]> git.proxmox.com Git - mirror_qemu.git/blob - target-arm/op.c
armv5te support (Paul Brook)
[mirror_qemu.git] / target-arm / op.c
1 /*
2 * ARM micro operations
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "exec.h"
21
22 #define REGNAME r0
23 #define REG (env->regs[0])
24 #include "op_template.h"
25
26 #define REGNAME r1
27 #define REG (env->regs[1])
28 #include "op_template.h"
29
30 #define REGNAME r2
31 #define REG (env->regs[2])
32 #include "op_template.h"
33
34 #define REGNAME r3
35 #define REG (env->regs[3])
36 #include "op_template.h"
37
38 #define REGNAME r4
39 #define REG (env->regs[4])
40 #include "op_template.h"
41
42 #define REGNAME r5
43 #define REG (env->regs[5])
44 #include "op_template.h"
45
46 #define REGNAME r6
47 #define REG (env->regs[6])
48 #include "op_template.h"
49
50 #define REGNAME r7
51 #define REG (env->regs[7])
52 #include "op_template.h"
53
54 #define REGNAME r8
55 #define REG (env->regs[8])
56 #include "op_template.h"
57
58 #define REGNAME r9
59 #define REG (env->regs[9])
60 #include "op_template.h"
61
62 #define REGNAME r10
63 #define REG (env->regs[10])
64 #include "op_template.h"
65
66 #define REGNAME r11
67 #define REG (env->regs[11])
68 #include "op_template.h"
69
70 #define REGNAME r12
71 #define REG (env->regs[12])
72 #include "op_template.h"
73
74 #define REGNAME r13
75 #define REG (env->regs[13])
76 #include "op_template.h"
77
78 #define REGNAME r14
79 #define REG (env->regs[14])
80 #include "op_template.h"
81
82 #define REGNAME r15
83 #define REG (env->regs[15])
84 #define SET_REG(x) REG = x & ~(uint32_t)1
85 #include "op_template.h"
86
87 void OPPROTO op_bx_T0(void)
88 {
89 env->regs[15] = T0 & ~(uint32_t)1;
90 env->thumb = (T0 & 1) != 0;
91 }
92
93 void OPPROTO op_movl_T0_0(void)
94 {
95 T0 = 0;
96 }
97
98 void OPPROTO op_movl_T0_im(void)
99 {
100 T0 = PARAM1;
101 }
102
103 void OPPROTO op_movl_T1_im(void)
104 {
105 T1 = PARAM1;
106 }
107
108 void OPPROTO op_movl_T2_im(void)
109 {
110 T2 = PARAM1;
111 }
112
113 void OPPROTO op_addl_T1_im(void)
114 {
115 T1 += PARAM1;
116 }
117
118 void OPPROTO op_addl_T1_T2(void)
119 {
120 T1 += T2;
121 }
122
123 void OPPROTO op_subl_T1_T2(void)
124 {
125 T1 -= T2;
126 }
127
128 void OPPROTO op_addl_T0_T1(void)
129 {
130 T0 += T1;
131 }
132
133 void OPPROTO op_addl_T0_T1_cc(void)
134 {
135 unsigned int src1;
136 src1 = T0;
137 T0 += T1;
138 env->NZF = T0;
139 env->CF = T0 < src1;
140 env->VF = (src1 ^ T1 ^ -1) & (src1 ^ T0);
141 }
142
143 void OPPROTO op_adcl_T0_T1(void)
144 {
145 T0 += T1 + env->CF;
146 }
147
148 void OPPROTO op_adcl_T0_T1_cc(void)
149 {
150 unsigned int src1;
151 src1 = T0;
152 if (!env->CF) {
153 T0 += T1;
154 env->CF = T0 < src1;
