]> git.proxmox.com Git - mirror_qemu.git/blob - target-cris/op_helper.c
target-mips: don't map zero register as a TCG global
[mirror_qemu.git] / target-cris / op_helper.c
1 /*
2 * CRIS helper routines
3 *
4 * Copyright (c) 2007 AXIS Communications
5 * Written by Edgar E. Iglesias
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 */
21
22 #include <assert.h>
23 #include "exec.h"
24 #include "mmu.h"
25 #include "helper.h"
26 #include "host-utils.h"
27
28 //#define CRIS_OP_HELPER_DEBUG
29
30
31 #ifdef CRIS_OP_HELPER_DEBUG
32 #define D(x) x
33 #define D_LOG(...) qemu_log(__VA__ARGS__)
34 #else
35 #define D(x)
36 #define D_LOG(...) do { } while (0)
37 #endif
38
39 #if !defined(CONFIG_USER_ONLY)
40
41 #define MMUSUFFIX _mmu
42
43 #define SHIFT 0
44 #include "softmmu_template.h"
45
46 #define SHIFT 1
47 #include "softmmu_template.h"
48
49 #define SHIFT 2
50 #include "softmmu_template.h"
51
52 #define SHIFT 3
53 #include "softmmu_template.h"
54
55 /* Try to fill the TLB and return an exception if error. If retaddr is
56 NULL, it means that the function was called in C code (i.e. not
57 from generated code or from helper.c) */
58 /* XXX: fix it to restore all registers */
59 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
60 {
61 TranslationBlock *tb;
62 CPUState *saved_env;
63 unsigned long pc;
64 int ret;
65
66 /* XXX: hack to restore env in all cases, even if not called from
67 generated code */
68 saved_env = env;
69 env = cpu_single_env;
70
71 D_LOG("%s pc=%x tpc=%x ra=%x\n", __func__,
72 env->pc, env->debug1, retaddr);
73 ret = cpu_cris_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
74 if (unlikely(ret)) {
75 if (retaddr) {
76 /* now we have a real cpu fault */
77 pc = (unsigned long)retaddr;
78 tb = tb_find_pc(pc);
79 if (tb) {
80 /* the PC is inside the translated code. It means that we have
81 a virtual CPU fault */
82 cpu_restore_state(tb, env, pc, NULL);
83
84 /* Evaluate flags after retranslation. */
85 helper_top_evaluate_flags();
86 }
87 }
88 cpu_loop_exit();
89 }
90 env = saved_env;
91 }
92
93 #endif
94
95 void helper_raise_exception(uint32_t index)
96 {
97 env->exception_index = index;
98 cpu_loop_exit();
99 }
100
101 void helper_tlb_flush_pid(uint32_t pid)
102 {
103 #if !defined(CONFIG_USER_ONLY)
104 pid &= 0xff;
105 if (pid != (env->pregs[PR_PID] & 0xff))
106 cris_mmu_flush_pid(env, env->pregs[PR_PID]);
107 #endif
108 }
109
110 void helper_spc_write(uint32_t new_spc)
111 {
112 #if !defined(CONFIG_USER_ONLY)
113 tlb_flush_page(env, env->pregs[PR_SPC]);
114 tlb_flush_page(env, new_spc);
115 #endif
116 }
117
118 void helper_dump(uint32_t a0, uint32_t a1, uint32_t a2)
119 {
120 qemu_log("%s: a0=%x a1=%x\n", __func__, a0, a1);
121 }
122
123 /* Used by the tlb decoder. */
124 #define EXTRACT_FIELD(src, start, end) \
125 (((src) >> start) & ((1 << (end - start + 1)) - 1))
126
127 void helper_movl_sreg_reg (uint32_t sreg, uint32_t reg)
128 {
129 uint32_t srs;
130 srs = env->pregs[PR_SRS];
131 srs &= 3;
132 env->sregs[srs][sreg] = env->regs[reg];
133
134 #if !defined(CONFIG_USER_ONLY)
