]> git.proxmox.com Git - mirror_qemu.git/blob - target-i386/kvm.c
Merge remote-tracking branch 'qemu-kvm/memory/page_desc' into staging
[mirror_qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "kvm.h"
26 #include "cpu.h"
27 #include "gdbstub.h"
28 #include "host-utils.h"
29 #include "hw/pc.h"
30 #include "hw/apic.h"
31 #include "ioport.h"
32
33 //#define DEBUG_KVM
34
35 #ifdef DEBUG_KVM
36 #define DPRINTF(fmt, ...) \
37 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF(fmt, ...) \
40 do { } while (0)
41 #endif
42
43 #define MSR_KVM_WALL_CLOCK 0x11
44 #define MSR_KVM_SYSTEM_TIME 0x12
45
46 #ifndef BUS_MCEERR_AR
47 #define BUS_MCEERR_AR 4
48 #endif
49 #ifndef BUS_MCEERR_AO
50 #define BUS_MCEERR_AO 5
51 #endif
52
53 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
54 KVM_CAP_INFO(SET_TSS_ADDR),
55 KVM_CAP_INFO(EXT_CPUID),
56 KVM_CAP_INFO(MP_STATE),
57 KVM_CAP_LAST_INFO
58 };
59
60 static bool has_msr_star;
61 static bool has_msr_hsave_pa;
62 static bool has_msr_tsc_deadline;
63 static bool has_msr_async_pf_en;
64 static bool has_msr_misc_enable;
65 static int lm_capable_kernel;
66
67 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
68 {
69 struct kvm_cpuid2 *cpuid;
70 int r, size;
71
72 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
73 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
74 cpuid->nent = max;
75 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76 if (r == 0 && cpuid->nent >= max) {
77 r = -E2BIG;
78 }
79 if (r < 0) {
80 if (r == -E2BIG) {
81 g_free(cpuid);
82 return NULL;
83 } else {
84 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
85 strerror(-r));
86 exit(1);
87 }
88 }
89 return cpuid;
90 }
91
92 struct kvm_para_features {
93 int cap;
94 int feature;
95 } para_features[] = {
96 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
97 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
98 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
99 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
100 { -1, -1 }
101 };
102
103 static int get_para_features(KVMState *s)
104 {
105 int i, features = 0;
106
107 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
108 if (kvm_check_extension(s, para_features[i].cap)) {
109 features |= (1 << para_features[i].feature);
110 }
111 }
112
113 return features;
114 }
115
116
117 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
118 uint32_t index, int reg)
119 {
120 struct kvm_cpuid2 *cpuid;
121 int i, max;
122 uint32_t ret = 0;
123 uint32_t cpuid_1_edx;
124 int has_kvm_features = 0;
125
126 max = 1;
127 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
128 max *= 2;
129 }
130
131 for (i = 0; i < cpuid->nent; ++i) {
132 if (cpuid->entries[i].function == function &&
133 cpuid->entries[i].index == index) {
134 if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
135 has_kvm_features = 1;
136 }
137 switch (reg) {
138 case R_EAX:
139 ret = cpuid->entries[i].eax;
140 break;
141 case R_EBX:
142 ret = cpuid->entries[i].ebx;
143 break;
144 case R_ECX:
145 ret = cpuid->entries[i].ecx;
146 break;
147 case R_EDX:
148 ret = cpuid->entries[i].edx;
149 switch (function) {
150 case 1:
151 /* KVM before 2.6.30 misreports the following features */
152 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
153 break;
154 case 0x80000001:
155 /* On Intel, kvm returns cpuid according to the Intel spec,
156 * so add missing bits according to the AMD spec:
157 */
158 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
159 ret |= cpuid_1_edx & 0x183f7ff;
160 break;
161 }
162 break;
163 }
164 }
165 }
166
167 g_free(cpuid);
168
169 /* fallback for older kernels */
170 if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
171 ret = get_para_features(s);
172 }
173
174 return ret;
175 }
176
177 typedef struct HWPoisonPage {
178 ram_addr_t ram_addr;
179 QLIST_ENTRY(HWPoisonPage) list;
180 } HWPoisonPage;
181
182 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
183 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
184
185 static void kvm_unpoison_all(void *param)
186 {
187 HWPoisonPage *page, *next_page;
188
189 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
190 QLIST_REMOVE(page, list);
191 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
192 g_free(page);
193 }
194 }
195
196 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
197 {
198 HWPoisonPage *page;
199
200 QLIST_FOREACH(page, &hwpoison_page_list, list) {
201 if (page->ram_addr == ram_addr) {
202 return;
203 }
204 }
205 page = g_malloc(sizeof(HWPoisonPage));
206 page->ram_addr = ram_addr;
207 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
208 }
209
210 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
211 int *max_banks)
212 {
213 int r;
214
215 r = kvm_check_extension(s, KVM_CAP_MCE);
216 if (r > 0) {
217 *max_banks = r;
218 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
219 }
220 return -ENOSYS;
221 }
222
223 static void kvm_mce_inject(CPUState *env, target_phys_addr_t paddr, int code)
224 {
225 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
226 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
227 uint64_t mcg_status = MCG_STATUS_MCIP;
228
229 if (code == BUS_MCEERR_AR) {
230 status |= MCI_STATUS_AR | 0x134;
231 mcg_status |= MCG_STATUS_EIPV;
232 } else {
233 status |= 0xc0;
234 mcg_status |= MCG_STATUS_RIPV;
235 }
236 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
237 (MCM_ADDR_PHYS << 6) | 0xc,
238 cpu_x86_support_mca_broadcast(env) ?