155 } else {
156 T0 += T1 + 1;
157 env->CF = T0 <= src1;
158 }
159 env->VF = (src1 ^ T1 ^ -1) & (src1 ^ T0);
160 env->NZF = T0;
161 FORCE_RET();
162 }
163
164 #define OPSUB(sub, sbc, res, T0, T1) \
165 \
166 void OPPROTO op_ ## sub ## l_T0_T1(void) \
167 { \
168 res = T0 - T1; \
169 } \
170 \
171 void OPPROTO op_ ## sub ## l_T0_T1_cc(void) \
172 { \
173 unsigned int src1; \
174 src1 = T0; \
175 T0 -= T1; \
176 env->NZF = T0; \
177 env->CF = src1 >= T1; \
178 env->VF = (src1 ^ T1) & (src1 ^ T0); \
179 res = T0; \
180 } \
181 \
182 void OPPROTO op_ ## sbc ## l_T0_T1(void) \
183 { \
184 res = T0 - T1 + env->CF - 1; \
185 } \
186 \
187 void OPPROTO op_ ## sbc ## l_T0_T1_cc(void) \
188 { \
189 unsigned int src1; \
190 src1 = T0; \
191 if (!env->CF) { \
192 T0 = T0 - T1 - 1; \
193 env->CF = src1 >= T1; \
194 } else { \
195 T0 = T0 - T1; \
196 env->CF = src1 > T1; \
197 } \
198 env->VF = (src1 ^ T1) & (src1 ^ T0); \
199 env->NZF = T0; \
200 res = T0; \
201 FORCE_RET(); \
202 }
203
204 OPSUB(sub, sbc, T0, T0, T1)
205
206 OPSUB(rsb, rsc, T0, T1, T0)
207
208 void OPPROTO op_andl_T0_T1(void)
209 {
210 T0 &= T1;
211 }
212
213 void OPPROTO op_xorl_T0_T1(void)
214 {
215 T0 ^= T1;
216 }
217
218 void OPPROTO op_orl_T0_T1(void)
219 {
220 T0 |= T1;
221 }
222
223 void OPPROTO op_bicl_T0_T1(void)
224 {
225 T0 &= ~T1;
226 }
227
228 void OPPROTO op_notl_T1(void)
229 {
230 T1 = ~T1;
231 }
232
233 void OPPROTO op_logic_T0_cc(void)
234 {
235 env->NZF = T0;
236 }
237
238 void OPPROTO op_logic_T1_cc(void)
239 {
240 env->NZF = T1;
241 }
242
243 #define EIP (env->regs[15])
244
245 void OPPROTO op_test_eq(void)
246 {
247 if (env->NZF == 0)
248 JUMP_TB(op_test_eq, PARAM1, 0, PARAM2);
249 FORCE_RET();
250 }
251
252 void OPPROTO op_test_ne(void)
253 {
254 if (env->NZF != 0)
255 JUMP_TB(op_test_ne, PARAM1, 0, PARAM2);
256 FORCE_RET();
257 }
258
259 void OPPROTO op_test_cs(void)
260 {
261 if (env->CF != 0)
262 JUMP_TB(op_test_cs, PARAM1, 0, PARAM2);
263 FORCE_RET();
264 }
265
266 void OPPROTO op_test_cc(void)
267 {
268 if (env->CF == 0)
269 JUMP_TB(op_test_cc, PARAM1, 0, PARAM2);
270 FORCE_RET();
271 }
272
273 void OPPROTO op_test_mi(void)
274 {
275 if ((env->NZF & 0x80000000) != 0)
276 JUMP_TB(op_test_mi, PARAM1, 0, PARAM2);
277 FORCE_RET();
278 }
279
280 void OPPROTO op_test_pl(void)
281 {
282 if ((env->NZF & 0x80000000) == 0)
283 JUMP_TB(op_test_pl, PARAM1, 0, PARAM2);
284 FORCE_RET();
285 }
286
287 void OPPROTO op_test_vs(void)
288 {
289 if ((env->VF & 0x80000000) != 0)
290 JUMP_TB(op_test_vs, PARAM1, 0, PARAM2);
291 FORCE_RET();
292 }
293
294 void OPPROTO op_test_vc(void)
295 {
296 if ((env->VF & 0x80000000) == 0)
297 JUMP_TB(op_test_vc, PARAM1, 0, PARAM2);
