]> git.proxmox.com Git - mirror_qemu.git/blob - target-arm/op_helper.c
MAINTAINERS: add maintainer to virtio-9p
[mirror_qemu.git] / target-arm / op_helper.c
1 /*
2 * ARM helper routines
3 *
4 * Copyright (c) 2005-2007 CodeSourcery, LLC
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "cpu.h"
20 #include "exec/helper-proto.h"
21 #include "internals.h"
22 #include "exec/cpu_ldst.h"
23
24 #define SIGNBIT (uint32_t)0x80000000
25 #define SIGNBIT64 ((uint64_t)1 << 63)
26
27 static void raise_exception(CPUARMState *env, uint32_t excp,
28 uint32_t syndrome, uint32_t target_el)
29 {
30 CPUState *cs = CPU(arm_env_get_cpu(env));
31
32 assert(!excp_is_internal(excp));
33 cs->exception_index = excp;
34 env->exception.syndrome = syndrome;
35 env->exception.target_el = target_el;
36 cpu_loop_exit(cs);
37 }
38
39 static int exception_target_el(CPUARMState *env)
40 {
41 int target_el = MAX(1, arm_current_el(env));
42
43 /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
44 * to EL3 in this case.
45 */
46 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
47 target_el = 3;
48 }
49
50 return target_el;
51 }
52
53 uint32_t HELPER(neon_tbl)(CPUARMState *env, uint32_t ireg, uint32_t def,
54 uint32_t rn, uint32_t maxindex)
55 {
56 uint32_t val;
57 uint32_t tmp;
58 int index;
59 int shift;
60 uint64_t *table;
61 table = (uint64_t *)&env->vfp.regs[rn];
62 val = 0;
63 for (shift = 0; shift < 32; shift += 8) {
64 index = (ireg >> shift) & 0xff;
65 if (index < maxindex) {
66 tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
67 val |= tmp << shift;
68 } else {
69 val |= def & (0xff << shift);
70 }
71 }
72 return val;
73 }
74
75 #if !defined(CONFIG_USER_ONLY)
76
77 /* try to fill the TLB and return an exception if error. If retaddr is
78 * NULL, it means that the function was called in C code (i.e. not
79 * from generated code or from helper.c)
80 */
81 void tlb_fill(CPUState *cs, target_ulong addr, int is_write, int mmu_idx,
82 uintptr_t retaddr)
83 {
84 bool ret;
85 uint32_t fsr = 0;
86 ARMMMUFaultInfo fi = {};
87
88 ret = arm_tlb_fill(cs, addr, is_write, mmu_idx, &fsr, &fi);
89 if (unlikely(ret)) {
90 ARMCPU *cpu = ARM_CPU(cs);
91 CPUARMState *env = &cpu->env;
92 uint32_t syn, exc;
93 unsigned int target_el;
94 bool same_el;
95
96 if (retaddr) {
97 /* now we have a real cpu fault */
98 cpu_restore_state(cs, retaddr);
99 }
100
101 target_el = exception_target_el(env);
102 if (fi.stage2) {
103 target_el = 2;
104 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
105 }
106 same_el = arm_current_el(env) == target_el;
107 /* AArch64 syndrome does not have an LPAE bit */
108 syn = fsr & ~(1 << 9);
109
110 /* For insn and data aborts we assume there is no instruction syndrome
111 * information; this is always true for exceptions reported to EL1.