135 if (srs == 1 || srs == 2) {
136 if (sreg == 6) {
137 /* Writes to tlb-hi write to mm_cause as a side
138 effect. */
139 env->sregs[SFR_RW_MM_TLB_HI] = env->regs[reg];
140 env->sregs[SFR_R_MM_CAUSE] = env->regs[reg];
141 }
142 else if (sreg == 5) {
143 uint32_t set;
144 uint32_t idx;
145 uint32_t lo, hi;
146 uint32_t vaddr;
147 int tlb_v;
148
149 idx = set = env->sregs[SFR_RW_MM_TLB_SEL];
150 set >>= 4;
151 set &= 3;
152
153 idx &= 15;
154 /* We've just made a write to tlb_lo. */
155 lo = env->sregs[SFR_RW_MM_TLB_LO];
156 /* Writes are done via r_mm_cause. */
157 hi = env->sregs[SFR_R_MM_CAUSE];
158
159 vaddr = EXTRACT_FIELD(env->tlbsets[srs-1][set][idx].hi,
160 13, 31);
161 vaddr <<= TARGET_PAGE_BITS;
162 tlb_v = EXTRACT_FIELD(env->tlbsets[srs-1][set][idx].lo,
163 3, 3);
164 env->tlbsets[srs - 1][set][idx].lo = lo;
165 env->tlbsets[srs - 1][set][idx].hi = hi;
166
167 D_LOG("tlb flush vaddr=%x v=%d pc=%x\n",
168 vaddr, tlb_v, env->pc);
169 tlb_flush_page(env, vaddr);
170 }
171 }
172 #endif
173 }
174
175 void helper_movl_reg_sreg (uint32_t reg, uint32_t sreg)
176 {
177 uint32_t srs;
178 env->pregs[PR_SRS] &= 3;
179 srs = env->pregs[PR_SRS];
180
181 #if !defined(CONFIG_USER_ONLY)
182 if (srs == 1 || srs == 2)
183 {
184 uint32_t set;
185 uint32_t idx;
186 uint32_t lo, hi;
187
188 idx = set = env->sregs[SFR_RW_MM_TLB_SEL];
189 set >>= 4;
190 set &= 3;
191 idx &= 15;
192
193 /* Update the mirror regs. */
194 hi = env->tlbsets[srs - 1][set][idx].hi;
195 lo = env->tlbsets[srs - 1][set][idx].lo;
196 env->sregs[SFR_RW_MM_TLB_HI] = hi;
197 env->sregs[SFR_RW_MM_TLB_LO] = lo;
198 }
199 #endif
200 env->regs[reg] = env->sregs[srs][sreg];
201 }
202
203 static void cris_ccs_rshift(CPUState *env)
204 {
205 uint32_t ccs;
206
207 /* Apply the ccs shift. */
208 ccs = env->pregs[PR_CCS];
209 ccs = (ccs & 0xc0000000) | ((ccs & 0x0fffffff) >> 10);
210 if (ccs & U_FLAG)
211 {
212 /* Enter user mode. */
213 env->ksp = env->regs[R_SP];
214 env->regs[R_SP] = env->pregs[PR_USP];
215 }
216
217 env->pregs[PR_CCS] = ccs;
218 }
219
220 void helper_rfe(void)
221 {
222 int rflag = env->pregs[PR_CCS] & R_FLAG;
223
224 D_LOG("rfe: erp=%x pid=%x ccs=%x btarget=%x\n",
225 env->pregs[PR_ERP], env->pregs[PR_PID],
226 env->pregs[PR_CCS],
227 env->btarget);
228
229 cris_ccs_rshift(env);
230
231 /* RFE sets the P_FLAG only if the R_FLAG is not set. */
232 if (!rflag)
233 env->pregs[PR_CCS] |= P_FLAG;
234 }
235
236 void helper_rfn(void)
237 {
238 int rflag = env->pregs[PR_CCS] & R_FLAG;
239
240 D_LOG("rfn: erp=%x pid=%x ccs=%x btarget=%x\n",
241 env->pregs[PR_ERP], env->pregs[PR_PID],
242 env->pregs[PR_CCS],
243 env->btarget);
244
245 cris_ccs_rshift(env);
246
247 /* Set the P_FLAG only if the R_FLAG is not set. */
248 if (!rflag)
249 env->pregs[PR_CCS] |= P_FLAG;
250
251 /* Always set the M flag. */
252 env->pregs[PR_CCS] |= M_FLAG;
253 }
254
255 uint32_t helper_lz(uint32_t t0)
256 {
257 return clz32(t0);
258 }
259
260 uint32_t helper_btst(uint32_t t0, uint32_t t1, uint32_t ccs)
261 {
262 /* FIXME: clean this up. */
263
264 /* des ref:
