]> git.proxmox.com Git - mirror_qemu.git/blob - target-i386/exec.h
bsd port (Markus Niemisto)
[mirror_qemu.git] / target-i386 / exec.h
1 /*
2 * i386 execution defines
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "config.h"
21 #include "dyngen-exec.h"
22
23 /* at least 4 register variables are defines */
24 register struct CPUX86State *env asm(AREG0);
25 register uint32_t T0 asm(AREG1);
26 register uint32_t T1 asm(AREG2);
27 register uint32_t T2 asm(AREG3);
28
29 #define A0 T2
30
31 /* if more registers are available, we define some registers too */
32 #ifdef AREG4
33 register uint32_t EAX asm(AREG4);
34 #define reg_EAX
35 #endif
36
37 #ifdef AREG5
38 register uint32_t ESP asm(AREG5);
39 #define reg_ESP
40 #endif
41
42 #ifdef AREG6
43 register uint32_t EBP asm(AREG6);
44 #define reg_EBP
45 #endif
46
47 #ifdef AREG7
48 register uint32_t ECX asm(AREG7);
49 #define reg_ECX
50 #endif
51
52 #ifdef AREG8
53 register uint32_t EDX asm(AREG8);
54 #define reg_EDX
55 #endif
56
57 #ifdef AREG9
58 register uint32_t EBX asm(AREG9);
59 #define reg_EBX
60 #endif
61
62 #ifdef AREG10
63 register uint32_t ESI asm(AREG10);
64 #define reg_ESI
65 #endif
66
67 #ifdef AREG11
68 register uint32_t EDI asm(AREG11);
69 #define reg_EDI
70 #endif
71
72 extern FILE *logfile;
73 extern int loglevel;
74
75 #ifndef reg_EAX
76 #define EAX (env->regs[R_EAX])
77 #endif
78 #ifndef reg_ECX
79 #define ECX (env->regs[R_ECX])
80 #endif
81 #ifndef reg_EDX
82 #define EDX (env->regs[R_EDX])
83 #endif
84 #ifndef reg_EBX
85 #define EBX (env->regs[R_EBX])
86 #endif
87 #ifndef reg_ESP
88 #define ESP (env->regs[R_ESP])
89 #endif
90 #ifndef reg_EBP
91 #define EBP (env->regs[R_EBP])
92 #endif
93 #ifndef reg_ESI
94 #define ESI (env->regs[R_ESI])
95 #endif
96 #ifndef reg_EDI
97 #define EDI (env->regs[R_EDI])
98 #endif
99 #define EIP (env->eip)
100 #define DF (env->df)
101
102 #define CC_SRC (env->cc_src)
103 #define CC_DST (env->cc_dst)
104 #define CC_OP (env->cc_op)
105
106 /* float macros */
107 #define FT0 (env->ft0)
108 #define ST0 (env->fpregs[env->fpstt])
109 #define ST(n) (env->fpregs[(env->fpstt + (n)) & 7])
110 #define ST1 ST(1)
111
112 #ifdef USE_FP_CONVERT
113 #define FP_CONVERT (env->fp_convert)
114 #endif
115
116 #include "cpu.h"
117 #include "exec-all.h"
118
119 typedef struct CCTable {
120 int (*compute_all)(void); /* return all the flags */
121 int (*compute_c)(void); /* return the C flag */
122 } CCTable;
123
124 extern CCTable cc_table[];
125
126 void load_seg(int seg_reg, int selector);
127 void helper_ljmp_protected_T0_T1(int next_eip);
128 void helper_lcall_real_T0_T1(int shift, int next_eip);
129 void helper_lcall_protected_T0_T1(int shift, int next_eip);
130 void helper_iret_real(int shift);
131 void helper_iret_protected(int shift, int next_eip);
132 void helper_lret_protected(int shift, int addend);
133 void helper_lldt_T0(void);
134 void helper_ltr_T0(void);
135 void helper_movl_crN_T0(int reg);
136 void helper_movl_drN_T0(int reg);
137 void helper_invlpg(unsigned int addr);
138 void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
139 void cpu_x86_update_cr3(CPUX86State *env, uint32_t new_cr3);
140 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
141 void cpu_x86_flush_tlb(CPUX86State *env, uint32_t addr);
142 int cpu_x86_handle_mmu_fault(CPUX86State *env, uint32_t addr,
143 int is_write, int is_user, int is_softmmu);
144 void tlb_fill(unsigned long addr, int is_write, int is_user,
145 void *retaddr);