112 */
113 if (is_write == 2) {
114 syn = syn_insn_abort(same_el, 0, fi.s1ptw, syn);
115 exc = EXCP_PREFETCH_ABORT;
116 } else {
117 syn = syn_data_abort(same_el, 0, 0, fi.s1ptw, is_write == 1, syn);
118 if (is_write == 1 && arm_feature(env, ARM_FEATURE_V6)) {
119 fsr |= (1 << 11);
120 }
121 exc = EXCP_DATA_ABORT;
122 }
123
124 env->exception.vaddress = addr;
125 env->exception.fsr = fsr;
126 raise_exception(env, exc, syn, target_el);
127 }
128 }
129 #endif
130
131 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
132 {
133 uint32_t res = a + b;
134 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
135 env->QF = 1;
136 return res;
137 }
138
139 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
140 {
141 uint32_t res = a + b;
142 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
143 env->QF = 1;
144 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
145 }
146 return res;
147 }
148
149 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
150 {
151 uint32_t res = a - b;
152 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
153 env->QF = 1;
154 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
155 }
156 return res;
157 }
158
159 uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
160 {
161 uint32_t res;
162 if (val >= 0x40000000) {
163 res = ~SIGNBIT;
164 env->QF = 1;
165 } else if (val <= (int32_t)0xc0000000) {
166 res = SIGNBIT;
167 env->QF = 1;
168 } else {
169 res = val << 1;
170 }
171 return res;
172 }
173
174 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
175 {
176 uint32_t res = a + b;
177 if (res < a) {
178 env->QF = 1;
179 res = ~0;
180 }
181 return res;
182 }
183
184 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
185 {
186 uint32_t res = a - b;
187 if (res > a) {
188 env->QF = 1;
189 res = 0;
190 }
191 return res;
192 }
193
194 /* Signed saturation. */
195 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
196 {
197 int32_t top;
198 uint32_t mask;
199
200 top = val >> shift;
201 mask = (1u << shift) - 1;
202 if (top > 0) {
203 env->QF = 1;
204 return mask;
205 } else if (top < -1) {
206 env->QF = 1;
207 return ~mask;
208 }
209 return val;
210 }
211
212 /* Unsigned saturation. */
213 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
214 {
215 uint32_t max;
216
217 max = (1u << shift) - 1;
218 if (val < 0) {
219 env->QF = 1;
220 return 0;
221 } else if (val > max) {
222 env->QF = 1;
223 return max;
224 }
225 return val;
226 }
227
228 /* Signed saturate. */
229 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
230 {
231 return do_ssat(env, x, shift);
232 }
233
234 /* Dual halfword signed saturate. */
235 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
236 {
237 uint32_t res;
238
239 res = (uint16_t)do_ssat(env, (int16_t)x, shift);
240 res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
241 return res;
242 }
243
244 /* Unsigned saturate. */
245 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
246 {
247 return do_usat(env, x, shift);
248 }
249
250 /* Dual halfword unsigned saturate. */
251 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
252 {
253 uint32_t res;
254
255 res = (uint16_t)do_usat(env, (int16_t)x, shift);
256 res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
257 return res;
258 }
259
260 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
261 * The function returns the target EL (1-3) if the instruction is to be trapped;
262 * otherwise it returns 0 indicating it is not trapped.
263 */
264 static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
265 {
266 int cur_el = arm_current_el(env);
267 uint64_t mask;
268
269 /* If we are currently in EL0 then we need to check if SCTLR is set up for
270 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
271 */
272 if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
273 int target_el;
274
275 mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
276 if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
277 /* Secure EL0 and Secure PL1 is at EL3 */
278 target_el = 3;
279 } else {
280 target_el = 1;
281 }
282
283 if (!(env->cp15.sctlr_el[target_el] & mask)) {
284 return target_el;
285 }
286 }
287
288 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
289 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
290 * bits will be zero indicating no trap.
291 */
292 if (cur_el < 2 && !arm_is_secure(env)) {
293 mask = (is_wfe) ? HCR_TWE : HCR_TWI;
294 if (env->cp15.hcr_el2 & mask) {
295 return 2;
296 }
297 }
298
299 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
300 if (cur_el < 3) {
301 mask = (is_wfe) ? SCR_TWE : SCR_TWI;
302 if (env->cp15.scr_el3 & mask) {
303 return 3;
304 }
305 }
306
307 return 0;
308 }
309
310 void HELPER(wfi)(CPUARMState *env)
311 {
312 CPUState *cs = CPU(arm_env_get_cpu(env));
313 int target_el = check_wfx_trap(env, false);
314
315 if (cpu_has_work(cs)) {
316 /* Don't bother to go into our "low power state" if
317 * we would just wake up immediately.