298 FORCE_RET();
299 }
300
301 void OPPROTO op_test_hi(void)
302 {
303 if (env->CF != 0 && env->NZF != 0)
304 JUMP_TB(op_test_hi, PARAM1, 0, PARAM2);
305 FORCE_RET();
306 }
307
308 void OPPROTO op_test_ls(void)
309 {
310 if (env->CF == 0 || env->NZF == 0)
311 JUMP_TB(op_test_ls, PARAM1, 0, PARAM2);
312 FORCE_RET();
313 }
314
315 void OPPROTO op_test_ge(void)
316 {
317 if (((env->VF ^ env->NZF) & 0x80000000) == 0)
318 JUMP_TB(op_test_ge, PARAM1, 0, PARAM2);
319 FORCE_RET();
320 }
321
322 void OPPROTO op_test_lt(void)
323 {
324 if (((env->VF ^ env->NZF) & 0x80000000) != 0)
325 JUMP_TB(op_test_lt, PARAM1, 0, PARAM2);
326 FORCE_RET();
327 }
328
329 void OPPROTO op_test_gt(void)
330 {
331 if (env->NZF != 0 && ((env->VF ^ env->NZF) & 0x80000000) == 0)
332 JUMP_TB(op_test_gt, PARAM1, 0, PARAM2);
333 FORCE_RET();
334 }
335
336 void OPPROTO op_test_le(void)
337 {
338 if (env->NZF == 0 || ((env->VF ^ env->NZF) & 0x80000000) != 0)
339 JUMP_TB(op_test_le, PARAM1, 0, PARAM2);
340 FORCE_RET();
341 }
342
343 void OPPROTO op_jmp(void)
344 {
345 JUMP_TB(op_jmp, PARAM1, 1, PARAM2);
346 }
347
348 void OPPROTO op_exit_tb(void)
349 {
350 EXIT_TB();
351 }
352
353 void OPPROTO op_movl_T0_psr(void)
354 {
355 T0 = compute_cpsr();
356 }
357
358 /* NOTE: N = 1 and Z = 1 cannot be stored currently */
359 void OPPROTO op_movl_psr_T0(void)
360 {
361 unsigned int psr;
362 psr = T0;
363 env->CF = (psr >> 29) & 1;
364 env->NZF = (psr & 0xc0000000) ^ 0x40000000;
365 env->VF = (psr << 3) & 0x80000000;
366 /* for user mode we do not update other state info */
367 }
368
369 void OPPROTO op_mul_T0_T1(void)
370 {
371 T0 = T0 * T1;
372 }
373
374 /* 64 bit unsigned mul */
375 void OPPROTO op_mull_T0_T1(void)
376 {
377 uint64_t res;
378 res = (uint64_t)T0 * (uint64_t)T1;
379 T1 = res >> 32;
380 T0 = res;
381 }
382
383 /* 64 bit signed mul */
384 void OPPROTO op_imull_T0_T1(void)
385 {
386 uint64_t res;
387 res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
388 T1 = res >> 32;
389 T0 = res;
390 }
391
392 /* 48 bit signed mul, top 32 bits */
393 void OPPROTO op_imulw_T0_T1(void)
394 {
395 uint64_t res;
396 res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
397 T0 = res >> 16;
398 }
399
400 void OPPROTO op_addq_T0_T1(void)
401 {
402 uint64_t res;
403 res = ((uint64_t)T1 << 32) | T0;
404 res += ((uint64_t)(env->regs[PARAM2]) << 32) | (env->regs[PARAM1]);
405 T1 = res >> 32;
406 T0 = res;
407 }
408
409 void OPPROTO op_addq_lo_T0_T1(void)
410 {
411 uint64_t res;
412 res = ((uint64_t)T1 << 32) | T0;
413 res += (uint64_t)(env->regs[PARAM1]);
414 T1 = res >> 32;
415 T0 = res;
416 }
417
418 void OPPROTO op_logicq_cc(void)
419 {