265 The N flag is set according to the selected bit in the dest reg.
266 The Z flag is set if the selected bit and all bits to the right are
267 zero.
268 The X flag is cleared.
269 Other flags are left untouched.
270 The destination reg is not affected.*/
271 unsigned int fz, sbit, bset, mask, masked_t0;
272
273 sbit = t1 & 31;
274 bset = !!(t0 & (1 << sbit));
275 mask = sbit == 31 ? -1 : (1 << (sbit + 1)) - 1;
276 masked_t0 = t0 & mask;
277 fz = !(masked_t0 | bset);
278
279 /* Clear the X, N and Z flags. */
280 ccs = ccs & ~(X_FLAG | N_FLAG | Z_FLAG);
281 /* Set the N and Z flags accordingly. */
282 ccs |= (bset << 3) | (fz << 2);
283 return ccs;
284 }
285
286 static inline uint32_t evaluate_flags_writeback(uint32_t flags, uint32_t ccs)
287 {
288 unsigned int x, z, mask;
289
290 /* Extended arithmetics, leave the z flag alone. */
291 x = env->cc_x;
292 mask = env->cc_mask | X_FLAG;
293 if (x) {
294 z = flags & Z_FLAG;
295 mask = mask & ~z;
296 }
297 flags &= mask;
298
299 /* all insn clear the x-flag except setf or clrf. */
300 ccs &= ~mask;
301 ccs |= flags;
302 return ccs;
303 }
304
305 uint32_t helper_evaluate_flags_muls(uint32_t ccs, uint32_t res, uint32_t mof)
306 {
307 uint32_t flags = 0;
308 int64_t tmp;
309 int dneg;
310
311 dneg = ((int32_t)res) < 0;
312
313 tmp = mof;
314 tmp <<= 32;
315 tmp |= res;
316 if (tmp == 0)
317 flags |= Z_FLAG;
318 else if (tmp < 0)
319 flags |= N_FLAG;
320 if ((dneg && mof != -1)
321 || (!dneg && mof != 0))
322 flags |= V_FLAG;
323 return evaluate_flags_writeback(flags, ccs);
324 }
325
326 uint32_t helper_evaluate_flags_mulu(uint32_t ccs, uint32_t res, uint32_t mof)
327 {
328 uint32_t flags = 0;
329 uint64_t tmp;
330
331 tmp = mof;
332 tmp <<= 32;
333 tmp |= res;
334 if (tmp == 0)
335 flags |= Z_FLAG;
336 else if (tmp >> 63)
337 flags |= N_FLAG;
338 if (mof)
339 flags |= V_FLAG;
340
341 return evaluate_flags_writeback(flags, ccs);
342 }
343
344 uint32_t helper_evaluate_flags_mcp(uint32_t ccs,
345 uint32_t src, uint32_t dst, uint32_t res)
346 {
347 uint32_t flags = 0;
348
349 src = src & 0x80000000;
350 dst = dst & 0x80000000;
351
352 if ((res & 0x80000000L) != 0L)
353 {
354 flags |= N_FLAG;
355 if (!src && !dst)
356 flags |= V_FLAG;
357 else if (src & dst)
358 flags |= R_FLAG;
359 }
360 else
361 {
362 if (res == 0L)
363 flags |= Z_FLAG;
364 if (src & dst)
365 flags |= V_FLAG;
366 if (dst | src)
367 flags |= R_FLAG;
368 }
369
370 return evaluate_flags_writeback(flags, ccs);
371 }
372
373 uint32_t helper_evaluate_flags_alu_4(uint32_t ccs,
374 uint32_t src, uint32_t dst, uint32_t res)
375 {
376 uint32_t flags = 0;
377
378 src = src & 0x80000000;
379 dst = dst & 0x80000000;
380
381 if ((res & 0x80000000L) != 0L)
382 {
383 flags |= N_FLAG;
