]> git.proxmox.com Git - qemu.git/blob - target-i386/exec.h
fc8945b964d8d98e2da03241f04a8a435225ef95
[qemu.git] / target-i386 / exec.h
1 /*
2 * i386 execution defines
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #include "dyngen-exec.h"
21
22 /* XXX: factorize this mess */
23 #ifdef TARGET_X86_64
24 #define TARGET_LONG_BITS 64
25 #else
26 #define TARGET_LONG_BITS 32
27 #endif
28
29 #include "cpu-defs.h"
30
31 register struct CPUX86State *env asm(AREG0);
32
33 #include "qemu-common.h"
34 #include "qemu-log.h"
35
36 #undef EAX
37 #define EAX (env->regs[R_EAX])
38 #undef ECX
39 #define ECX (env->regs[R_ECX])
40 #undef EDX
41 #define EDX (env->regs[R_EDX])
42 #undef EBX
43 #define EBX (env->regs[R_EBX])
44 #undef ESP
45 #define ESP (env->regs[R_ESP])
46 #undef EBP
47 #define EBP (env->regs[R_EBP])
48 #undef ESI
49 #define ESI (env->regs[R_ESI])
50 #undef EDI
51 #define EDI (env->regs[R_EDI])
52 #undef EIP
53 #define EIP (env->eip)
54 #define DF (env->df)
55
56 #define CC_SRC (env->cc_src)
57 #define CC_DST (env->cc_dst)
58 #define CC_OP (env->cc_op)
59
60 /* float macros */
61 #define FT0 (env->ft0)
62 #define ST0 (env->fpregs[env->fpstt].d)
63 #define ST(n) (env->fpregs[(env->fpstt + (n)) & 7].d)
64 #define ST1 ST(1)
65
66 #include "cpu.h"
67 #include "exec-all.h"
68
69 /* op_helper.c */
70 void do_interrupt(int intno, int is_int, int error_code,
71 target_ulong next_eip, int is_hw);
72 void do_interrupt_user(int intno, int is_int, int error_code,
73 target_ulong next_eip);
74 void QEMU_NORETURN raise_exception_err(int exception_index, int error_code);
75 void QEMU_NORETURN raise_exception(int exception_index);
76 void QEMU_NORETURN raise_exception_env(int exception_index, CPUState *nenv);
77 void do_smm_enter(void);
78
79 /* n must be a constant to be efficient */
80 static inline target_long lshift(target_long x, int n)
81 {
82 if (n >= 0)
83 return x << n;
84 else
85 return x >> (-n);
86 }
87
88 #include "helper.h"
89
90 static inline void svm_check_intercept(uint32_t type)
91 {
92 helper_svm_check_intercept_param(type, 0);
93 }
94
95 #if !defined(CONFIG_USER_ONLY)
96
97 #include "softmmu_exec.h"
98
99 #endif /* !defined(CONFIG_USER_ONLY) */
100
101 #ifdef USE_X86LDOUBLE
102 /* use long double functions */
103 #define floatx_to_int32 floatx80_to_int32
104 #define floatx_to_int64 floatx80_to_int64
105 #define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
106 #define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
107 #define int32_to_floatx int32_to_floatx80
108 #define int64_to_floatx int64_to_floatx80
109 #define float32_to_floatx float32_to_floatx80
110 #define float64_to_floatx float64_to_floatx80
111 #define floatx_to_float32 floatx80_to_float32
112 #define floatx_to_float64 floatx80_to_float64
113 #define floatx_abs floatx80_abs
114 #define floatx_chs floatx80_chs
115 #define floatx_round_to_int floatx80_round_to_int
116 #define floatx_compare floatx80_compare
117 #define floatx_compare_quiet floatx80_compare_quiet
118 #else
119 #define floatx_to_int32 float64_to_int32
120 #define floatx_to_int64 float64_to_int64
121 #define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
122 #define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
123 #define int32_to_floatx int32_to_float64
124 #define int64_to_floatx int64_to_float64
125 #define float32_to_floatx float32_to_float64
126 #define float64_to_floatx(x, e) (x)
127 #define floatx_to_float32 float64_to_float32
128 #define floatx_to_float64(x, e) (x)
129 #define floatx_abs float64_abs
130 #define floatx_chs float64_chs
131 #define floatx_round_to_int float64_round_to_int
132 #define floatx_compare float64_compare
133 #define floatx_compare_quiet float64_compare_quiet
134 #endif
135
136 #define RC_MASK 0xc00
137 #define RC_NEAR 0x000
138 #define RC_DOWN 0x400
139 #define RC_UP 0x800
140 #define RC_CHOP 0xc00
141
142 #define MAXTAN 9223372036854775808.0
143
144 #ifdef USE_X86LDOUBLE
145
146 /* only for x86 */
147 typedef union {
148 long double d;
149 struct {
150 unsigned long long lower;
151 unsigned short upper;
152 } l;
153 } CPU86_LDoubleU;
154
155 /* the following deal with x86 long double-precision numbers */
156 #define MAXEXPD 0x7fff
157 #define EXPBIAS 16383
158 #define EXPD(fp) (fp.l.upper & 0x7fff)
159 #define SIGND(fp) ((fp.l.upper) & 0x8000)
160 #define MANTD(fp) (fp.l.lower)
161 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
162