420 env->NZF = (T1 & 0x80000000) | ((T0 | T1) != 0);
421 }
422
423 /* memory access */
424
425 void OPPROTO op_ldub_T0_T1(void)
426 {
427 T0 = ldub((void *)T1);
428 }
429
430 void OPPROTO op_ldsb_T0_T1(void)
431 {
432 T0 = ldsb((void *)T1);
433 }
434
435 void OPPROTO op_lduw_T0_T1(void)
436 {
437 T0 = lduw((void *)T1);
438 }
439
440 void OPPROTO op_ldsw_T0_T1(void)
441 {
442 T0 = ldsw((void *)T1);
443 }
444
445 void OPPROTO op_ldl_T0_T1(void)
446 {
447 T0 = ldl((void *)T1);
448 }
449
450 void OPPROTO op_stb_T0_T1(void)
451 {
452 stb((void *)T1, T0);
453 }
454
455 void OPPROTO op_stw_T0_T1(void)
456 {
457 stw((void *)T1, T0);
458 }
459
460 void OPPROTO op_stl_T0_T1(void)
461 {
462 stl((void *)T1, T0);
463 }
464
465 void OPPROTO op_swpb_T0_T1(void)
466 {
467 int tmp;
468
469 cpu_lock();
470 tmp = ldub((void *)T1);
471 stb((void *)T1, T0);
472 T0 = tmp;
473 cpu_unlock();
474 }
475
476 void OPPROTO op_swpl_T0_T1(void)
477 {
478 int tmp;
479
480 cpu_lock();
481 tmp = ldl((void *)T1);
482 stl((void *)T1, T0);
483 T0 = tmp;
484 cpu_unlock();
485 }
486
487 /* shifts */
488
489 /* T1 based */
490
491 void OPPROTO op_shll_T1_im(void)
492 {
493 T1 = T1 << PARAM1;
494 }
495
496 void OPPROTO op_shrl_T1_im(void)
497 {
498 T1 = (uint32_t)T1 >> PARAM1;
499 }
500
501 void OPPROTO op_shrl_T1_0(void)
502 {
503 T1 = 0;
504 }
505
506 void OPPROTO op_sarl_T1_im(void)
507 {
508 T1 = (int32_t)T1 >> PARAM1;
509 }
510
511 void OPPROTO op_sarl_T1_0(void)
512 {
513 T1 = (int32_t)T1 >> 31;
514 }
515
516 void OPPROTO op_rorl_T1_im(void)
517 {
518 int shift;
519 shift = PARAM1;
520 T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
521 }
522
523 void OPPROTO op_rrxl_T1(void)
524 {
525 T1 = ((uint32_t)T1 >> 1) | ((uint32_t)env->CF << 31);
526 }
527
528 /* T1 based, set C flag */
529 void OPPROTO op_shll_T1_im_cc(void)
530 {
531 env->CF = (T1 >> (32 - PARAM1)) & 1;
532 T1 = T1 << PARAM1;
533 }
534
535 void OPPROTO op_shrl_T1_im_cc(void)
536 {
537 env->CF = (T1 >> (PARAM1 - 1)) & 1;
538 T1 = (uint32_t)T1 >> PARAM1;
539 }
540
541 void OPPROTO op_shrl_T1_0_cc(void)
542 {
543 env->CF = (T1 >> 31) & 1;
544 T1 = 0;
545 }
546
547 void OPPROTO op_sarl_T1_im_cc(void)
548 {
549 env->CF = (T1 >> (PARAM1 - 1)) & 1;
550 T1 = (int32_t)T1 >> PARAM1;
551 }
552
553 void OPPROTO op_sarl_T1_0_cc(void)
554 {
555 env->CF = (T1 >> 31) & 1;
556 T1 = (int32_t)T1 >> 31;
557 }
558
559 void OPPROTO op_rorl_T1_im_cc(void)
560 {
561 int shift;
562 shift = PARAM1;
563 env->CF = (T1 >> (shift - 1)) & 1;
564 T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
565 }
566
567 void OPPROTO op_rrxl_T1_cc(void)
568 {
569 uint32_t c;
570 c = T1 & 1;
571 T1 = ((uint32_t)T1 >> 1) | ((uint32_t)env->CF << 31);
