]> git.proxmox.com Git - mirror_qemu.git/blob - target-arm/kvm32.c
kvm: reset state from the CPU's reset method
[mirror_qemu.git] / target-arm / kvm32.c
1 /*
2 * ARM implementation of KVM hooks, 32 bit specific code.
3 *
4 * Copyright Christoffer Dall 2009-2010
5 *
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
8 *
9 */
10
11 #include <stdio.h>
12 #include <sys/types.h>
13 #include <sys/ioctl.h>
14 #include <sys/mman.h>
15
16 #include <linux/kvm.h>
17
18 #include "qemu-common.h"
19 #include "qemu/timer.h"
20 #include "sysemu/sysemu.h"
21 #include "sysemu/kvm.h"
22 #include "kvm_arm.h"
23 #include "cpu.h"
24 #include "internals.h"
25 #include "hw/arm/arm.h"
26
27 static inline void set_feature(uint64_t *features, int feature)
28 {
29 *features |= 1ULL << feature;
30 }
31
32 bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
33 {
34 /* Identify the feature bits corresponding to the host CPU, and
35 * fill out the ARMHostCPUClass fields accordingly. To do this
36 * we have to create a scratch VM, create a single CPU inside it,
37 * and then query that CPU for the relevant ID registers.
38 */
39 int i, ret, fdarray[3];
40 uint32_t midr, id_pfr0, id_isar0, mvfr1;
41 uint64_t features = 0;
42 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
43 * we know these will only support creating one kind of guest CPU,
44 * which is its preferred CPU type.
45 */
46 static const uint32_t cpus_to_try[] = {
47 QEMU_KVM_ARM_TARGET_CORTEX_A15,
48 QEMU_KVM_ARM_TARGET_NONE
49 };
50 struct kvm_vcpu_init init;
51 struct kvm_one_reg idregs[] = {
52 {
53 .id = KVM_REG_ARM | KVM_REG_SIZE_U32
54 | ENCODE_CP_REG(15, 0, 0, 0, 0, 0),
55 .addr = (uintptr_t)&midr,
56 },
57 {
58 .id = KVM_REG_ARM | KVM_REG_SIZE_U32
59 | ENCODE_CP_REG(15, 0, 0, 1, 0, 0),
60 .addr = (uintptr_t)&id_pfr0,
61 },
62 {
63 .id = KVM_REG_ARM | KVM_REG_SIZE_U32
64 | ENCODE_CP_REG(15, 0, 0, 2, 0, 0),
65 .addr = (uintptr_t)&id_isar0,
66 },
67 {
68 .id = KVM_REG_ARM | KVM_REG_SIZE_U32
69 | KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR1,
70 .addr = (uintptr_t)&mvfr1,
71 },
72 };
73
74 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
75 return false;
76 }
77
78 ahcc->target = init.target;
79
80 /* This is not strictly blessed by the device tree binding docs yet,
81 * but in practice the kernel does not care about this string so
82 * there is no point maintaining an KVM_ARM_TARGET_* -> string table.
83 */
84 ahcc->dtb_compatible = "arm,arm-v7";
85
86 for (i = 0; i < ARRAY_SIZE(idregs); i++) {
87 ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &idregs[i]);
88 if (ret) {
89 break;
90 }
91 }
92
93 kvm_arm_destroy_scratch_host_vcpu(fdarray);
94
95 if (ret) {
96 return false;
97 }
98
99 /* Now we've retrieved all the register information we can
100 * set the feature bits based on the ID register fields.
101 * We can assume any KVM supporting CPU is at least a v7
102 * with VFPv3, LPAE and the generic timers; this in turn implies
103 * most of the other feature bits, but a few must be tested.