318 */
319 return;
320 }
321
322 if (target_el) {
323 env->pc -= 4;
324 raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0), target_el);
325 }
326
327 cs->exception_index = EXCP_HLT;
328 cs->halted = 1;
329 cpu_loop_exit(cs);
330 }
331
332 void HELPER(wfe)(CPUARMState *env)
333 {
334 /* This is a hint instruction that is semantically different
335 * from YIELD even though we currently implement it identically.
336 * Don't actually halt the CPU, just yield back to top
337 * level loop. This is not going into a "low power state"
338 * (ie halting until some event occurs), so we never take
339 * a configurable trap to a different exception level.
340 */
341 HELPER(yield)(env);
342 }
343
344 void HELPER(yield)(CPUARMState *env)
345 {
346 ARMCPU *cpu = arm_env_get_cpu(env);
347 CPUState *cs = CPU(cpu);
348
349 /* This is a non-trappable hint instruction that generally indicates
350 * that the guest is currently busy-looping. Yield control back to the
351 * top level loop so that a more deserving VCPU has a chance to run.
352 */
353 cs->exception_index = EXCP_YIELD;
354 cpu_loop_exit(cs);
355 }
356
357 /* Raise an internal-to-QEMU exception. This is limited to only
358 * those EXCP values which are special cases for QEMU to interrupt
359 * execution and not to be used for exceptions which are passed to
360 * the guest (those must all have syndrome information and thus should
361 * use exception_with_syndrome).
362 */
363 void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
364 {
365 CPUState *cs = CPU(arm_env_get_cpu(env));
366
367 assert(excp_is_internal(excp));
368 cs->exception_index = excp;
369 cpu_loop_exit(cs);
370 }
371
372 /* Raise an exception with the specified syndrome register value */
373 void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
374 uint32_t syndrome, uint32_t target_el)
375 {
376 raise_exception(env, excp, syndrome, target_el);
377 }
378
379 uint32_t HELPER(cpsr_read)(CPUARMState *env)
380 {
381 return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
382 }
383
384 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
385 {
386 cpsr_write(env, val, mask);
387 }
388
389 /* Access to user mode registers from privileged modes. */
390 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
391 {
392 uint32_t val;
393
394 if (regno == 13) {
395 val = env->banked_r13[BANK_USRSYS];
396 } else if (regno == 14) {
397 val = env->banked_r14[BANK_USRSYS];
398 } else if (regno >= 8
399 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
400 val = env->usr_regs[regno - 8];
401 } else {
402 val = env->regs[regno];
403 }
404 return val;
405 }
406
407 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
408 {
409 if (regno == 13) {
410 env->banked_r13[BANK_USRSYS] = val;
411 } else if (regno == 14) {
412 env->banked_r14[BANK_USRSYS] = val;
413 } else if (regno >= 8
414 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
415 env->usr_regs[regno - 8] = val;
416 } else {
417 env->regs[regno] = val;
418 }
419 }
420
421 void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome)
422 {
423 const ARMCPRegInfo *ri = rip;
424 int target_el;
425
426 if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
427 && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
428 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
429 }
430
431 if (!ri->accessfn) {
432 return;
433 }
434
435 switch (ri->accessfn(env, ri)) {
436 case CP_ACCESS_OK:
437 return;
438 case CP_ACCESS_TRAP:
439 target_el = exception_target_el(env);
440 break;
441 case CP_ACCESS_TRAP_EL2:
442 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
443 * a bug in the access function.