572 env->CF = c;
573 }
574
575 /* T2 based */
576 void OPPROTO op_shll_T2_im(void)
577 {
578 T2 = T2 << PARAM1;
579 }
580
581 void OPPROTO op_shrl_T2_im(void)
582 {
583 T2 = (uint32_t)T2 >> PARAM1;
584 }
585
586 void OPPROTO op_shrl_T2_0(void)
587 {
588 T2 = 0;
589 }
590
591 void OPPROTO op_sarl_T2_im(void)
592 {
593 T2 = (int32_t)T2 >> PARAM1;
594 }
595
596 void OPPROTO op_sarl_T2_0(void)
597 {
598 T2 = (int32_t)T2 >> 31;
599 }
600
601 void OPPROTO op_rorl_T2_im(void)
602 {
603 int shift;
604 shift = PARAM1;
605 T2 = ((uint32_t)T2 >> shift) | (T2 << (32 - shift));
606 }
607
608 void OPPROTO op_rrxl_T2(void)
609 {
610 T2 = ((uint32_t)T2 >> 1) | ((uint32_t)env->CF << 31);
611 }
612
613 /* T1 based, use T0 as shift count */
614
615 void OPPROTO op_shll_T1_T0(void)
616 {
617 int shift;
618 shift = T0 & 0xff;
619 if (shift >= 32)
620 T1 = 0;
621 else
622 T1 = T1 << shift;
623 FORCE_RET();
624 }
625
626 void OPPROTO op_shrl_T1_T0(void)
627 {
628 int shift;
629 shift = T0 & 0xff;
630 if (shift >= 32)
631 T1 = 0;
632 else
633 T1 = (uint32_t)T1 >> shift;
634 FORCE_RET();
635 }
636
637 void OPPROTO op_sarl_T1_T0(void)
638 {
639 int shift;
640 shift = T0 & 0xff;
641 if (shift >= 32)
642 shift = 31;
643 T1 = (int32_t)T1 >> shift;
644 }
645
646 void OPPROTO op_rorl_T1_T0(void)
647 {
648 int shift;
649 shift = T0 & 0x1f;
650 if (shift) {
651 T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
652 }
653 FORCE_RET();
654 }
655
656 /* T1 based, use T0 as shift count and compute CF */
657
658 void OPPROTO op_shll_T1_T0_cc(void)
659 {
660 int shift;
661 shift = T0 & 0xff;
662 if (shift >= 32) {
663 if (shift == 32)
664 env->CF = T1 & 1;
665 else
666 env->CF = 0;
667 T1 = 0;
668 } else if (shift != 0) {
669 env->CF = (T1 >> (32 - shift)) & 1;
670 T1 = T1 << shift;
671 }
672 FORCE_RET();
673 }
674
675 void OPPROTO op_shrl_T1_T0_cc(void)
676 {
677 int shift;
678 shift = T0 & 0xff;
679 if (shift >= 32) {
680 if (shift == 32)
681 env->CF = (T1 >> 31) & 1;
682 else
683 env->CF = 0;
684 T1 = 0;
685 } else if (shift != 0) {
686 env->CF = (T1 >> (shift - 1)) & 1;
687 T1 = (uint32_t)T1 >> shift;
688 }
689 FORCE_RET();
690 }
691
692 void OPPROTO op_sarl_T1_T0_cc(void)
693 {
694 int shift;
695 shift = T0 & 0xff;
696 if (shift >= 32) {
697 env->CF = (T1 >> 31) & 1;
698 T1 = (int32_t)T1 >> 31;
699 } else {
700 env->CF = (T1 >> (shift - 1)) & 1;
701 T1 = (int32_t)T1 >> shift;
702 }
703 FORCE_RET();
704 }
705
706 void OPPROTO op_rorl_T1_T0_cc(void)
707 {
708 int shift1, shift;
709 shift1 = T0 & 0xff;
710 shift = shift1 & 0x1f;
711 if (shift == 0) {
712 if (shift1 != 0)
713 env->CF = (T1 >> 31) & 1;
714 } else {
715 env->CF = (T1 >> (shift - 1)) & 1;