239 MCE_INJECT_BROADCAST : 0);
240 }
241
242 static void hardware_memory_error(void)
243 {
244 fprintf(stderr, "Hardware memory error!\n");
245 exit(1);
246 }
247
248 int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
249 {
250 ram_addr_t ram_addr;
251 target_phys_addr_t paddr;
252
253 if ((env->mcg_cap & MCG_SER_P) && addr
254 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
255 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
256 !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
257 fprintf(stderr, "Hardware memory error for memory used by "
258 "QEMU itself instead of guest system!\n");
259 /* Hope we are lucky for AO MCE */
260 if (code == BUS_MCEERR_AO) {
261 return 0;
262 } else {
263 hardware_memory_error();
264 }
265 }
266 kvm_hwpoison_page_add(ram_addr);
267 kvm_mce_inject(env, paddr, code);
268 } else {
269 if (code == BUS_MCEERR_AO) {
270 return 0;
271 } else if (code == BUS_MCEERR_AR) {
272 hardware_memory_error();
273 } else {
274 return 1;
275 }
276 }
277 return 0;
278 }
279
280 int kvm_arch_on_sigbus(int code, void *addr)
281 {
282 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
283 ram_addr_t ram_addr;
284 target_phys_addr_t paddr;
285
286 /* Hope we are lucky for AO MCE */
287 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
288 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
289 &paddr)) {
290 fprintf(stderr, "Hardware memory error for memory used by "
291 "QEMU itself instead of guest system!: %p\n", addr);
292 return 0;
293 }
294 kvm_hwpoison_page_add(ram_addr);
295 kvm_mce_inject(first_cpu, paddr, code);
296 } else {
297 if (code == BUS_MCEERR_AO) {
298 return 0;
299 } else if (code == BUS_MCEERR_AR) {
300 hardware_memory_error();
301 } else {
302 return 1;
303 }
304 }
305 return 0;
306 }
307
308 static int kvm_inject_mce_oldstyle(CPUState *env)
309 {
310 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
311 unsigned int bank, bank_num = env->mcg_cap & 0xff;
312 struct kvm_x86_mce mce;
313
314 env->exception_injected = -1;
315
316 /*
317 * There must be at least one bank in use if an MCE is pending.
318 * Find it and use its values for the event injection.
319 */
320 for (bank = 0; bank < bank_num; bank++) {
321 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
322 break;
323 }
324 }
325 assert(bank < bank_num);
326
327 mce.bank = bank;
328 mce.status = env->mce_banks[bank * 4 + 1];
329 mce.mcg_status = env->mcg_status;
330 mce.addr = env->mce_banks[bank * 4 + 2];
331 mce.misc = env->mce_banks[bank * 4 + 3];
332
333 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
334 }
335 return 0;
336 }
337
338 static void cpu_update_state(void *opaque, int running, RunState state)
339 {
340 CPUState *env = opaque;
341
342 if (running) {
343 env->tsc_valid = false;
344 }
345 }
346
347 int kvm_arch_init_vcpu(CPUState *env)
348 {
349 struct {
350 struct kvm_cpuid2 cpuid;
351 struct kvm_cpuid_entry2 entries[100];
352 } QEMU_PACKED cpuid_data;
353 KVMState *s = env->kvm_state;
354 uint32_t limit, i, j, cpuid_i;
355 uint32_t unused;
356 struct kvm_cpuid_entry2 *c;
357 uint32_t signature[3];
358 int r;
359
360 env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
361
362 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
363 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
364 env->cpuid_ext_features |= i;
365
366 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
367 0, R_EDX);
368 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
369 0, R_ECX);
370 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
371 0, R_EDX);
372
373 cpuid_i = 0;
374
375 /* Paravirtualization CPUIDs */
376 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
377 c = &cpuid_data.entries[cpuid_i++];
378 memset(c, 0, sizeof(*c));
379 c->function = KVM_CPUID_SIGNATURE;
380 c->eax = 0;
381 c->ebx = signature[0];
382 c->ecx = signature[1];
383 c->edx = signature[2];
384
385 c = &cpuid_data.entries[cpuid_i++];
386 memset(c, 0, sizeof(*c));
387 c->function = KVM_CPUID_FEATURES;
388 c->eax = env->cpuid_kvm_features &
389 kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
390
391 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
392
393 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
394
395 for (i = 0; i <= limit; i++) {
396 c = &cpuid_data.entries[cpuid_i++];
397
398 switch (i) {
399 case 2: {
400 /* Keep reading function 2 till all the input is received */
401 int times;
402
403 c->function = i;
404 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
405 KVM_CPUID_FLAG_STATE_READ_NEXT;
406 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
407 times = c->eax & 0xff;
408
409 for (j = 1; j < times; ++j) {
410 c = &cpuid_data.entries[cpuid_i++];
411 c->function = i;
412 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
413 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
414 }
415 break;
416 }
417 case 4:
418 case 0xb:
419 case 0xd:
420 for (j = 0; ; j++) {
421 if (i == 0xd && j == 64) {
422 break;
423 }
424 c->function = i;
425 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
426 c->index = j;
427 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
428
429 if (i == 4 && c->eax == 0) {
430 break;
431 }
432 if (i == 0xb && !(c->ecx & 0xff00)) {
433 break;
434 }
435 if (i == 0xd && c->eax == 0) {
436 continue;
437 }
438 c = &cpuid_data.entries[cpuid_i++];
439 }
440 break;
441 default:
442 c->function = i;
443 c->flags = 0;
444 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
445 break;
446 }
447 }
448 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
449
450 for (i = 0x80000000; i <= limit; i++) {
451 c = &cpuid_data.entries[cpuid_i++];
452
453 c->function = i;
454 c->flags = 0;
455 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
456 }
457
458 /* Call Centaur's CPUID instructions they are supported. */
459 if (env->cpuid_xlevel2 > 0) {
460 env->cpuid_ext4_features &=
461 kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
462 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
463
464 for (i = 0xC0000000; i <= limit; i++) {
465 c = &cpuid_data.entries[cpuid_i++];
466
467 c->function = i;
468 c->flags = 0;
469 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
470 }
471 }
472
473 cpuid_data.cpuid.nent = cpuid_i;
474
475 if (((env->cpuid_version >> 8)&0xF) >= 6
476 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
477 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
478 uint64_t mcg_cap;
479 int banks;
480 int ret;