444 */
445 assert(!arm_is_secure(env) && arm_current_el(env) != 3);
446 target_el = 2;
447 break;
448 case CP_ACCESS_TRAP_EL3:
449 target_el = 3;
450 break;
451 case CP_ACCESS_TRAP_UNCATEGORIZED:
452 target_el = exception_target_el(env);
453 syndrome = syn_uncategorized();
454 break;
455 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
456 target_el = 2;
457 syndrome = syn_uncategorized();
458 break;
459 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
460 target_el = 3;
461 syndrome = syn_uncategorized();
462 break;
463 default:
464 g_assert_not_reached();
465 }
466
467 raise_exception(env, EXCP_UDEF, syndrome, target_el);
468 }
469
470 void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
471 {
472 const ARMCPRegInfo *ri = rip;
473
474 ri->writefn(env, ri, value);
475 }
476
477 uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
478 {
479 const ARMCPRegInfo *ri = rip;
480
481 return ri->readfn(env, ri);
482 }
483
484 void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
485 {
486 const ARMCPRegInfo *ri = rip;
487
488 ri->writefn(env, ri, value);
489 }
490
491 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
492 {
493 const ARMCPRegInfo *ri = rip;
494
495 return ri->readfn(env, ri);
496 }
497
498 void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
499 {
500 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
501 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
502 * to catch that case at translate time.
503 */
504 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
505 uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3),
506 extract32(op, 3, 3), 4,
507 imm, 0x1f, 0);
508 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
509 }
510
511 switch (op) {
512 case 0x05: /* SPSel */
513 update_spsel(env, imm);
514 break;
515 case 0x1e: /* DAIFSet */
516 env->daif |= (imm << 6) & PSTATE_DAIF;
517 break;
518 case 0x1f: /* DAIFClear */
519 env->daif &= ~((imm << 6) & PSTATE_DAIF);
520 break;
521 default:
522 g_assert_not_reached();
523 }
524 }
525
526 void HELPER(clear_pstate_ss)(CPUARMState *env)
527 {
528 env->pstate &= ~PSTATE_SS;
529 }
530
531 void HELPER(pre_hvc)(CPUARMState *env)
532 {
533 ARMCPU *cpu = arm_env_get_cpu(env);
534 int cur_el = arm_current_el(env);
535 /* FIXME: Use actual secure state. */
536 bool secure = false;
537 bool undef;
538
539 if (arm_is_psci_call(cpu, EXCP_HVC)) {
540 /* If PSCI is enabled and this looks like a valid PSCI call then
541 * that overrides the architecturally mandated HVC behaviour.
542 */
543 return;
544 }
545
546 if (!arm_feature(env, ARM_FEATURE_EL2)) {
547 /* If EL2 doesn't exist, HVC always UNDEFs */
548 undef = true;
549 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
550 /* EL3.HCE has priority over EL2.HCD. */
551 undef = !(env->cp15.scr_el3 & SCR_HCE);
552 } else {
553 undef = env->cp15.hcr_el2 & HCR_HCD;
554 }
555
556 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
557 * For ARMv8/AArch64, HVC is allowed in EL3.
558 * Note that we've already trapped HVC from EL0 at translation
559 * time.
560 */
561 if (secure && (!is_a64(env) || cur_el == 1)) {
562 undef = true;
563 }
564
565 if (undef) {
566 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
567 exception_target_el(env));
568 }
569 }
570
571 void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
572 {
573 ARMCPU *cpu = arm_env_get_cpu(env);
574 int cur_el = arm_current_el(env);
575 bool secure = arm_is_secure(env);
576 bool smd = env->cp15.scr_el3 & SCR_SMD;
577 /* On ARMv8 AArch32, SMD only applies to NS state.
578 * On ARMv7 SMD only applies to NS state and only if EL2 is available.
579 * For ARMv7 non EL2, we force SMD to zero so we don't need to re-check
580 * the EL2 condition here.
581 */
582 bool undef = is_a64(env) ? smd : (!secure && smd);
583
584 if (arm_is_psci_call(cpu, EXCP_SMC)) {
585 /* If PSCI is enabled and this looks like a valid PSCI call then
586 * that overrides the architecturally mandated SMC behaviour.