104 */
105 set_feature(&features, ARM_FEATURE_V7);
106 set_feature(&features, ARM_FEATURE_VFP3);
107 set_feature(&features, ARM_FEATURE_LPAE);
108 set_feature(&features, ARM_FEATURE_GENERIC_TIMER);
109
110 switch (extract32(id_isar0, 24, 4)) {
111 case 1:
112 set_feature(&features, ARM_FEATURE_THUMB_DIV);
113 break;
114 case 2:
115 set_feature(&features, ARM_FEATURE_ARM_DIV);
116 set_feature(&features, ARM_FEATURE_THUMB_DIV);
117 break;
118 default:
119 break;
120 }
121
122 if (extract32(id_pfr0, 12, 4) == 1) {
123 set_feature(&features, ARM_FEATURE_THUMB2EE);
124 }
125 if (extract32(mvfr1, 20, 4) == 1) {
126 set_feature(&features, ARM_FEATURE_VFP_FP16);
127 }
128 if (extract32(mvfr1, 12, 4) == 1) {
129 set_feature(&features, ARM_FEATURE_NEON);
130 }
131 if (extract32(mvfr1, 28, 4) == 1) {
132 /* FMAC support implies VFPv4 */
133 set_feature(&features, ARM_FEATURE_VFP4);
134 }
135
136 ahcc->features = features;
137
138 return true;
139 }
140
141 static bool reg_syncs_via_tuple_list(uint64_t regidx)
142 {
143 /* Return true if the regidx is a register we should synchronize
144 * via the cpreg_tuples array (ie is not a core reg we sync by
145 * hand in kvm_arch_get/put_registers())
146 */
147 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
148 case KVM_REG_ARM_CORE:
149 case KVM_REG_ARM_VFP:
150 return false;
151 default:
152 return true;
153 }
154 }
155
156 static int compare_u64(const void *a, const void *b)
157 {
158 if (*(uint64_t *)a > *(uint64_t *)b) {
159 return 1;
160 }
161 if (*(uint64_t *)a < *(uint64_t *)b) {
162 return -1;
163 }
164 return 0;
165 }
166
167 int kvm_arch_init_vcpu(CPUState *cs)
168 {
169 struct kvm_vcpu_init init;
170 int i, ret, arraylen;
171 uint64_t v;
172 struct kvm_one_reg r;
173 struct kvm_reg_list rl;
174 struct kvm_reg_list *rlp;
175 ARMCPU *cpu = ARM_CPU(cs);
176
177 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) {
178 fprintf(stderr, "KVM is not supported for this guest CPU type\n");
179 return -EINVAL;
180 }
181
182 init.target = cpu->kvm_target;
183 memset(init.features, 0, sizeof(init.features));
184 if (cpu->start_powered_off) {
185 init.features[0] = 1 << KVM_ARM_VCPU_POWER_OFF;
186 }
187 ret = kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
188 if (ret) {
189 return ret;
190 }
191 /* Query the kernel to make sure it supports 32 VFP
192 * registers: QEMU's "cortex-a15" CPU is always a
193 * VFP-D32 core. The simplest way to do this is just
194 * to attempt to read register d31.
195 */
196 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
197 r.addr = (uintptr_t)(&v);
198 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
199 if (ret == -ENOENT) {
200 return -EINVAL;
201 }
202
203 /* Populate the cpreg list based on the kernel's idea
204 * of what registers exist (and throw away the TCG-created list).
205 */
206 rl.n = 0;
207 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
208 if (ret != -E2BIG) {
209 return ret;
210 }
211 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
212 rlp->n = rl.n;
213 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
214 if (ret) {
215 goto out;
216 }
217 /* Sort the list we get back from the kernel, since cpreg_tuples
218 * must be in strictly ascending order.
219 */
220 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
221
222 for (i = 0, arraylen = 0; i < rlp->n; i++) {
223 if (!reg_syncs_via_tuple_list(rlp->reg[i])) {
224 continue;
225 }
226 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
227 case KVM_REG_SIZE_U32:
228 case KVM_REG_SIZE_U64:
229 break;
230 default:
231 fprintf(stderr, "Can't handle size of register in kernel list\n");
232 ret = -EINVAL;
233 goto out;
234 }
235
236 arraylen++;
237 }
238
239 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
240 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
241 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
242 arraylen);
243 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
244 arraylen);
245 cpu->cpreg_array_len = arraylen;
246 cpu->cpreg_vmstate_array_len = arraylen;
247
248 for (i = 0, arraylen = 0; i < rlp->n; i++) {
249 uint64_t regidx = rlp->reg[i];
250 if (!reg_syncs_via_tuple_list(regidx)) {
251 continue;
252 }
253 cpu->cpreg_indexes[arraylen] = regidx;
254 arraylen++;
255 }
256 assert(cpu->cpreg_array_len == arraylen);
257
258 if (!write_kvmstate_to_list(cpu)) {
259 /* Shouldn't happen unless kernel is inconsistent about
260 * what registers exist.
261 */
262 fprintf(stderr, "Initial read of kernel register state failed\n");
263 ret = -EINVAL;
264 goto out;
265 }
266
267 /* Save a copy of the initial register values so that we can
268 * feed it back to the kernel on VCPU reset.