481
482 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
483 if (ret < 0) {
484 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
485 return ret;
486 }
487
488 if (banks > MCE_BANKS_DEF) {
489 banks = MCE_BANKS_DEF;
490 }
491 mcg_cap &= MCE_CAP_DEF;
492 mcg_cap |= banks;
493 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
494 if (ret < 0) {
495 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
496 return ret;
497 }
498
499 env->mcg_cap = mcg_cap;
500 }
501
502 qemu_add_vm_change_state_handler(cpu_update_state, env);
503
504 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
505 if (r) {
506 return r;
507 }
508
509 r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
510 if (r && env->tsc_khz) {
511 r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
512 if (r < 0) {
513 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
514 return r;
515 }
516 }
517
518 if (kvm_has_xsave()) {
519 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
520 }
521
522 return 0;
523 }
524
525 void kvm_arch_reset_vcpu(CPUState *env)
526 {
527 env->exception_injected = -1;
528 env->interrupt_injected = -1;
529 env->xcr0 = 1;
530 if (kvm_irqchip_in_kernel()) {
531 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
532 KVM_MP_STATE_UNINITIALIZED;
533 } else {
534 env->mp_state = KVM_MP_STATE_RUNNABLE;
535 }
536 }
537
538 static int kvm_get_supported_msrs(KVMState *s)
539 {
540 static int kvm_supported_msrs;
541 int ret = 0;
542
543 /* first time */
544 if (kvm_supported_msrs == 0) {
545 struct kvm_msr_list msr_list, *kvm_msr_list;
546
547 kvm_supported_msrs = -1;
548
549 /* Obtain MSR list from KVM. These are the MSRs that we must
550 * save/restore */
551 msr_list.nmsrs = 0;
552 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
553 if (ret < 0 && ret != -E2BIG) {
554 return ret;
555 }
556 /* Old kernel modules had a bug and could write beyond the provided
557 memory. Allocate at least a safe amount of 1K. */
558 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
559 msr_list.nmsrs *
560 sizeof(msr_list.indices[0])));
561
562 kvm_msr_list->nmsrs = msr_list.nmsrs;
563 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
564 if (ret >= 0) {
565 int i;
566
567 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
568 if (kvm_msr_list->indices[i] == MSR_STAR) {
569 has_msr_star = true;
570 continue;
571 }
572 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
573 has_msr_hsave_pa = true;
574 continue;
575 }
576 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
577 has_msr_tsc_deadline = true;
578 continue;
579 }
580 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
581 has_msr_misc_enable = true;
582 continue;
583 }
584 }
585 }
586
587 g_free(kvm_msr_list);
588 }
589
590 return ret;
591 }
592
593 int kvm_arch_init(KVMState *s)
594 {
595 uint64_t identity_base = 0xfffbc000;
596 int ret;
597 struct utsname utsname;
598
599 ret = kvm_get_supported_msrs(s);
600 if (ret < 0) {
601 return ret;
602 }
603
604 uname(&utsname);
605 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
606
607 /*
608 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
609 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
610 * Since these must be part of guest physical memory, we need to allocate
611 * them, both by setting their start addresses in the kernel and by
612 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
613 *
614 * Older KVM versions may not support setting the identity map base. In
615 * that case we need to stick with the default, i.e. a 256K maximum BIOS
616 * size.
617 */
618 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
619 /* Allows up to 16M BIOSes. */
620 identity_base = 0xfeffc000;
621
622 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
623 if (ret < 0) {
624 return ret;
625 }
626 }
627
628 /* Set TSS base one page after EPT identity map. */
629 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
630 if (ret < 0) {
631 return ret;
632 }
633
634 /* Tell fw_cfg to notify the BIOS to reserve the range. */
635 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
636 if (ret < 0) {
637 fprintf(stderr, "e820_add_entry() table is full\n");
638 return ret;
639 }
640 qemu_register_reset(kvm_unpoison_all, NULL);
641
642 return 0;
643 }
644
645 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
646 {
647 lhs->selector = rhs->selector;
648 lhs->base = rhs->base;
649 lhs->limit = rhs->limit;
650 lhs->type = 3;
651 lhs->present = 1;
652 lhs->dpl = 3;
653 lhs->db = 0;
654 lhs->s = 1;
655 lhs->l = 0;
656 lhs->g = 0;
657 lhs->avl = 0;
658 lhs->unusable = 0;
659 }
660
661 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
662 {
663 unsigned flags = rhs->flags;
664 lhs->selector = rhs->selector;
665 lhs->base = rhs->base;
666 lhs->limit = rhs->limit;
667 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
668 lhs->present = (flags & DESC_P_MASK) != 0;
669 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
670 lhs->db = (flags >> DESC_B_SHIFT) & 1;
671 lhs->s = (flags & DESC_S_MASK) != 0;
672 lhs->l = (flags >> DESC_L_SHIFT) & 1;
673 lhs->g = (flags & DESC_G_MASK) != 0;
674 lhs->avl = (flags & DESC_AVL_MASK) != 0;
675 lhs->unusable = 0;
676 }
677
678 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
679 {
680 lhs->selector = rhs->selector;
681 lhs->base = rhs->base;
682 lhs->limit = rhs->limit;
683 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
684 (rhs->present * DESC_P_MASK) |
685 (rhs->dpl << DESC_DPL_SHIFT) |
686 (rhs->db << DESC_B_SHIFT) |
687 (rhs->s * DESC_S_MASK) |
688 (rhs->l << DESC_L_SHIFT) |
689 (rhs->g * DESC_G_MASK) |
690 (rhs->avl * DESC_AVL_MASK);
691 }
692
693 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
694 {
695 if (set) {
696 *kvm_reg = *qemu_reg;
697 } else {
698 *qemu_reg = *kvm_reg;
699 }
700 }
701
702 static int kvm_getput_regs(CPUState *env, int set)
703 {
704 struct kvm_regs regs;
705 int ret = 0;
706
707 if (!set) {
708 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
709 if (ret < 0) {
710 return ret;
711 }
712 }
713
714 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
715 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
716 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
717 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
718 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
719 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
720 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
