]> git.proxmox.com Git - mirror_qemu.git/blob - target-arm/kvm64.c
nbd: fix max_discard/max_transfer_length
[mirror_qemu.git] / target-arm / kvm64.c
1 /*
2 * ARM implementation of KVM hooks, 64 bit specific code
3 *
4 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
5 *
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
8 *
9 */
10
11 #include <stdio.h>
12 #include <sys/types.h>
13 #include <sys/ioctl.h>
14 #include <sys/mman.h>
15
16 #include <linux/kvm.h>
17
18 #include "qemu-common.h"
19 #include "qemu/timer.h"
20 #include "sysemu/sysemu.h"
21 #include "sysemu/kvm.h"
22 #include "kvm_arm.h"
23 #include "cpu.h"
24 #include "internals.h"
25 #include "hw/arm/arm.h"
26
27 static inline void set_feature(uint64_t *features, int feature)
28 {
29 *features |= 1ULL << feature;
30 }
31
32 bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
33 {
34 /* Identify the feature bits corresponding to the host CPU, and
35 * fill out the ARMHostCPUClass fields accordingly. To do this
36 * we have to create a scratch VM, create a single CPU inside it,
37 * and then query that CPU for the relevant ID registers.
38 * For AArch64 we currently don't care about ID registers at
39 * all; we just want to know the CPU type.
40 */
41 int fdarray[3];
42 uint64_t features = 0;
43 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
44 * we know these will only support creating one kind of guest CPU,
45 * which is its preferred CPU type. Fortunately these old kernels
46 * support only a very limited number of CPUs.
47 */
48 static const uint32_t cpus_to_try[] = {
49 KVM_ARM_TARGET_AEM_V8,
50 KVM_ARM_TARGET_FOUNDATION_V8,
51 KVM_ARM_TARGET_CORTEX_A57,
52 QEMU_KVM_ARM_TARGET_NONE
53 };
54 struct kvm_vcpu_init init;
55
56 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
57 return false;
58 }
59
60 ahcc->target = init.target;
61 ahcc->dtb_compatible = "arm,arm-v8";
62
63 kvm_arm_destroy_scratch_host_vcpu(fdarray);
64
65 /* We can assume any KVM supporting CPU is at least a v8
66 * with VFPv4+Neon; this in turn implies most of the other
67 * feature bits.
68 */
69 set_feature(&features, ARM_FEATURE_V8);
70 set_feature(&features, ARM_FEATURE_VFP4);
71 set_feature(&features, ARM_FEATURE_NEON);
72 set_feature(&features, ARM_FEATURE_AARCH64);
73
74 ahcc->features = features;
75
76 return true;
77 }
78
79 int kvm_arch_init_vcpu(CPUState *cs)
80 {
81 int ret;
82 ARMCPU *cpu = ARM_CPU(cs);
83
84 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
85 !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
86 fprintf(stderr, "KVM is not supported for this guest CPU type\n");
87 return -EINVAL;
88 }
89
90 /* Determine init features for this CPU */
91 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
92 if (cpu->start_powered_off) {
93 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
94 }
95 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
96 cpu->psci_version = 2;
97 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
98 }
99
100 /* Do KVM_ARM_VCPU_INIT ioctl */
101 ret = kvm_arm_vcpu_init(cs);
102 if (ret) {
103 return ret;
104 }
105
106 return kvm_arm_init_cpreg_list(cpu);
107 }
108
109 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
110 {
111 /* Return true if the regidx is a register we should synchronize
112 * via the cpreg_tuples array (ie is not a core reg we sync by
113 * hand in kvm_arch_get/put_registers())
114 */
115 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
116 case KVM_REG_ARM_CORE:
117 return false;
118 default:
119 return true;
120 }
121 }
122
123 #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
124 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
125
126 int kvm_arch_put_registers(CPUState *cs, int level)
127 {
128 struct kvm_one_reg reg;
129 uint64_t val;
130 int i;
131 int ret;
132
133 ARMCPU *cpu = ARM_CPU(cs);
134 CPUARMState *env = &cpu->env;
135
136 for (i = 0; i < 31; i++) {
137 reg.id = AARCH64_CORE_REG(regs.regs[i]);
138 reg.addr = (uintptr_t) &env->xregs[i];
139 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
140 if (ret) {
141 return ret;
142 }
143 }
144
145 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
146 * QEMU side we keep the current SP in xregs[31] as well.