269 */
270 cpu->cpreg_reset_values = g_memdup(cpu->cpreg_values,
271 cpu->cpreg_array_len *
272 sizeof(cpu->cpreg_values[0]));
273
274 out:
275 g_free(rlp);
276 return ret;
277 }
278
279 typedef struct Reg {
280 uint64_t id;
281 int offset;
282 } Reg;
283
284 #define COREREG(KERNELNAME, QEMUFIELD) \
285 { \
286 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
287 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
288 offsetof(CPUARMState, QEMUFIELD) \
289 }
290
291 #define VFPSYSREG(R) \
292 { \
293 KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
294 KVM_REG_ARM_VFP_##R, \
295 offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
296 }
297
298 /* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */
299 #define COREREG64(KERNELNAME, QEMUFIELD) \
300 { \
301 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
302 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
303 offsetoflow32(CPUARMState, QEMUFIELD) \
304 }
305
306 static const Reg regs[] = {
307 /* R0_usr .. R14_usr */
308 COREREG(usr_regs.uregs[0], regs[0]),
309 COREREG(usr_regs.uregs[1], regs[1]),
310 COREREG(usr_regs.uregs[2], regs[2]),
311 COREREG(usr_regs.uregs[3], regs[3]),
312 COREREG(usr_regs.uregs[4], regs[4]),
313 COREREG(usr_regs.uregs[5], regs[5]),
314 COREREG(usr_regs.uregs[6], regs[6]),
315 COREREG(usr_regs.uregs[7], regs[7]),
316 COREREG(usr_regs.uregs[8], usr_regs[0]),
317 COREREG(usr_regs.uregs[9], usr_regs[1]),
318 COREREG(usr_regs.uregs[10], usr_regs[2]),
319 COREREG(usr_regs.uregs[11], usr_regs[3]),
320 COREREG(usr_regs.uregs[12], usr_regs[4]),
321 COREREG(usr_regs.uregs[13], banked_r13[0]),
322 COREREG(usr_regs.uregs[14], banked_r14[0]),
323 /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
324 COREREG(svc_regs[0], banked_r13[1]),
325 COREREG(svc_regs[1], banked_r14[1]),
326 COREREG64(svc_regs[2], banked_spsr[1]),
327 COREREG(abt_regs[0], banked_r13[2]),
328 COREREG(abt_regs[1], banked_r14[2]),
329 COREREG64(abt_regs[2], banked_spsr[2]),
330 COREREG(und_regs[0], banked_r13[3]),
331 COREREG(und_regs[1], banked_r14[3]),
332 COREREG64(und_regs[2], banked_spsr[3]),
333 COREREG(irq_regs[0], banked_r13[4]),
334 COREREG(irq_regs[1], banked_r14[4]),
335 COREREG64(irq_regs[2], banked_spsr[4]),
336 /* R8_fiq .. R14_fiq and SPSR_fiq */
337 COREREG(fiq_regs[0], fiq_regs[0]),
338 COREREG(fiq_regs[1], fiq_regs[1]),
339 COREREG(fiq_regs[2], fiq_regs[2]),
340 COREREG(fiq_regs[3], fiq_regs[3]),
341 COREREG(fiq_regs[4], fiq_regs[4]),
342 COREREG(fiq_regs[5], banked_r13[5]),
343 COREREG(fiq_regs[6], banked_r14[5]),
344 COREREG64(fiq_regs[7], banked_spsr[5]),
345 /* R15 */
346 COREREG(usr_regs.uregs[15], regs[15]),
347 /* VFP system registers */
348 VFPSYSREG(FPSID),
349 VFPSYSREG(MVFR1),
350 VFPSYSREG(MVFR0),
351 VFPSYSREG(FPEXC),
352 VFPSYSREG(FPINST),
353 VFPSYSREG(FPINST2),
354 };
355
356 int kvm_arch_put_registers(CPUState *cs, int level)
357 {
358 ARMCPU *cpu = ARM_CPU(cs);
359 CPUARMState *env = &cpu->env;
360 struct kvm_one_reg r;
361 int mode, bn;
362 int ret, i;
363 uint32_t cpsr, fpscr;
364
365 /* Make sure the banked regs are properly set */
366 mode = env->uncached_cpsr & CPSR_M;
367 bn = bank_number(mode);
368 if (mode == ARM_CPU_MODE_FIQ) {
369 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
370 } else {
371 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
372 }
373 env->banked_r13[bn] = env->regs[13];
374 env->banked_r14[bn] = env->regs[14];
375 env->banked_spsr[bn] = env->spsr;
376
377 /* Now we can safely copy stuff down to the kernel */
378 for (i = 0; i < ARRAY_SIZE(regs); i++) {
379 r.id = regs[i].id;
380 r.addr = (uintptr_t)(env) + regs[i].offset;
381 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
382 if (ret) {
383 return ret;
384 }
385 }
386
387 /* Special cases which aren't a single CPUARMState field */
388 cpsr = cpsr_read(env);
389 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
390 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
391 r.addr = (uintptr_t)(&cpsr);
392 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