587 */
588 return;
589 }
590
591 if (!arm_feature(env, ARM_FEATURE_EL3)) {
592 /* If we have no EL3 then SMC always UNDEFs */
593 undef = true;
594 } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) {
595 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
596 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
597 }
598
599 if (undef) {
600 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
601 exception_target_el(env));
602 }
603 }
604
605 void HELPER(exception_return)(CPUARMState *env)
606 {
607 int cur_el = arm_current_el(env);
608 unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
609 uint32_t spsr = env->banked_spsr[spsr_idx];
610 int new_el;
611
612 aarch64_save_sp(env, cur_el);
613
614 env->exclusive_addr = -1;
615
616 /* We must squash the PSTATE.SS bit to zero unless both of the
617 * following hold:
618 * 1. debug exceptions are currently disabled
619 * 2. singlestep will be active in the EL we return to
620 * We check 1 here and 2 after we've done the pstate/cpsr write() to
621 * transition to the EL we're going to.
622 */
623 if (arm_generate_debug_exceptions(env)) {
624 spsr &= ~PSTATE_SS;
625 }
626
627 if (spsr & PSTATE_nRW) {
628 /* TODO: We currently assume EL1/2/3 are running in AArch64. */
629 env->aarch64 = 0;
630 new_el = 0;
631 env->uncached_cpsr = 0x10;
632 cpsr_write(env, spsr, ~0);
633 if (!arm_singlestep_active(env)) {
634 env->uncached_cpsr &= ~PSTATE_SS;
635 }
636 aarch64_sync_64_to_32(env);
637
638 env->regs[15] = env->elr_el[1] & ~0x1;
639 } else {
640 new_el = extract32(spsr, 2, 2);
641 if (new_el > cur_el
642 || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
643 /* Disallow return to an EL which is unimplemented or higher
644 * than the current one.
645 */
646 goto illegal_return;
647 }
648 if (extract32(spsr, 1, 1)) {
649 /* Return with reserved M[1] bit set */
650 goto illegal_return;
651 }
652 if (new_el == 0 && (spsr & PSTATE_SP)) {
653 /* Return to EL0 with M[0] bit set */
654 goto illegal_return;
655 }
656 env->aarch64 = 1;
657 pstate_write(env, spsr);
658 if (!arm_singlestep_active(env)) {
659 env->pstate &= ~PSTATE_SS;
660 }
661 aarch64_restore_sp(env, new_el);
662 env->pc = env->elr_el[cur_el];
663 }
664
665 return;
666
667 illegal_return:
668 /* Illegal return events of various kinds have architecturally
669 * mandated behaviour:
670 * restore NZCV and DAIF from SPSR_ELx
671 * set PSTATE.IL
672 * restore PC from ELR_ELx
673 * no change to exception level, execution state or stack pointer
674 */
675 env->pstate |= PSTATE_IL;
676 env->pc = env->elr_el[cur_el];
677 spsr &= PSTATE_NZCV | PSTATE_DAIF;
678 spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
679 pstate_write(env, spsr);
680 if (!arm_singlestep_active(env)) {
681 env->pstate &= ~PSTATE_SS;
682 }
683 }
684
685 /* Return true if the linked breakpoint entry lbn passes its checks */
686 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
687 {
688 CPUARMState *env = &cpu->env;
689 uint64_t bcr = env->cp15.dbgbcr[lbn];
690 int brps = extract32(cpu->dbgdidr, 24, 4);
691 int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
692 int bt;
693 uint32_t contextidr;
694
695 /* Links to unimplemented or non-context aware breakpoints are
696 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
697 * as if linked to an UNKNOWN context-aware breakpoint (in which
698 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
699 * We choose the former.
700 */
701 if (lbn > brps || lbn < (brps - ctx_cmps)) {
702 return false;
703 }
704
705 bcr = env->cp15.dbgbcr[lbn];
706
707 if (extract64(bcr, 0, 1) == 0) {
708 /* Linked breakpoint disabled : generate no events */
709 return false;
710 }
711
712 bt = extract64(bcr, 20, 4);
713
714 /* We match the whole register even if this is AArch32 using the
715 * short descriptor format (in which case it holds both PROCID and ASID),
716 * since we don't implement the optional v7 context ID masking.