146 void __hidden cpu_lock(void);
147 void __hidden cpu_unlock(void);
148 void do_interrupt(int intno, int is_int, int error_code,
149 unsigned int next_eip, int is_hw);
150 void do_interrupt_user(int intno, int is_int, int error_code,
151 unsigned int next_eip);
152 void raise_interrupt(int intno, int is_int, int error_code,
153 unsigned int next_eip);
154 void raise_exception_err(int exception_index, int error_code);
155 void raise_exception(int exception_index);
156 void __hidden cpu_loop_exit(void);
157 void helper_fsave(uint8_t *ptr, int data32);
158 void helper_frstor(uint8_t *ptr, int data32);
159
160 void OPPROTO op_movl_eflags_T0(void);
161 void OPPROTO op_movl_T0_eflags(void);
162 void raise_interrupt(int intno, int is_int, int error_code,
163 unsigned int next_eip);
164 void raise_exception_err(int exception_index, int error_code);
165 void raise_exception(int exception_index);
166 void helper_divl_EAX_T0(uint32_t eip);
167 void helper_idivl_EAX_T0(uint32_t eip);
168 void helper_cmpxchg8b(void);
169 void helper_cpuid(void);
170 void helper_rdtsc(void);
171 void helper_rdmsr(void);
172 void helper_wrmsr(void);
173 void helper_lsl(void);
174 void helper_lar(void);
175 void helper_verr(void);
176 void helper_verw(void);
177
178 void check_iob_T0(void);
179 void check_iow_T0(void);
180 void check_iol_T0(void);
181 void check_iob_DX(void);
182 void check_iow_DX(void);
183 void check_iol_DX(void);
184
185 /* XXX: move that to a generic header */
186 #if !defined(CONFIG_USER_ONLY)
187
188 #define ldul_user ldl_user
189 #define ldul_kernel ldl_kernel
190
191 #define ACCESS_TYPE 0
192 #define MEMSUFFIX _kernel
193 #define DATA_SIZE 1
194 #include "softmmu_header.h"
195
196 #define DATA_SIZE 2
197 #include "softmmu_header.h"
198
199 #define DATA_SIZE 4
200 #include "softmmu_header.h"
201
202 #define DATA_SIZE 8
203 #include "softmmu_header.h"
204 #undef ACCESS_TYPE
205 #undef MEMSUFFIX
206
207 #define ACCESS_TYPE 1
208 #define MEMSUFFIX _user
209 #define DATA_SIZE 1
210 #include "softmmu_header.h"
211
212 #define DATA_SIZE 2
213 #include "softmmu_header.h"
214
215 #define DATA_SIZE 4
216 #include "softmmu_header.h"
217
218 #define DATA_SIZE 8
219 #include "softmmu_header.h"
220 #undef ACCESS_TYPE
221 #undef MEMSUFFIX
222
223 /* these access are slower, they must be as rare as possible */
224 #define ACCESS_TYPE 2
225 #define MEMSUFFIX _data
226 #define DATA_SIZE 1
227 #include "softmmu_header.h"
228
229 #define DATA_SIZE 2
230 #include "softmmu_header.h"
231
232 #define DATA_SIZE 4
233 #include "softmmu_header.h"
234
235 #define DATA_SIZE 8
236 #include "softmmu_header.h"
237 #undef ACCESS_TYPE
238 #undef MEMSUFFIX
239
240 #define ldub(p) ldub_data(p)
241 #define ldsb(p) ldsb_data(p)
242 #define lduw(p) lduw_data(p)
243 #define ldsw(p) ldsw_data(p)
244 #define ldl(p) ldl_data(p)
245 #define ldq(p) ldq_data(p)
246
247 #define stb(p, v) stb_data(p, v)
248 #define stw(p, v) stw_data(p, v)
249 #define stl(p, v) stl_data(p, v)
250 #define stq(p, v) stq_data(p, v)
251
252 static inline double ldfq(void *ptr)
253 {
254 union {
255 double d;
256 uint64_t i;
257 } u;
258 u.i = ldq(ptr);
259 return u.d;
260 }
261
262 static inline void stfq(void *ptr, double v)
263 {
264 union {
265 double d;
266 uint64_t i;
267 } u;
268 u.d = v;
269 stq(ptr, u.i);
270 }
271
272 static inline float ldfl(void *ptr)
273 {
274 union {
275 float f;
276 uint32_t i;
277 } u;
278 u.i = ldl(ptr);
279 return u.f;
280 }
281