393 if (ret) {
394 return ret;
395 }
396
397 /* VFP registers */
398 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
399 for (i = 0; i < 32; i++) {
400 r.addr = (uintptr_t)(&env->vfp.regs[i]);
401 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
402 if (ret) {
403 return ret;
404 }
405 r.id++;
406 }
407
408 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
409 KVM_REG_ARM_VFP_FPSCR;
410 fpscr = vfp_get_fpscr(env);
411 r.addr = (uintptr_t)&fpscr;
412 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
413 if (ret) {
414 return ret;
415 }
416
417 /* Note that we do not call write_cpustate_to_list()
418 * here, so we are only writing the tuple list back to
419 * KVM. This is safe because nothing can change the
420 * CPUARMState cp15 fields (in particular gdb accesses cannot)
421 * and so there are no changes to sync. In fact syncing would
422 * be wrong at this point: for a constant register where TCG and
423 * KVM disagree about its value, the preceding write_list_to_cpustate()
424 * would not have had any effect on the CPUARMState value (since the
425 * register is read-only), and a write_cpustate_to_list() here would
426 * then try to write the TCG value back into KVM -- this would either
427 * fail or incorrectly change the value the guest sees.
428 *
429 * If we ever want to allow the user to modify cp15 registers via
430 * the gdb stub, we would need to be more clever here (for instance
431 * tracking the set of registers kvm_arch_get_registers() successfully
432 * managed to update the CPUARMState with, and only allowing those
433 * to be written back up into the kernel).
434 */
435 if (!write_list_to_kvmstate(cpu)) {
436 return EINVAL;
437 }
438
439 return ret;
440 }
441
442 int kvm_arch_get_registers(CPUState *cs)
443 {
444 ARMCPU *cpu = ARM_CPU(cs);
445 CPUARMState *env = &cpu->env;
446 struct kvm_one_reg r;
447 int mode, bn;
448 int ret, i;
449 uint32_t cpsr, fpscr;
450
451 for (i = 0; i < ARRAY_SIZE(regs); i++) {
452 r.id = regs[i].id;
453 r.addr = (uintptr_t)(env) + regs[i].offset;
454 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
455 if (ret) {
456 return ret;
457 }
458 }
459
460 /* Special cases which aren't a single CPUARMState field */
461 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
462 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
463 r.addr = (uintptr_t)(&cpsr);
464 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
465 if (ret) {
466 return ret;
467 }
468 cpsr_write(env, cpsr, 0xffffffff);
469
470 /* Make sure the current mode regs are properly set */
471 mode = env->uncached_cpsr & CPSR_M;
472 bn = bank_number(mode);
473 if (mode == ARM_CPU_MODE_FIQ) {
474 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
475 } else {
476 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
477 }
478 env->regs[13] = env->banked_r13[bn];
479 env->regs[14] = env->banked_r14[bn];
480 env->spsr = env->banked_spsr[bn];
481
482 /* VFP registers */
483 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
484 for (i = 0; i < 32; i++) {
485 r.addr = (uintptr_t)(&env->vfp.regs[i]);
486 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
487 if (ret) {
488 return ret;
489 }
490 r.id++;
491 }
492
493 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
494 KVM_REG_ARM_VFP_FPSCR;
495 r.addr = (uintptr_t)&fpscr;
496 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
497 if (ret) {
498 return ret;
499 }
500 vfp_set_fpscr(env, fpscr);
501
502 if (!write_kvmstate_to_list(cpu)) {
503 return EINVAL;
504 }
505 /* Note that it's OK to have registers which aren't in CPUState,
506 * so we can ignore a failure return here.
507 */
508 write_list_to_cpustate(cpu);
509
510 return 0;
511 }
512
513 void kvm_arm_reset_vcpu(ARMCPU *cpu)
514 {
515 /* Feed the kernel back its initial register state */
516 memmove(cpu->cpreg_values, cpu->cpreg_reset_values,
517 cpu->cpreg_array_len * sizeof(cpu->cpreg_values[0]));
518
519 if (!write_list_to_kvmstate(cpu)) {
520 abort();
521 }
522 }