717 */
718 contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
719
720 switch (bt) {
721 case 3: /* linked context ID match */
722 if (arm_current_el(env) > 1) {
723 /* Context matches never fire in EL2 or (AArch64) EL3 */
724 return false;
725 }
726 return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
727 case 5: /* linked address mismatch (reserved in AArch64) */
728 case 9: /* linked VMID match (reserved if no EL2) */
729 case 11: /* linked context ID and VMID match (reserved if no EL2) */
730 default:
731 /* Links to Unlinked context breakpoints must generate no
732 * events; we choose to do the same for reserved values too.
733 */
734 return false;
735 }
736
737 return false;
738 }
739
740 static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
741 {
742 CPUARMState *env = &cpu->env;
743 uint64_t cr;
744 int pac, hmc, ssc, wt, lbn;
745 /* Note that for watchpoints the check is against the CPU security
746 * state, not the S/NS attribute on the offending data access.
747 */
748 bool is_secure = arm_is_secure(env);
749 int access_el = arm_current_el(env);
750
751 if (is_wp) {
752 CPUWatchpoint *wp = env->cpu_watchpoint[n];
753
754 if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
755 return false;
756 }
757 cr = env->cp15.dbgwcr[n];
758 if (wp->hitattrs.user) {
759 /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
760 * match watchpoints as if they were accesses done at EL0, even if
761 * the CPU is at EL1 or higher.
762 */
763 access_el = 0;
764 }
765 } else {
766 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
767
768 if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
769 return false;
770 }
771 cr = env->cp15.dbgbcr[n];
772 }
773 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
774 * enabled and that the address and access type match; for breakpoints
775 * we know the address matched; check the remaining fields, including
776 * linked breakpoints. We rely on WCR and BCR having the same layout
777 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
778 * Note that some combinations of {PAC, HMC, SSC} are reserved and
779 * must act either like some valid combination or as if the watchpoint
780 * were disabled. We choose the former, and use this together with
781 * the fact that EL3 must always be Secure and EL2 must always be
782 * Non-Secure to simplify the code slightly compared to the full
783 * table in the ARM ARM.
784 */
785 pac = extract64(cr, 1, 2);
786 hmc = extract64(cr, 13, 1);
787 ssc = extract64(cr, 14, 2);
788
789 switch (ssc) {
790 case 0:
791 break;
792 case 1:
793 case 3:
794 if (is_secure) {
795 return false;
796 }
797 break;
798 case 2:
799 if (!is_secure) {
800 return false;
801 }
802 break;
803 }
804
805 switch (access_el) {
806 case 3:
807 case 2:
808 if (!hmc) {
809 return false;
810 }
811 break;
812 case 1:
813 if (extract32(pac, 0, 1) == 0) {
814 return false;
815 }
816 break;
817 case 0:
818 if (extract32(pac, 1, 1) == 0) {
819 return false;
820 }
821 break;
822 default:
823 g_assert_not_reached();
824 }
825
826 wt = extract64(cr, 20, 1);
827 lbn = extract64(cr, 16, 4);
828
829 if (wt && !linked_bp_matches(cpu, lbn)) {
830 return false;
831 }
832
833 return true;
834 }
835
836 static bool check_watchpoints(ARMCPU *cpu)
837 {
838 CPUARMState *env = &cpu->env;
839 int n;
840
841 /* If watchpoints are disabled globally or we can't take debug
842 * exceptions here then watchpoint firings are ignored.
843 */
844 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
845 || !arm_generate_debug_exceptions(env)) {
846 return false;
847 }
848
849 for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
850 if (bp_wp_matches(cpu, n, true)) {
851 return true;
852 }
853 }
854 return false;
855 }
856
857 static bool check_breakpoints(ARMCPU *cpu)
858 {
859 CPUARMState *env = &cpu->env;
860 int n;
861
862 /* If breakpoints are disabled globally or we can't take debug
863 * exceptions here then breakpoint firings are ignored.