147 */
148 aarch64_save_sp(env, 1);
149
150 reg.id = AARCH64_CORE_REG(regs.sp);
151 reg.addr = (uintptr_t) &env->sp_el[0];
152 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
153 if (ret) {
154 return ret;
155 }
156
157 reg.id = AARCH64_CORE_REG(sp_el1);
158 reg.addr = (uintptr_t) &env->sp_el[1];
159 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
160 if (ret) {
161 return ret;
162 }
163
164 /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
165 val = pstate_read(env);
166 reg.id = AARCH64_CORE_REG(regs.pstate);
167 reg.addr = (uintptr_t) &val;
168 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
169 if (ret) {
170 return ret;
171 }
172
173 reg.id = AARCH64_CORE_REG(regs.pc);
174 reg.addr = (uintptr_t) &env->pc;
175 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
176 if (ret) {
177 return ret;
178 }
179
180 reg.id = AARCH64_CORE_REG(elr_el1);
181 reg.addr = (uintptr_t) &env->elr_el[1];
182 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
183 if (ret) {
184 return ret;
185 }
186
187 for (i = 0; i < KVM_NR_SPSR; i++) {
188 reg.id = AARCH64_CORE_REG(spsr[i]);
189 reg.addr = (uintptr_t) &env->banked_spsr[i - 1];
190 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
191 if (ret) {
192 return ret;
193 }
194 }
195
196 if (!write_list_to_kvmstate(cpu)) {
197 return EINVAL;
198 }
199
200 /* TODO:
201 * FP state
202 */
203 return ret;
204 }
205
206 int kvm_arch_get_registers(CPUState *cs)
207 {
208 struct kvm_one_reg reg;
209 uint64_t val;
210 int i;
211 int ret;
212
213 ARMCPU *cpu = ARM_CPU(cs);
214 CPUARMState *env = &cpu->env;
215
216 for (i = 0; i < 31; i++) {
217 reg.id = AARCH64_CORE_REG(regs.regs[i]);
218 reg.addr = (uintptr_t) &env->xregs[i];
219 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
220 if (ret) {
221 return ret;
222 }
223 }
224
225 reg.id = AARCH64_CORE_REG(regs.sp);
226 reg.addr = (uintptr_t) &env->sp_el[0];
227 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
228 if (ret) {
229 return ret;
230 }
231
232 reg.id = AARCH64_CORE_REG(sp_el1);
233 reg.addr = (uintptr_t) &env->sp_el[1];
234 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
235 if (ret) {
236 return ret;
237 }
238
239 reg.id = AARCH64_CORE_REG(regs.pstate);
240 reg.addr = (uintptr_t) &val;
241 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
242 if (ret) {
243 return ret;
244 }
245 pstate_write(env, val);
246
247 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
248 * QEMU side we keep the current SP in xregs[31] as well.
249 */
250 aarch64_restore_sp(env, 1);
251
252 reg.id = AARCH64_CORE_REG(regs.pc);
253 reg.addr = (uintptr_t) &env->pc;
254 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
255 if (ret) {
256 return ret;
257 }
258
259 reg.id = AARCH64_CORE_REG(elr_el1);
260 reg.addr = (uintptr_t) &env->elr_el[1];
261 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
262 if (ret) {
263 return ret;
264 }
265
266 for (i = 0; i < KVM_NR_SPSR; i++) {
267 reg.id = AARCH64_CORE_REG(spsr[i]);
268 reg.addr = (uintptr_t) &env->banked_spsr[i - 1];
269 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
270 if (ret) {
271 return ret;
272 }
273 }
274
275 if (!write_kvmstate_to_list(cpu)) {
276 return EINVAL;
277 }
278 /* Note that it's OK to have registers which aren't in CPUState,
279 * so we can ignore a failure return here.
280 */
281 write_list_to_cpustate(cpu);
282
283 /* TODO: other registers */
284 return ret;
285 }