384 if (!src && !dst)
385 flags |= V_FLAG;
386 else if (src & dst)
387 flags |= C_FLAG;
388 }
389 else
390 {
391 if (res == 0L)
392 flags |= Z_FLAG;
393 if (src & dst)
394 flags |= V_FLAG;
395 if (dst | src)
396 flags |= C_FLAG;
397 }
398
399 return evaluate_flags_writeback(flags, ccs);
400 }
401
402 uint32_t helper_evaluate_flags_sub_4(uint32_t ccs,
403 uint32_t src, uint32_t dst, uint32_t res)
404 {
405 uint32_t flags = 0;
406
407 src = (~src) & 0x80000000;
408 dst = dst & 0x80000000;
409
410 if ((res & 0x80000000L) != 0L)
411 {
412 flags |= N_FLAG;
413 if (!src && !dst)
414 flags |= V_FLAG;
415 else if (src & dst)
416 flags |= C_FLAG;
417 }
418 else
419 {
420 if (res == 0L)
421 flags |= Z_FLAG;
422 if (src & dst)
423 flags |= V_FLAG;
424 if (dst | src)
425 flags |= C_FLAG;
426 }
427
428 flags ^= C_FLAG;
429 return evaluate_flags_writeback(flags, ccs);
430 }
431
432 uint32_t helper_evaluate_flags_move_4(uint32_t ccs, uint32_t res)
433 {
434 uint32_t flags = 0;
435
436 if ((int32_t)res < 0)
437 flags |= N_FLAG;
438 else if (res == 0L)
439 flags |= Z_FLAG;
440
441 return evaluate_flags_writeback(flags, ccs);
442 }
443 uint32_t helper_evaluate_flags_move_2(uint32_t ccs, uint32_t res)
444 {
445 uint32_t flags = 0;
446
447 if ((int16_t)res < 0L)
448 flags |= N_FLAG;
449 else if (res == 0)
450 flags |= Z_FLAG;
451
452 return evaluate_flags_writeback(flags, ccs);
453 }
454
455 /* TODO: This is expensive. We could split things up and only evaluate part of
456 CCR on a need to know basis. For now, we simply re-evaluate everything. */
457 void helper_evaluate_flags(void)
458 {
459 uint32_t src, dst, res;
460 uint32_t flags = 0;
461
462 src = env->cc_src;
463 dst = env->cc_dest;
464 res = env->cc_result;
465
466 if (env->cc_op == CC_OP_SUB || env->cc_op == CC_OP_CMP)
467 src = ~src;
468
469 /* Now, evaluate the flags. This stuff is based on
470 Per Zander's CRISv10 simulator. */
471 switch (env->cc_size)
472 {
473 case 1:
474 if ((res & 0x80L) != 0L)
475 {
476 flags |= N_FLAG;
477 if (((src & 0x80L) == 0L)
478 && ((dst & 0x80L) == 0L))
479 {
480 flags |= V_FLAG;
481 }
482 else if (((src & 0x80L) != 0L)
483 && ((dst & 0x80L) != 0L))
484 {
485 flags |= C_FLAG;
486 }
487 }
488 else
489 {
490 if ((res & 0xFFL) == 0L)
491 {
492 flags |= Z_FLAG;
493 }
494 if (((src & 0x80L) != 0L)
495 && ((dst & 0x80L) != 0L))
496 {
497 flags |= V_FLAG;
498 }
499 if ((dst & 0x80L) != 0L
500 || (src & 0x80L) != 0L)
501 {
502 flags |= C_FLAG;
503 }
504 }
505 break;
506 case 2:
507 if ((res & 0x8000L) != 0L)
508 {
509 flags |= N_FLAG;
510 if (((src & 0x8000L) == 0L)
511 && ((dst & 0x8000L) == 0L))
512 {
513 flags |= V_FLAG;
514 }
515 else if (((src & 0x8000L) != 0L)
516 && ((dst & 0x8000L) != 0L))