163 #else
164
165 /* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
166 typedef union {
167 double d;
168 #if !defined(HOST_WORDS_BIGENDIAN) && !defined(__arm__)
169 struct {
170 uint32_t lower;
171 int32_t upper;
172 } l;
173 #else
174 struct {
175 int32_t upper;
176 uint32_t lower;
177 } l;
178 #endif
179 #ifndef __arm__
180 int64_t ll;
181 #endif
182 } CPU86_LDoubleU;
183
184 /* the following deal with IEEE double-precision numbers */
185 #define MAXEXPD 0x7ff
186 #define EXPBIAS 1023
187 #define EXPD(fp) (((fp.l.upper) >> 20) & 0x7FF)
188 #define SIGND(fp) ((fp.l.upper) & 0x80000000)
189 #ifdef __arm__
190 #define MANTD(fp) (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
191 #else
192 #define MANTD(fp) (fp.ll & ((1LL << 52) - 1))
193 #endif
194 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
195 #endif
196
197 static inline void fpush(void)
198 {
199 env->fpstt = (env->fpstt - 1) & 7;
200 env->fptags[env->fpstt] = 0; /* validate stack entry */
201 }
202
203 static inline void fpop(void)
204 {
205 env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
206 env->fpstt = (env->fpstt + 1) & 7;
207 }
208
209 #ifndef USE_X86LDOUBLE
210 static inline CPU86_LDouble helper_fldt(target_ulong ptr)
211 {
212 CPU86_LDoubleU temp;
213 int upper, e;
214 uint64_t ll;
215
216 /* mantissa */
217 upper = lduw(ptr + 8);
218 /* XXX: handle overflow ? */
219 e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
220 e |= (upper >> 4) & 0x800; /* sign */
221 ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
222 #ifdef __arm__
223 temp.l.upper = (e << 20) | (ll >> 32);
224 temp.l.lower = ll;
225 #else
226 temp.ll = ll | ((uint64_t)e << 52);
227 #endif
228 return temp.d;
229 }
230
231 static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
232 {
233 CPU86_LDoubleU temp;
234 int e;
235
236 temp.d = f;
237 /* mantissa */
238 stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
239 /* exponent + sign */
240 e = EXPD(temp) - EXPBIAS + 16383;
241 e |= SIGND(temp) >> 16;
242 stw(ptr + 8, e);
243 }
244 #else
245
246 /* we use memory access macros */
247
248 static inline CPU86_LDouble helper_fldt(target_ulong ptr)
249 {
250 CPU86_LDoubleU temp;
251
252 temp.l.lower = ldq(ptr);
253 temp.l.upper = lduw(ptr + 8);
254 return temp.d;
255 }
256
257 static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
258 {
259 CPU86_LDoubleU temp;
260
261 temp.d = f;
262 stq(ptr, temp.l.lower);
263 stw(ptr + 8, temp.l.upper);
264 }
265
266 #endif /* USE_X86LDOUBLE */
267
268 #define FPUS_IE (1 << 0)
269 #define FPUS_DE (1 << 1)
270 #define FPUS_ZE (1 << 2)
271 #define FPUS_OE (1 << 3)
272 #define FPUS_UE (1 << 4)
273 #define FPUS_PE (1 << 5)
274 #define FPUS_SF (1 << 6)
275 #define FPUS_SE (1 << 7)
276 #define FPUS_B (1 << 15)
277
278 #define FPUC_EM 0x3f
279
280 static inline uint32_t compute_eflags(void)
281 {
282 return env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
283 }
284
285 /* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
286 static inline void load_eflags(int eflags, int update_mask)
287 {
288 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
289 DF = 1 - (2 * ((eflags >> 10) & 1));
290 env->eflags = (env->eflags & ~update_mask) |
291 (eflags & update_mask) | 0x2;
292 }
293
294 static inline int cpu_has_work(CPUState *env)
295 {
296 int work;
297
298 work = (env->interrupt_request & CPU_INTERRUPT_HARD) &&
299 (env->eflags & IF_MASK);
300 work |= env->interrupt_request & CPU_INTERRUPT_NMI;
301 work |= env->interrupt_request & CPU_INTERRUPT_INIT;
302 work |= env->interrupt_request & CPU_INTERRUPT_SIPI;
303
304 return work;
305 }
306
307 static inline int cpu_halted(CPUState *env) {
308 /* handle exit of HALTED state */
309 if (!env->halted)
310 return 0;
311 /* disable halt condition */
312 if (cpu_has_work(env)) {
313 env->halted = 0;
314 return 0;
315 }
316 return EXCP_HALTED;
317 }
318
319 /* load efer and update the corresponding hflags. XXX: do consistency
320 checks with cpuid bits ? */
321 static inline void cpu_load_efer(CPUState *env, uint64_t val)
322 {
323 env->efer = val;
324 env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
325 if (env->efer & MSR_EFER_LMA)
326 env->hflags |= HF_LMA_MASK;
327 if (env->efer & MSR_EFER_SVME)
328 env->hflags |= HF_SVME_MASK;
329 }
330
331 static inline void cpu_pc_from_tb(CPUState *env, TranslationBlock *tb)
332 {
333 env->eip = tb->pc - tb->cs_base;
334 }
335