721 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
722 #ifdef TARGET_X86_64
723 kvm_getput_reg(&regs.r8, &env->regs[8], set);
724 kvm_getput_reg(&regs.r9, &env->regs[9], set);
725 kvm_getput_reg(&regs.r10, &env->regs[10], set);
726 kvm_getput_reg(&regs.r11, &env->regs[11], set);
727 kvm_getput_reg(&regs.r12, &env->regs[12], set);
728 kvm_getput_reg(&regs.r13, &env->regs[13], set);
729 kvm_getput_reg(&regs.r14, &env->regs[14], set);
730 kvm_getput_reg(&regs.r15, &env->regs[15], set);
731 #endif
732
733 kvm_getput_reg(&regs.rflags, &env->eflags, set);
734 kvm_getput_reg(&regs.rip, &env->eip, set);
735
736 if (set) {
737 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
738 }
739
740 return ret;
741 }
742
743 static int kvm_put_fpu(CPUState *env)
744 {
745 struct kvm_fpu fpu;
746 int i;
747
748 memset(&fpu, 0, sizeof fpu);
749 fpu.fsw = env->fpus & ~(7 << 11);
750 fpu.fsw |= (env->fpstt & 7) << 11;
751 fpu.fcw = env->fpuc;
752 fpu.last_opcode = env->fpop;
753 fpu.last_ip = env->fpip;
754 fpu.last_dp = env->fpdp;
755 for (i = 0; i < 8; ++i) {
756 fpu.ftwx |= (!env->fptags[i]) << i;
757 }
758 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
759 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
760 fpu.mxcsr = env->mxcsr;
761
762 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
763 }
764
765 #define XSAVE_FCW_FSW 0
766 #define XSAVE_FTW_FOP 1
767 #define XSAVE_CWD_RIP 2
768 #define XSAVE_CWD_RDP 4
769 #define XSAVE_MXCSR 6
770 #define XSAVE_ST_SPACE 8
771 #define XSAVE_XMM_SPACE 40
772 #define XSAVE_XSTATE_BV 128
773 #define XSAVE_YMMH_SPACE 144
774
775 static int kvm_put_xsave(CPUState *env)
776 {
777 struct kvm_xsave* xsave = env->kvm_xsave_buf;
778 uint16_t cwd, swd, twd;
779 int i, r;
780
781 if (!kvm_has_xsave()) {
782 return kvm_put_fpu(env);
783 }
784
785 memset(xsave, 0, sizeof(struct kvm_xsave));
786 twd = 0;
787 swd = env->fpus & ~(7 << 11);
788 swd |= (env->fpstt & 7) << 11;
789 cwd = env->fpuc;
790 for (i = 0; i < 8; ++i) {
791 twd |= (!env->fptags[i]) << i;
792 }
793 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
794 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
795 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
796 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
797 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
798 sizeof env->fpregs);
799 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
800 sizeof env->xmm_regs);
801 xsave->region[XSAVE_MXCSR] = env->mxcsr;
802 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
803 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
804 sizeof env->ymmh_regs);
805 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
806 return r;
807 }
808
809 static int kvm_put_xcrs(CPUState *env)
810 {
811 struct kvm_xcrs xcrs;
812
813 if (!kvm_has_xcrs()) {
814 return 0;
815 }
816
817 xcrs.nr_xcrs = 1;
818 xcrs.flags = 0;
819 xcrs.xcrs[0].xcr = 0;
820 xcrs.xcrs[0].value = env->xcr0;
821 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
822 }
823
824 static int kvm_put_sregs(CPUState *env)
825 {
826 struct kvm_sregs sregs;
827
828 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
829 if (env->interrupt_injected >= 0) {
830 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
831 (uint64_t)1 << (env->interrupt_injected % 64);
832 }
833
834 if ((env->eflags & VM_MASK)) {
835 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
836 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
837 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
838 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
839 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
840 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
841 } else {
842 set_seg(&sregs.cs, &env->segs[R_CS]);
843 set_seg(&sregs.ds, &env->segs[R_DS]);
844 set_seg(&sregs.es, &env->segs[R_ES]);
845 set_seg(&sregs.fs, &env->segs[R_FS]);
846 set_seg(&sregs.gs, &env->segs[R_GS]);
847 set_seg(&sregs.ss, &env->segs[R_SS]);
848 }
849
850 set_seg(&sregs.tr, &env->tr);
851 set_seg(&sregs.ldt, &env->ldt);
852
853 sregs.idt.limit = env->idt.limit;
854 sregs.idt.base = env->idt.base;
855 sregs.gdt.limit = env->gdt.limit;
856 sregs.gdt.base = env->gdt.base;
857
858 sregs.cr0 = env->cr[0];
859 sregs.cr2 = env->cr[2];
860 sregs.cr3 = env->cr[3];
861 sregs.cr4 = env->cr[4];
862
863 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
864 sregs.apic_base = cpu_get_apic_base(env->apic_state);
865
866 sregs.efer = env->efer;
867
868 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
869 }
870
871 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
872 uint32_t index, uint64_t value)
873 {
874 entry->index = index;
875 entry->data = value;
876 }
877
878 static int kvm_put_msrs(CPUState *env, int level)
879 {
880 struct {
881 struct kvm_msrs info;
882 struct kvm_msr_entry entries[100];
883 } msr_data;
884 struct kvm_msr_entry *msrs = msr_data.entries;
885 int n = 0;
886
887 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
888 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
889 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
890 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
891 if (has_msr_star) {
892 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
893 }
894 if (has_msr_hsave_pa) {
895 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
896 }
897 if (has_msr_tsc_deadline) {
898 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
899 }
900 if (has_msr_misc_enable) {
901 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
902 env->msr_ia32_misc_enable);
903 }
904 #ifdef TARGET_X86_64
905 if (lm_capable_kernel) {
906 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
907 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
908 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
909 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
910 }
911 #endif
912 if (level == KVM_PUT_FULL_STATE) {
913 /*
914 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
915 * writeback. Until this is fixed, we only write the offset to SMP
916 * guests after migration, desynchronizing the VCPUs, but avoiding
917 * huge jump-backs that would occur without any writeback at all.
918 */
919 if (smp_cpus == 1 || env->tsc != 0) {
920 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
921 }
922 }
923 /*
924 * The following paravirtual MSRs have side effects on the guest or are
925 * too heavy for normal writeback. Limit them to reset or full state
926 * updates.