864 */
865 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
866 || !arm_generate_debug_exceptions(env)) {
867 return false;
868 }
869
870 for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
871 if (bp_wp_matches(cpu, n, false)) {
872 return true;
873 }
874 }
875 return false;
876 }
877
878 void HELPER(check_breakpoints)(CPUARMState *env)
879 {
880 ARMCPU *cpu = arm_env_get_cpu(env);
881
882 if (check_breakpoints(cpu)) {
883 HELPER(exception_internal(env, EXCP_DEBUG));
884 }
885 }
886
887 void arm_debug_excp_handler(CPUState *cs)
888 {
889 /* Called by core code when a watchpoint or breakpoint fires;
890 * need to check which one and raise the appropriate exception.
891 */
892 ARMCPU *cpu = ARM_CPU(cs);
893 CPUARMState *env = &cpu->env;
894 CPUWatchpoint *wp_hit = cs->watchpoint_hit;
895
896 if (wp_hit) {
897 if (wp_hit->flags & BP_CPU) {
898 cs->watchpoint_hit = NULL;
899 if (check_watchpoints(cpu)) {
900 bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
901 bool same_el = arm_debug_target_el(env) == arm_current_el(env);
902
903 if (extended_addresses_enabled(env)) {
904 env->exception.fsr = (1 << 9) | 0x22;
905 } else {
906 env->exception.fsr = 0x2;
907 }
908 env->exception.vaddress = wp_hit->hitaddr;
909 raise_exception(env, EXCP_DATA_ABORT,
910 syn_watchpoint(same_el, 0, wnr),
911 arm_debug_target_el(env));
912 } else {
913 cpu_resume_from_signal(cs, NULL);
914 }
915 }
916 } else {
917 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
918 bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
919
920 /* (1) GDB breakpoints should be handled first.
921 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
922 * since singlestep is also done by generating a debug internal
923 * exception.
924 */
925 if (cpu_breakpoint_test(cs, pc, BP_GDB)
926 || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
927 return;
928 }
929
930 if (extended_addresses_enabled(env)) {
931 env->exception.fsr = (1 << 9) | 0x22;
932 } else {
933 env->exception.fsr = 0x2;
934 }
935 /* FAR is UNKNOWN, so doesn't need setting */
936 raise_exception(env, EXCP_PREFETCH_ABORT,
937 syn_breakpoint(same_el),
938 arm_debug_target_el(env));
939 }
940 }
941
942 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
943 The only way to do that in TCG is a conditional branch, which clobbers
944 all our temporaries. For now implement these as helper functions. */
945
946 /* Similarly for variable shift instructions. */
947
948 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
949 {
950 int shift = i & 0xff;
951 if (shift >= 32) {
952 if (shift == 32)
953 env->CF = x & 1;
954 else
955 env->CF = 0;
956 return 0;
957 } else if (shift != 0) {
958 env->CF = (x >> (32 - shift)) & 1;
959 return x << shift;
960 }
961 return x;
962 }
963
964 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
965 {
966 int shift = i & 0xff;
967 if (shift >= 32) {
968 if (shift == 32)
969 env->CF = (x >> 31) & 1;
970 else
971 env->CF = 0;
972 return 0;
973 } else if (shift != 0) {
974 env->CF = (x >> (shift - 1)) & 1;
975 return x >> shift;
976 }
977 return x;
978 }
979
980 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
981 {
982 int shift = i & 0xff;
983 if (shift >= 32) {
984 env->CF = (x >> 31) & 1;
985 return (int32_t)x >> 31;
986 } else if (shift != 0) {
987 env->CF = (x >> (shift - 1)) & 1;
988 return (int32_t)x >> shift;
989 }
990 return x;
991 }
992
993 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
994 {
995 int shift1, shift;
996 shift1 = i & 0xff;
997 shift = shift1 & 0x1f;
998 if (shift == 0) {
999 if (shift1 != 0)
1000 env->CF = (x >> 31) & 1;
1001 return x;
1002 } else {
1003 env->CF = (x >> (shift - 1)) & 1;
1004 return ((uint32_t)x >> shift) | (x << (32 - shift));
1005 }
1006 }