */
345 COREREG(usr_regs.uregs[15], regs[15]),
346 /* VFP system registers */
347 VFPSYSREG(FPSID),
348 VFPSYSREG(MVFR1),
349 VFPSYSREG(MVFR0),
350 VFPSYSREG(FPEXC),
351 VFPSYSREG(FPINST),
352 VFPSYSREG(FPINST2),
353 };
354
355 int kvm_arch_put_registers(CPUState *cs, int level)
356 {
357 ARMCPU *cpu = ARM_CPU(cs);
358 CPUARMState *env = &cpu->env;
359 struct kvm_one_reg r;
360 int mode, bn;
361 int ret, i;
362 uint32_t cpsr, fpscr;
363
364 /* Make sure the banked regs are properly set */
365 mode = env->uncached_cpsr & CPSR_M;
366 bn = bank_number(mode);
367 if (mode == ARM_CPU_MODE_FIQ) {
368 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
369 } else {
370 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
371 }
372 env->banked_r13[bn] = env->regs[13];
373 env->banked_r14[bn] = env->regs[14];
374 env->banked_spsr[bn] = env->spsr;
375
376 /* Now we can safely copy stuff down to the kernel */
377 for (i = 0; i < ARRAY_SIZE(regs); i++) {
378 r.id = regs[i].id;
379 r.addr = (uintptr_t)(env) + regs[i].offset;
380 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
381 if (ret) {
382 return ret;
383 }
384 }
385
386 /* Special cases which aren't a single CPUARMState field */
387 cpsr = cpsr_read(env);
388 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
389 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
390 r.addr = (uintptr_t)(&cpsr);
391 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
392 if (ret) {
393 return ret;
394 }
395
396 /* VFP registers */
397 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
398 for (i = 0; i < 32; i++) {
399 r.addr = (uintptr_t)(&env->vfp.regs[i]);
400 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
401 if (ret) {
402 return ret;
403 }
404 r.id++;
405 }
406
407 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
408 KVM_REG_ARM_VFP_FPSCR;
409 fpscr = vfp_get_fpscr(env);
410 r.addr = (uintptr_t)&fpscr;
411 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
412 if (ret) {
413 return ret;
414 }
415
416 /* Note that we do not call write_cpustate_to_list()
417 * here, so we are only writing the tuple list back to
418 * KVM. This is safe because nothing can change the
419 * CPUARMState cp15 fields (in particular gdb accesses cannot)
420 * and so there are no changes to sync. In fact syncing would
421 * be wrong at this point: for a constant register where TCG and
422 * KVM disagree about its value, the preceding write_list_to_cpustate()
423 * would not have had any effect on the CPUARMState value (since the
424 * register is read-only), and a write_cpustate_to_list() here would
425 * then try to write the TCG value back into KVM -- this would either
426 * fail or incorrectly change the value the guest sees.
427 *
428 * If we ever want to allow the user to modify cp15 registers via
429 * the gdb stub, we would need to be more clever here (for instance
430 * tracking the set of registers kvm_arch_get_registers() successfully
431 * managed to update the CPUARMState with, and only allowing those
432 * to be written back up into the kernel).
433 */
434 if (!write_list_to_kvmstate(cpu)) {
435 return EINVAL;
436 }
437
438 return ret;
439 }
440
441 int kvm_arch_get_registers(CPUState *cs)
442 {
443 ARMCPU *cpu = ARM_CPU(cs);
444 CPUARMState *env = &cpu->env;
445 struct kvm_one_reg r;
446 int mode, bn;
447 int ret, i;
448 uint32_t cpsr, fpscr;
449
450 for (i = 0; i < ARRAY_SIZE(regs); i++) {
451 r.id = regs[i].id;
452 r.addr = (uintptr_t)(env) + regs[i].offset;
453 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
454 if (ret) {
455 return ret;
456 }
457 }
458
459 /* Special cases which aren't a single CPUARMState field */
460 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
461 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
462 r.addr = (uintptr_t)(&cpsr);
463 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
464 if (ret) {
465 return ret;
466 }
467 cpsr_write(env, cpsr, 0xffffffff);
468
469 /* Make sure the current mode regs are properly set */
470 mode = env->uncached_cpsr & CPSR_M;
471 bn = bank_number(mode);
472 if (mode == ARM_CPU_MODE_FIQ) {
473 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
474 } else {
475 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
476 }
477 env->regs[13] = env->banked_r13[bn];
478 env->regs[14] = env->banked_r14[bn];
479 env->spsr = env->banked_spsr[bn];
480
481 /* VFP registers */
482 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
483 for (i = 0; i < 32; i++) {
484 r.addr = (uintptr_t)(&env->vfp.regs[i]);
485 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
486 if (ret) {
487 return ret;
488 }
489 r.id++;
490 }
491
492 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
493 KVM_REG_ARM_VFP_FPSCR;
494 r.addr = (uintptr_t)&fpscr;
495 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
496 if (ret) {
497 return ret;
498 }
499 vfp_set_fpscr(env, fpscr);
500
501 if (!write_kvmstate_to_list(cpu)) {
502 return EINVAL;
503 }
504 /* Note that it's OK to have registers which aren't in CPUState,
505 * so we can ignore a failure return here.
506 */
507 write_list_to_cpustate(cpu);
508
509 return 0;
510 }
511
512 void kvm_arm_reset_vcpu(ARMCPU *cpu)
513 {
514 /* Re-init VCPU so that all registers are set to
515 * their respective reset values.
516 */
517 kvm_arm_vcpu_init(CPU(cpu));
518 write_kvmstate_to_list(cpu);
519 }