927 */
928 if (level >= KVM_PUT_RESET_STATE) {
929 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
930 env->system_time_msr);
931 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
932 if (has_msr_async_pf_en) {
933 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
934 env->async_pf_en_msr);
935 }
936 }
937 if (env->mcg_cap) {
938 int i;
939
940 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
941 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
942 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
943 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
944 }
945 }
946
947 msr_data.info.nmsrs = n;
948
949 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
950
951 }
952
953
954 static int kvm_get_fpu(CPUState *env)
955 {
956 struct kvm_fpu fpu;
957 int i, ret;
958
959 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
960 if (ret < 0) {
961 return ret;
962 }
963
964 env->fpstt = (fpu.fsw >> 11) & 7;
965 env->fpus = fpu.fsw;
966 env->fpuc = fpu.fcw;
967 env->fpop = fpu.last_opcode;
968 env->fpip = fpu.last_ip;
969 env->fpdp = fpu.last_dp;
970 for (i = 0; i < 8; ++i) {
971 env->fptags[i] = !((fpu.ftwx >> i) & 1);
972 }
973 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
974 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
975 env->mxcsr = fpu.mxcsr;
976
977 return 0;
978 }
979
980 static int kvm_get_xsave(CPUState *env)
981 {
982 struct kvm_xsave* xsave = env->kvm_xsave_buf;
983 int ret, i;
984 uint16_t cwd, swd, twd;
985
986 if (!kvm_has_xsave()) {
987 return kvm_get_fpu(env);
988 }
989
990 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
991 if (ret < 0) {
992 return ret;
993 }
994
995 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
996 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
997 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
998 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
999 env->fpstt = (swd >> 11) & 7;
1000 env->fpus = swd;
1001 env->fpuc = cwd;
1002 for (i = 0; i < 8; ++i) {
1003 env->fptags[i] = !((twd >> i) & 1);
1004 }
1005 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1006 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1007 env->mxcsr = xsave->region[XSAVE_MXCSR];
1008 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1009 sizeof env->fpregs);
1010 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1011 sizeof env->xmm_regs);
1012 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1013 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1014 sizeof env->ymmh_regs);
1015 return 0;
1016 }
1017
1018 static int kvm_get_xcrs(CPUState *env)
1019 {
1020 int i, ret;
1021 struct kvm_xcrs xcrs;
1022
1023 if (!kvm_has_xcrs()) {
1024 return 0;
1025 }
1026
1027 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1028 if (ret < 0) {
1029 return ret;
1030 }
1031
1032 for (i = 0; i < xcrs.nr_xcrs; i++) {
1033 /* Only support xcr0 now */
1034 if (xcrs.xcrs[0].xcr == 0) {
1035 env->xcr0 = xcrs.xcrs[0].value;
1036 break;
1037 }
1038 }
1039 return 0;
1040 }
1041
1042 static int kvm_get_sregs(CPUState *env)
1043 {
1044 struct kvm_sregs sregs;
1045 uint32_t hflags;
1046 int bit, i, ret;
1047
1048 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1049 if (ret < 0) {
1050 return ret;
1051 }
1052
1053 /* There can only be one pending IRQ set in the bitmap at a time, so try
1054 to find it and save its number instead (-1 for none). */
1055 env->interrupt_injected = -1;
1056 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1057 if (sregs.interrupt_bitmap[i]) {
1058 bit = ctz64(sregs.interrupt_bitmap[i]);
1059 env->interrupt_injected = i * 64 + bit;
1060 break;
1061 }
1062 }
1063
1064 get_seg(&env->segs[R_CS], &sregs.cs);
1065 get_seg(&env->segs[R_DS], &sregs.ds);
1066 get_seg(&env->segs[R_ES], &sregs.es);
1067 get_seg(&env->segs[R_FS], &sregs.fs);
1068 get_seg(&env->segs[R_GS], &sregs.gs);
1069 get_seg(&env->segs[R_SS], &sregs.ss);
1070
1071 get_seg(&env->tr, &sregs.tr);
1072 get_seg(&env->ldt, &sregs.ldt);
1073
1074 env->idt.limit = sregs.idt.limit;
1075 env->idt.base = sregs.idt.base;
1076 env->gdt.limit = sregs.gdt.limit;
1077 env->gdt.base = sregs.gdt.base;
1078
1079 env->cr[0] = sregs.cr0;
1080 env->cr[2] = sregs.cr2;
1081 env->cr[3] = sregs.cr3;
1082 env->cr[4] = sregs.cr4;
1083
1084 env->efer = sregs.efer;
1085
1086 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1087
1088 #define HFLAG_COPY_MASK \
1089 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1090 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1091 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1092 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1093
1094 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1095 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1096 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1097 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1098 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1099 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1100 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1101
1102 if (env->efer & MSR_EFER_LMA) {
1103 hflags |= HF_LMA_MASK;
1104 }
1105
1106 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1107 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1108 } else {
1109 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1110 (DESC_B_SHIFT - HF_CS32_SHIFT);
1111 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1112 (DESC_B_SHIFT - HF_SS32_SHIFT);
1113 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1114 !(hflags & HF_CS32_MASK)) {
1115 hflags |= HF_ADDSEG_MASK;
1116 } else {
1117 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1118 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1119 }
1120 }
1121 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1122
1123 return 0;
1124 }
1125
1126 static int kvm_get_msrs(CPUState *env)
1127 {
1128 struct {
1129 struct kvm_msrs info;
1130 struct kvm_msr_entry entries[100];
1131 } msr_data;
1132 struct kvm_msr_entry *msrs = msr_data.entries;
1133 int ret, i, n;
1134
1135 n = 0;
1136 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1137 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1138 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1139 msrs[n++].index = MSR_PAT;