517 {
518 flags |= C_FLAG;
519 }
520 }
521 else
522 {
523 if ((res & 0xFFFFL) == 0L)
524 {
525 flags |= Z_FLAG;
526 }
527 if (((src & 0x8000L) != 0L)
528 && ((dst & 0x8000L) != 0L))
529 {
530 flags |= V_FLAG;
531 }
532 if ((dst & 0x8000L) != 0L
533 || (src & 0x8000L) != 0L)
534 {
535 flags |= C_FLAG;
536 }
537 }
538 break;
539 case 4:
540 if ((res & 0x80000000L) != 0L)
541 {
542 flags |= N_FLAG;
543 if (((src & 0x80000000L) == 0L)
544 && ((dst & 0x80000000L) == 0L))
545 {
546 flags |= V_FLAG;
547 }
548 else if (((src & 0x80000000L) != 0L) &&
549 ((dst & 0x80000000L) != 0L))
550 {
551 flags |= C_FLAG;
552 }
553 }
554 else
555 {
556 if (res == 0L)
557 flags |= Z_FLAG;
558 if (((src & 0x80000000L) != 0L)
559 && ((dst & 0x80000000L) != 0L))
560 flags |= V_FLAG;
561 if ((dst & 0x80000000L) != 0L
562 || (src & 0x80000000L) != 0L)
563 flags |= C_FLAG;
564 }
565 break;
566 default:
567 break;
568 }
569
570 if (env->cc_op == CC_OP_SUB || env->cc_op == CC_OP_CMP)
571 flags ^= C_FLAG;
572
573 env->pregs[PR_CCS] = evaluate_flags_writeback(flags, env->pregs[PR_CCS]);
574 }
575
576 void helper_top_evaluate_flags(void)
577 {
578 switch (env->cc_op)
579 {
580 case CC_OP_MCP:
581 env->pregs[PR_CCS] = helper_evaluate_flags_mcp(
582 env->pregs[PR_CCS], env->cc_src,
583 env->cc_dest, env->cc_result);
584 break;
585 case CC_OP_MULS:
586 env->pregs[PR_CCS] = helper_evaluate_flags_muls(
587 env->pregs[PR_CCS], env->cc_result,
588 env->pregs[PR_MOF]);
589 break;
590 case CC_OP_MULU:
591 env->pregs[PR_CCS] = helper_evaluate_flags_mulu(
592 env->pregs[PR_CCS], env->cc_result,
593 env->pregs[PR_MOF]);
594 break;
595 case CC_OP_MOVE:
596 case CC_OP_AND:
597 case CC_OP_OR:
598 case CC_OP_XOR:
599 case CC_OP_ASR:
600 case CC_OP_LSR:
601 case CC_OP_LSL:
602 switch (env->cc_size)
603 {
604 case 4:
605 env->pregs[PR_CCS] =
606 helper_evaluate_flags_move_4(
607 env->pregs[PR_CCS],
608 env->cc_result);
609 break;
610 case 2:
611 env->pregs[PR_CCS] =
612 helper_evaluate_flags_move_2(
613 env->pregs[PR_CCS],
614 env->cc_result);
615 break;
616 default:
617 helper_evaluate_flags();
618 break;
619 }
620 break;
621 case CC_OP_FLAGS:
622 /* live. */
623 break;
624 case CC_OP_SUB:
625 case CC_OP_CMP:
626 if (env->cc_size == 4)
627 env->pregs[PR_CCS] =
628 helper_evaluate_flags_sub_4(
629 env->pregs[PR_CCS],
630 env->cc_src, env->cc_dest,
631 env->cc_result);
632 else
633 helper_evaluate_flags();
634 break;
635 default:
636 {
637 switch (env->cc_size)
638 {
639 case 4:
640 env->pregs[PR_CCS] =
641 helper_evaluate_flags_alu_4(
642 env->pregs[PR_CCS],
643 env->cc_src, env->cc_dest,
644 env->cc_result);
645 break;
646 default:
647 helper_evaluate_flags();
648 break;
649 }
650 }
651 break;
652 }
653 }