282 static inline void stfl(void *ptr, float v)
283 {
284 union {
285 float f;
286 uint32_t i;
287 } u;
288 u.f = v;
289 stl(ptr, u.i);
290 }
291
292 #endif /* !defined(CONFIG_USER_ONLY) */
293
294 #ifdef USE_X86LDOUBLE
295 /* use long double functions */
296 #define lrint lrintl
297 #define llrint llrintl
298 #define fabs fabsl
299 #define sin sinl
300 #define cos cosl
301 #define sqrt sqrtl
302 #define pow powl
303 #define log logl
304 #define tan tanl
305 #define atan2 atan2l
306 #define floor floorl
307 #define ceil ceill
308 #define rint rintl
309 #endif
310
311 #if !defined(_BSD)
312 extern int lrint(CPU86_LDouble x);
313 extern int64_t llrint(CPU86_LDouble x);
314 #else
315 #define lrint(d) ((int)rint(d))
316 #define llrint(d) ((int)rint(d))
317 #endif
318 extern CPU86_LDouble fabs(CPU86_LDouble x);
319 extern CPU86_LDouble sin(CPU86_LDouble x);
320 extern CPU86_LDouble cos(CPU86_LDouble x);
321 extern CPU86_LDouble sqrt(CPU86_LDouble x);
322 extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
323 extern CPU86_LDouble log(CPU86_LDouble x);
324 extern CPU86_LDouble tan(CPU86_LDouble x);
325 extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
326 extern CPU86_LDouble floor(CPU86_LDouble x);
327 extern CPU86_LDouble ceil(CPU86_LDouble x);
328 extern CPU86_LDouble rint(CPU86_LDouble x);
329
330 #define RC_MASK 0xc00
331 #define RC_NEAR 0x000
332 #define RC_DOWN 0x400
333 #define RC_UP 0x800
334 #define RC_CHOP 0xc00
335
336 #define MAXTAN 9223372036854775808.0
337
338 #ifdef __arm__
339 /* we have no way to do correct rounding - a FPU emulator is needed */
340 #define FE_DOWNWARD FE_TONEAREST
341 #define FE_UPWARD FE_TONEAREST
342 #define FE_TOWARDZERO FE_TONEAREST
343 #endif
344
345 #ifdef USE_X86LDOUBLE
346
347 /* only for x86 */
348 typedef union {
349 long double d;
350 struct {
351 unsigned long long lower;
352 unsigned short upper;
353 } l;
354 } CPU86_LDoubleU;
355
356 /* the following deal with x86 long double-precision numbers */
357 #define MAXEXPD 0x7fff
358 #define EXPBIAS 16383
359 #define EXPD(fp) (fp.l.upper & 0x7fff)
360 #define SIGND(fp) ((fp.l.upper) & 0x8000)
361 #define MANTD(fp) (fp.l.lower)
362 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
363
364 #else
365
366 /* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
367 typedef union {
368 double d;
369 #if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
370 struct {
371 uint32_t lower;
372 int32_t upper;
373 } l;
374 #else
375 struct {
376 int32_t upper;
377 uint32_t lower;
378 } l;
379 #endif
380 #ifndef __arm__
381 int64_t ll;
382 #endif
383 } CPU86_LDoubleU;
384
385 /* the following deal with IEEE double-precision numbers */
386 #define MAXEXPD 0x7ff
387 #define EXPBIAS 1023
388 #define EXPD(fp) (((fp.l.upper) >> 20) & 0x7FF)
389 #define SIGND(fp) ((fp.l.upper) & 0x80000000)
390 #ifdef __arm__
391 #define MANTD(fp) (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
392 #else
393 #define MANTD(fp) (fp.ll & ((1LL << 52) - 1))
394 #endif
395 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
396 #endif
397
398 static inline void fpush(void)
399 {
400 env->fpstt = (env->fpstt - 1) & 7;
401 env->fptags[env->fpstt] = 0; /* validate stack entry */
402 }
403
404 static inline void fpop(void)
405 {
406 env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
407 env->fpstt = (env->fpstt + 1) & 7;
408 }
409
410 #ifndef USE_X86LDOUBLE
411 static inline CPU86_LDouble helper_fldt(uint8_t *ptr)
412 {
413 CPU86_LDoubleU temp;