1140 if (has_msr_star) {
1141 msrs[n++].index = MSR_STAR;
1142 }
1143 if (has_msr_hsave_pa) {
1144 msrs[n++].index = MSR_VM_HSAVE_PA;
1145 }
1146 if (has_msr_tsc_deadline) {
1147 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1148 }
1149 if (has_msr_misc_enable) {
1150 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1151 }
1152
1153 if (!env->tsc_valid) {
1154 msrs[n++].index = MSR_IA32_TSC;
1155 env->tsc_valid = !runstate_is_running();
1156 }
1157
1158 #ifdef TARGET_X86_64
1159 if (lm_capable_kernel) {
1160 msrs[n++].index = MSR_CSTAR;
1161 msrs[n++].index = MSR_KERNELGSBASE;
1162 msrs[n++].index = MSR_FMASK;
1163 msrs[n++].index = MSR_LSTAR;
1164 }
1165 #endif
1166 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1167 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1168 if (has_msr_async_pf_en) {
1169 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1170 }
1171
1172 if (env->mcg_cap) {
1173 msrs[n++].index = MSR_MCG_STATUS;
1174 msrs[n++].index = MSR_MCG_CTL;
1175 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1176 msrs[n++].index = MSR_MC0_CTL + i;
1177 }
1178 }
1179
1180 msr_data.info.nmsrs = n;
1181 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1182 if (ret < 0) {
1183 return ret;
1184 }
1185
1186 for (i = 0; i < ret; i++) {
1187 switch (msrs[i].index) {
1188 case MSR_IA32_SYSENTER_CS:
1189 env->sysenter_cs = msrs[i].data;
1190 break;
1191 case MSR_IA32_SYSENTER_ESP:
1192 env->sysenter_esp = msrs[i].data;
1193 break;
1194 case MSR_IA32_SYSENTER_EIP:
1195 env->sysenter_eip = msrs[i].data;
1196 break;
1197 case MSR_PAT:
1198 env->pat = msrs[i].data;
1199 break;
1200 case MSR_STAR:
1201 env->star = msrs[i].data;
1202 break;
1203 #ifdef TARGET_X86_64
1204 case MSR_CSTAR:
1205 env->cstar = msrs[i].data;
1206 break;
1207 case MSR_KERNELGSBASE:
1208 env->kernelgsbase = msrs[i].data;
1209 break;
1210 case MSR_FMASK:
1211 env->fmask = msrs[i].data;
1212 break;
1213 case MSR_LSTAR:
1214 env->lstar = msrs[i].data;
1215 break;
1216 #endif
1217 case MSR_IA32_TSC:
1218 env->tsc = msrs[i].data;
1219 break;
1220 case MSR_IA32_TSCDEADLINE:
1221 env->tsc_deadline = msrs[i].data;
1222 break;
1223 case MSR_VM_HSAVE_PA:
1224 env->vm_hsave = msrs[i].data;
1225 break;
1226 case MSR_KVM_SYSTEM_TIME:
1227 env->system_time_msr = msrs[i].data;
1228 break;
1229 case MSR_KVM_WALL_CLOCK:
1230 env->wall_clock_msr = msrs[i].data;
1231 break;
1232 case MSR_MCG_STATUS:
1233 env->mcg_status = msrs[i].data;
1234 break;
1235 case MSR_MCG_CTL:
1236 env->mcg_ctl = msrs[i].data;
1237 break;
1238 case MSR_IA32_MISC_ENABLE:
1239 env->msr_ia32_misc_enable = msrs[i].data;
1240 break;
1241 default:
1242 if (msrs[i].index >= MSR_MC0_CTL &&
1243 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1244 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1245 }
1246 break;
1247 case MSR_KVM_ASYNC_PF_EN:
1248 env->async_pf_en_msr = msrs[i].data;
1249 break;
1250 }
1251 }
1252
1253 return 0;
1254 }
1255
1256 static int kvm_put_mp_state(CPUState *env)
1257 {
1258 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1259
1260 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1261 }
1262
1263 static int kvm_get_mp_state(CPUState *env)
1264 {
1265 struct kvm_mp_state mp_state;
1266 int ret;
1267
1268 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1269 if (ret < 0) {
1270 return ret;
1271 }
1272 env->mp_state = mp_state.mp_state;
1273 if (kvm_irqchip_in_kernel()) {
1274 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1275 }
1276 return 0;
1277 }
1278
1279 static int kvm_put_vcpu_events(CPUState *env, int level)
1280 {
1281 struct kvm_vcpu_events events;
1282
1283 if (!kvm_has_vcpu_events()) {
1284 return 0;
1285 }
1286
1287 events.exception.injected = (env->exception_injected >= 0);
1288 events.exception.nr = env->exception_injected;
1289 events.exception.has_error_code = env->has_error_code;
1290 events.exception.error_code = env->error_code;
1291
1292 events.interrupt.injected = (env->interrupt_injected >= 0);
1293 events.interrupt.nr = env->interrupt_injected;
1294 events.interrupt.soft = env->soft_interrupt;
1295
1296 events.nmi.injected = env->nmi_injected;
1297 events.nmi.pending = env->nmi_pending;
1298 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1299
1300 events.sipi_vector = env->sipi_vector;
1301
1302 events.flags = 0;
1303 if (level >= KVM_PUT_RESET_STATE) {
1304 events.flags |=
1305 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1306 }
1307
1308 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1309 }
1310
1311 static int kvm_get_vcpu_events(CPUState *env)
1312 {
1313 struct kvm_vcpu_events events;
1314 int ret;
1315
1316 if (!kvm_has_vcpu_events()) {
1317 return 0;
1318 }
1319
1320 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1321 if (ret < 0) {
1322 return ret;
1323 }
1324 env->exception_injected =
1325 events.exception.injected ? events.exception.nr : -1;
1326 env->has_error_code = events.exception.has_error_code;
1327 env->error_code = events.exception.error_code;
1328
1329 env->interrupt_injected =
1330 events.interrupt.injected ? events.interrupt.nr : -1;
1331 env->soft_interrupt = events.interrupt.soft;
1332
1333 env->nmi_injected = events.nmi.injected;
1334 env->nmi_pending = events.nmi.pending;
1335 if (events.nmi.masked) {
1336 env->hflags2 |= HF2_NMI_MASK;
1337 } else {
1338 env->hflags2 &= ~HF2_NMI_MASK;
1339 }
1340
1341 env->sipi_vector = events.sipi_vector;
1342
1343 return 0;
1344 }
1345
1346 static int kvm_guest_debug_workarounds(CPUState *env)
1347 {
1348 int ret = 0;
1349 unsigned long reinject_trap = 0;
1350
1351 if (!kvm_has_vcpu_events()) {
1352 if (env->exception_injected == 1) {
1353 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1354 } else if (env->exception_injected == 3) {
1355 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1356 }
1357 env->exception_injected = -1;
1358 }
1359
1360 /*
1361 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1362 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1363 * by updating the debug state once again if single-stepping is on.
1364 * Another reason to call kvm_update_guest_debug here is a pending debug
1365 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1366 * reinject them via SET_GUEST_DEBUG.