716 T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
717 }
718 FORCE_RET();
719 }
720
721 /* misc */
722 void OPPROTO op_clz_T0(void)
723 {
724 int count;
725 for (count = 32; T0 > 0; count--)
726 T0 = T0 >> 1;
727 T0 = count;
728 FORCE_RET();
729 }
730
731 void OPPROTO op_sarl_T0_im(void)
732 {
733 T0 = (int32_t)T0 >> PARAM1;
734 }
735
736 /* 16->32 Sign extend */
737 void OPPROTO op_sxl_T0(void)
738 {
739 T0 = (int16_t)T0;
740 }
741
742 void OPPROTO op_sxl_T1(void)
743 {
744 T1 = (int16_t)T1;
745 }
746
747 #define SIGNBIT (uint32_t)0x80000000
748 /* saturating arithmetic */
749 void OPPROTO op_addl_T0_T1_setq(void)
750 {
751 uint32_t res;
752
753 res = T0 + T1;
754 if (((res ^ T0) & SIGNBIT) && !((T0 ^ T1) & SIGNBIT))
755 env->QF = 1;
756
757 T0 = res;
758 FORCE_RET();
759 }
760
761 void OPPROTO op_addl_T0_T1_saturate(void)
762 {
763 uint32_t res;
764
765 res = T0 + T1;
766 if (((res ^ T0) & SIGNBIT) && !((T0 ^ T1) & SIGNBIT)) {
767 env->QF = 1;
768 if (T0 & SIGNBIT)
769 T0 = 0x80000000;
770 else
771 T0 = 0x7fffffff;
772 }
773 else
774 T0 = res;
775
776 FORCE_RET();
777 }
778
779 void OPPROTO op_subl_T0_T1_saturate(void)
780 {
781 uint32_t res;
782
783 res = T0 - T1;
784 if (((res ^ T0) & SIGNBIT) && ((T0 ^ T1) & SIGNBIT)) {
785 env->QF = 1;
786 if (T0 & SIGNBIT)
787 T0 = 0x8000000;
788 else
789 T0 = 0x7fffffff;
790 }
791 else
792 T0 = res;
793
794 FORCE_RET();
795 }
796
797 /* thumb shift by immediate */
798 void OPPROTO op_shll_T0_im_thumb(void)
799 {
800 int shift;
801 shift = PARAM1;
802 if (shift != 0) {
803 env->CF = (T1 >> (32 - shift)) & 1;
804 T0 = T0 << shift;
805 }
806 env->NZF = T0;
807 FORCE_RET();
808 }
809
810 void OPPROTO op_shrl_T0_im_thumb(void)
811 {
812 int shift;
813
814 shift = PARAM1;
815 if (shift == 0) {
816 env->CF = 0;
817 T0 = 0;
818 } else {
819 env->CF = (T0 >> (shift - 1)) & 1;
820 T0 = T0 >> shift;
821 }
822 FORCE_RET();
823 }
824
825 void OPPROTO op_sarl_T0_im_thumb(void)
826 {
827 int shift;
828
829 shift = PARAM1;
830 if (shift == 0) {
831 T0 = ((int32_t)T0) >> 31;
832 env->CF = T0 & 1;
833 } else {
834 env->CF = (T0 >> (shift - 1)) & 1;
835 T0 = ((int32_t)T0) >> shift;
836 }
837 env->NZF = T0;
838 FORCE_RET();
839 }
840
841 /* exceptions */
842
843 void OPPROTO op_swi(void)
844 {
845 env->exception_index = EXCP_SWI;
846 cpu_loop_exit();
847 }
848
849 void OPPROTO op_undef_insn(void)
850 {
851 env->exception_index = EXCP_UDEF;
852 cpu_loop_exit();
853 }
854
855 /* thread support */
856
857 spinlock_t global_cpu_lock = SPIN_LOCK_UNLOCKED;
858
859 void cpu_lock(void)
860 {
861 spin_lock(&global_cpu_lock);
862 }
863
864 void cpu_unlock(void)
865 {
866 spin_unlock(&global_cpu_lock);
867 }
868