414 int upper, e;
415 uint64_t ll;
416
417 /* mantissa */
418 upper = lduw(ptr + 8);
419 /* XXX: handle overflow ? */
420 e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
421 e |= (upper >> 4) & 0x800; /* sign */
422 ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
423 #ifdef __arm__
424 temp.l.upper = (e << 20) | (ll >> 32);
425 temp.l.lower = ll;
426 #else
427 temp.ll = ll | ((uint64_t)e << 52);
428 #endif
429 return temp.d;
430 }
431
432 static inline void helper_fstt(CPU86_LDouble f, uint8_t *ptr)
433 {
434 CPU86_LDoubleU temp;
435 int e;
436
437 temp.d = f;
438 /* mantissa */
439 stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
440 /* exponent + sign */
441 e = EXPD(temp) - EXPBIAS + 16383;
442 e |= SIGND(temp) >> 16;
443 stw(ptr + 8, e);
444 }
445 #else
446
447 /* XXX: same endianness assumed */
448
449 #ifdef CONFIG_USER_ONLY
450
451 static inline CPU86_LDouble helper_fldt(uint8_t *ptr)
452 {
453 return *(CPU86_LDouble *)ptr;
454 }
455
456 static inline void helper_fstt(CPU86_LDouble f, uint8_t *ptr)
457 {
458 *(CPU86_LDouble *)ptr = f;
459 }
460
461 #else
462
463 /* we use memory access macros */
464
465 static inline CPU86_LDouble helper_fldt(uint8_t *ptr)
466 {
467 CPU86_LDoubleU temp;
468
469 temp.l.lower = ldq(ptr);
470 temp.l.upper = lduw(ptr + 8);
471 return temp.d;
472 }
473
474 static inline void helper_fstt(CPU86_LDouble f, uint8_t *ptr)
475 {
476 CPU86_LDoubleU temp;
477
478 temp.d = f;
479 stq(ptr, temp.l.lower);
480 stw(ptr + 8, temp.l.upper);
481 }
482
483 #endif /* !CONFIG_USER_ONLY */
484
485 #endif /* USE_X86LDOUBLE */
486
487 #define FPUS_IE (1 << 0)
488 #define FPUS_DE (1 << 1)
489 #define FPUS_ZE (1 << 2)
490 #define FPUS_OE (1 << 3)
491 #define FPUS_UE (1 << 4)
492 #define FPUS_PE (1 << 5)
493 #define FPUS_SF (1 << 6)
494 #define FPUS_SE (1 << 7)
495 #define FPUS_B (1 << 15)
496
497 #define FPUC_EM 0x3f
498
499 const CPU86_LDouble f15rk[7];
500
501 void helper_fldt_ST0_A0(void);
502 void helper_fstt_ST0_A0(void);
503 void fpu_raise_exception(void);
504 CPU86_LDouble helper_fdiv(CPU86_LDouble a, CPU86_LDouble b);
505 void helper_fbld_ST0_A0(void);
506 void helper_fbst_ST0_A0(void);
507 void helper_f2xm1(void);
508 void helper_fyl2x(void);
509 void helper_fptan(void);
510 void helper_fpatan(void);
511 void helper_fxtract(void);
512 void helper_fprem1(void);
513 void helper_fprem(void);
514 void helper_fyl2xp1(void);
515 void helper_fsqrt(void);
516 void helper_fsincos(void);
517 void helper_frndint(void);
518 void helper_fscale(void);
519 void helper_fsin(void);
520 void helper_fcos(void);
521 void helper_fxam_ST0(void);
522 void helper_fstenv(uint8_t *ptr, int data32);
523 void helper_fldenv(uint8_t *ptr, int data32);
524 void helper_fsave(uint8_t *ptr, int data32);
525 void helper_frstor(uint8_t *ptr, int data32);
526 void restore_native_fp_state(CPUState *env);
527 void save_native_fp_state(CPUState *env);
528
529 const uint8_t parity_table[256];
530 const uint8_t rclw_table[32];
531 const uint8_t rclb_table[32];
532
533 static inline uint32_t compute_eflags(void)
534 {
535 return env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
536 }
537
538 /* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
539 static inline void load_eflags(int eflags, int update_mask)
540 {
541 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
542 DF = 1 - (2 * ((eflags >> 10) & 1));
543 env->eflags = (env->eflags & ~update_mask) |
544 (eflags & update_mask);
545 }
546