1367 */
1368 if (reinject_trap ||
1369 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1370 ret = kvm_update_guest_debug(env, reinject_trap);
1371 }
1372 return ret;
1373 }
1374
1375 static int kvm_put_debugregs(CPUState *env)
1376 {
1377 struct kvm_debugregs dbgregs;
1378 int i;
1379
1380 if (!kvm_has_debugregs()) {
1381 return 0;
1382 }
1383
1384 for (i = 0; i < 4; i++) {
1385 dbgregs.db[i] = env->dr[i];
1386 }
1387 dbgregs.dr6 = env->dr[6];
1388 dbgregs.dr7 = env->dr[7];
1389 dbgregs.flags = 0;
1390
1391 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1392 }
1393
1394 static int kvm_get_debugregs(CPUState *env)
1395 {
1396 struct kvm_debugregs dbgregs;
1397 int i, ret;
1398
1399 if (!kvm_has_debugregs()) {
1400 return 0;
1401 }
1402
1403 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1404 if (ret < 0) {
1405 return ret;
1406 }
1407 for (i = 0; i < 4; i++) {
1408 env->dr[i] = dbgregs.db[i];
1409 }
1410 env->dr[4] = env->dr[6] = dbgregs.dr6;
1411 env->dr[5] = env->dr[7] = dbgregs.dr7;
1412
1413 return 0;
1414 }
1415
1416 int kvm_arch_put_registers(CPUState *env, int level)
1417 {
1418 int ret;
1419
1420 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1421
1422 ret = kvm_getput_regs(env, 1);
1423 if (ret < 0) {
1424 return ret;
1425 }
1426 ret = kvm_put_xsave(env);
1427 if (ret < 0) {
1428 return ret;
1429 }
1430 ret = kvm_put_xcrs(env);
1431 if (ret < 0) {
1432 return ret;
1433 }
1434 ret = kvm_put_sregs(env);
1435 if (ret < 0) {
1436 return ret;
1437 }
1438 /* must be before kvm_put_msrs */
1439 ret = kvm_inject_mce_oldstyle(env);
1440 if (ret < 0) {
1441 return ret;
1442 }
1443 ret = kvm_put_msrs(env, level);
1444 if (ret < 0) {
1445 return ret;
1446 }
1447 if (level >= KVM_PUT_RESET_STATE) {
1448 ret = kvm_put_mp_state(env);
1449 if (ret < 0) {
1450 return ret;
1451 }
1452 }
1453 ret = kvm_put_vcpu_events(env, level);
1454 if (ret < 0) {
1455 return ret;
1456 }
1457 ret = kvm_put_debugregs(env);
1458 if (ret < 0) {
1459 return ret;
1460 }
1461 /* must be last */
1462 ret = kvm_guest_debug_workarounds(env);
1463 if (ret < 0) {
1464 return ret;
1465 }
1466 return 0;
1467 }
1468
1469 int kvm_arch_get_registers(CPUState *env)
1470 {
1471 int ret;
1472
1473 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1474
1475 ret = kvm_getput_regs(env, 0);
1476 if (ret < 0) {
1477 return ret;
1478 }
1479 ret = kvm_get_xsave(env);
1480 if (ret < 0) {
1481 return ret;
1482 }
1483 ret = kvm_get_xcrs(env);
1484 if (ret < 0) {
1485 return ret;
1486 }
1487 ret = kvm_get_sregs(env);
1488 if (ret < 0) {
1489 return ret;
1490 }
1491 ret = kvm_get_msrs(env);
1492 if (ret < 0) {
1493 return ret;
1494 }
1495 ret = kvm_get_mp_state(env);
1496 if (ret < 0) {
1497 return ret;
1498 }
1499 ret = kvm_get_vcpu_events(env);
1500 if (ret < 0) {
1501 return ret;
1502 }
1503 ret = kvm_get_debugregs(env);
1504 if (ret < 0) {
1505 return ret;
1506 }
1507 return 0;
1508 }
1509
1510 void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1511 {
1512 int ret;
1513
1514 /* Inject NMI */
1515 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1516 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1517 DPRINTF("injected NMI\n");
1518 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1519 if (ret < 0) {
1520 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1521 strerror(-ret));
1522 }
1523 }
1524
1525 if (!kvm_irqchip_in_kernel()) {
1526 /* Force the VCPU out of its inner loop to process the INIT request */
1527 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1528 env->exit_request = 1;
1529 }
1530
1531 /* Try to inject an interrupt if the guest can accept it */
1532 if (run->ready_for_interrupt_injection &&
1533 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1534 (env->eflags & IF_MASK)) {
1535 int irq;
1536
1537 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1538 irq = cpu_get_pic_interrupt(env);
1539 if (irq >= 0) {
1540 struct kvm_interrupt intr;
1541
1542 intr.irq = irq;
1543 DPRINTF("injected interrupt %d\n", irq);
1544 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1545 if (ret < 0) {
1546 fprintf(stderr,
1547 "KVM: injection failed, interrupt lost (%s)\n",
1548 strerror(-ret));
1549 }
1550 }
1551 }
1552
1553 /* If we have an interrupt but the guest is not ready to receive an
1554 * interrupt, request an interrupt window exit. This will
1555 * cause a return to userspace as soon as the guest is ready to
1556 * receive interrupts. */
1557 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1558 run->request_interrupt_window = 1;
1559 } else {
1560 run->request_interrupt_window = 0;
1561 }
1562
1563 DPRINTF("setting tpr\n");
1564 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1565 }
1566 }
1567
1568 void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1569 {
1570 if (run->if_flag) {
1571 env->eflags |= IF_MASK;
1572 } else {
1573 env->eflags &= ~IF_MASK;
1574 }
1575 cpu_set_apic_tpr(env->apic_state, run->cr8);
1576 cpu_set_apic_base(env->apic_state, run->apic_base);
1577 }
1578
1579 int kvm_arch_process_async_events(CPUState *env)
1580 {
1581 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1582 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1583 assert(env->mcg_cap);
1584
1585 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1586
1587 kvm_cpu_synchronize_state(env);
1588
1589 if (env->exception_injected == EXCP08_DBLE) {
1590 /* this means triple fault */
1591 qemu_system_reset_request();
1592 env->exit_request = 1;
1593 return 0;
1594 }
1595 env->exception_injected = EXCP12_MCHK;
1596 env->has_error_code = 0;
1597
1598 env->halted = 0;
1599 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1600 env->mp_state = KVM_MP_STATE_RUNNABLE;
1601 }
1602 }
1603
1604 if (kvm_irqchip_in_kernel()) {
1605 return 0;
1606 }
1607
1608 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1609 (env->eflags & IF_MASK)) ||
1610 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1611 env->halted = 0;
1612 }
1613 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1614 kvm_cpu_synchronize_state(env);
1615 do_cpu_init(env);
1616 }
1617 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1618 kvm_cpu_synchronize_state(env);
1619 do_cpu_sipi(env);
1620 }
1621
1622 return env->halted;
1623 }
1624
1625 static int kvm_handle_halt(CPUState *env)
1626 {
1627 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1628 (env->eflags & IF_MASK)) &&
1629 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1630 env->halted = 1;
1631 return EXCP_HLT;
1632 }
1633
1634 return 0;
1635 }
1636
1637 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1638 {
1639 static const uint8_t int3 = 0xcc;
1640
1641 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1642 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1643 return -EINVAL;
1644 }
1645 return 0;
1646 }
1647
1648 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1649 {
1650 uint8_t int3;
1651
1652 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1653 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1654 return -EINVAL;
1655 }
1656 return 0;
1657 }
1658
1659 static struct {
1660 target_ulong addr;
1661 int len;
1662 int type;
1663 } hw_breakpoint[4];
1664
1665 static int nb_hw_breakpoint;
1666
1667 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1668 {
1669 int n;
1670
1671 for (n = 0; n < nb_hw_breakpoint; n++) {
1672 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1673 (hw_breakpoint[n].len == len || len == -1)) {
1674 return n;
1675 }
1676 }
1677 return -1;
1678 }
1679
1680 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1681 target_ulong len, int type)
1682 {
1683 switch (type) {
1684 case GDB_BREAKPOINT_HW:
1685 len = 1;
1686 break;
1687 case GDB_WATCHPOINT_WRITE:
1688 case GDB_WATCHPOINT_ACCESS:
1689 switch (len) {
1690 case 1:
1691 break;
1692 case 2:
1693 case 4:
1694 case 8:
1695 if (addr & (len - 1)) {
1696 return -EINVAL;
1697 }
1698 break;
1699 default:
1700 return -EINVAL;
1701 }
1702 break;
1703 default:
1704 return -ENOSYS;
1705 }
1706
1707 if (nb_hw_breakpoint == 4) {
1708 return -ENOBUFS;
1709 }
1710 if (find_hw_breakpoint(addr, len, type) >= 0) {
1711 return -EEXIST;
1712 }
1713 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1714 hw_breakpoint[nb_hw_breakpoint].len = len;
1715 hw_breakpoint[nb_hw_breakpoint].type = type;
1716 nb_hw_breakpoint++;
1717
1718 return 0;
1719 }
1720
1721 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1722 target_ulong len, int type)
1723 {
1724 int n;
1725
1726 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1727 if (n < 0) {
1728 return -ENOENT;
1729 }
1730 nb_hw_breakpoint--;
1731 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1732
1733 return 0;
1734 }
1735
1736 void kvm_arch_remove_all_hw_breakpoints(void)
1737 {
1738 nb_hw_breakpoint = 0;
1739 }
1740
1741 static CPUWatchpoint hw_watchpoint;
1742
1743 static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
1744 {
1745 int ret = 0;
1746 int n;
1747
1748 if (arch_info->exception == 1) {
1749 if (arch_info->dr6 & (1 << 14)) {
1750 if (cpu_single_env->singlestep_enabled) {
1751 ret = EXCP_DEBUG;
1752 }
1753 } else {
1754 for (n = 0; n < 4; n++) {
1755 if (arch_info->dr6 & (1 << n)) {
1756 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1757 case 0x0:
1758 ret = EXCP_DEBUG;
1759 break;
1760 case 0x1:
1761 ret = EXCP_DEBUG;
1762 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1763 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1764 hw_watchpoint.flags = BP_MEM_WRITE;
1765 break;
1766 case 0x3:
1767 ret = EXCP_DEBUG;
1768 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1769 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1770 hw_watchpoint.flags = BP_MEM_ACCESS;
1771 break;
1772 }
1773 }
1774 }
1775 }
1776 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1777 ret = EXCP_DEBUG;
1778 }
1779 if (ret == 0) {
1780 cpu_synchronize_state(cpu_single_env);
1781 assert(cpu_single_env->exception_injected == -1);
1782
1783 /* pass to guest */
1784 cpu_single_env->exception_injected = arch_info->exception;
1785 cpu_single_env->has_error_code = 0;
1786 }
1787
1788 return ret;
1789 }
1790
1791 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1792 {
1793 const uint8_t type_code[] = {
1794 [GDB_BREAKPOINT_HW] = 0x0,
1795 [GDB_WATCHPOINT_WRITE] = 0x1,
1796 [GDB_WATCHPOINT_ACCESS] = 0x3
1797 };
1798 const uint8_t len_code[] = {
1799 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1800 };
1801 int n;
1802
1803 if (kvm_sw_breakpoints_active(env)) {
1804 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1805 }
1806 if (nb_hw_breakpoint > 0) {
1807 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1808 dbg->arch.debugreg[7] = 0x0600;
1809 for (n = 0; n < nb_hw_breakpoint; n++) {
1810 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1811 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1812 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1813 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1814 }
1815 }
1816 }
1817
1818 static bool host_supports_vmx(void)
1819 {
1820 uint32_t ecx, unused;
1821
1822 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1823 return ecx & CPUID_EXT_VMX;
1824 }
1825
1826 #define VMX_INVALID_GUEST_STATE 0x80000021
1827
1828 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1829 {
1830 uint64_t code;
1831 int ret;
1832
1833 switch (run->exit_reason) {
1834 case KVM_EXIT_HLT:
1835 DPRINTF("handle_hlt\n");
1836 ret = kvm_handle_halt(env);
1837 break;
1838 case KVM_EXIT_SET_TPR:
1839 ret = 0;
1840 break;
1841 case KVM_EXIT_FAIL_ENTRY:
1842 code = run->fail_entry.hardware_entry_failure_reason;
1843 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1844 code);
1845 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1846 fprintf(stderr,
1847 "\nIf you're running a guest on an Intel machine without "
1848 "unrestricted mode\n"
1849 "support, the failure can be most likely due to the guest "
1850 "entering an invalid\n"
1851 "state for Intel VT. For example, the guest maybe running "
1852 "in big real mode\n"
1853 "which is not supported on less recent Intel processors."
1854 "\n\n");
1855 }
1856 ret = -1;
1857 break;
1858 case KVM_EXIT_EXCEPTION:
1859 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1860 run->ex.exception, run->ex.error_code);
1861 ret = -1;
1862 break;
1863 case KVM_EXIT_DEBUG:
1864 DPRINTF("kvm_exit_debug\n");
1865 ret = kvm_handle_debug(&run->debug.arch);
1866 break;
1867 default:
1868 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1869 ret = -1;
1870 break;
1871 }
1872
1873 return ret;
1874 }
1875
1876 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1877 {
1878 return !(env->cr[0] & CR0_PE_MASK) ||
1879 ((env->segs[R_CS].selector & 3) != 3);
1880 }