]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
513ae5279a964b357fce8b42f08582b473a09c46
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22
23 #include "qemu-common.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/kvm.h"
26 #include "kvm_i386.h"
27 #include "cpu.h"
28 #include "exec/gdbstub.h"
29 #include "qemu/host-utils.h"
30 #include "qemu/config-file.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic.h"
33 #include "exec/ioport.h"
34 #include "hyperv.h"
35 #include "hw/pci/pci.h"
36
37 //#define DEBUG_KVM
38
39 #ifdef DEBUG_KVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
46
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
49
50 #ifndef BUS_MCEERR_AR
51 #define BUS_MCEERR_AR 4
52 #endif
53 #ifndef BUS_MCEERR_AO
54 #define BUS_MCEERR_AO 5
55 #endif
56
57 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR),
59 KVM_CAP_INFO(EXT_CPUID),
60 KVM_CAP_INFO(MP_STATE),
61 KVM_CAP_LAST_INFO
62 };
63
64 static bool has_msr_star;
65 static bool has_msr_hsave_pa;
66 static bool has_msr_tsc_adjust;
67 static bool has_msr_tsc_deadline;
68 static bool has_msr_async_pf_en;
69 static bool has_msr_pv_eoi_en;
70 static bool has_msr_misc_enable;
71 static bool has_msr_kvm_steal_time;
72 static int lm_capable_kernel;
73
74 static bool has_msr_architectural_pmu;
75 static uint32_t num_architectural_pmu_counters;
76
77 bool kvm_allows_irq0_override(void)
78 {
79 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
80 }
81
82 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
83 {
84 struct kvm_cpuid2 *cpuid;
85 int r, size;
86
87 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
88 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
89 cpuid->nent = max;
90 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
91 if (r == 0 && cpuid->nent >= max) {
92 r = -E2BIG;
93 }
94 if (r < 0) {
95 if (r == -E2BIG) {
96 g_free(cpuid);
97 return NULL;
98 } else {
99 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
100 strerror(-r));
101 exit(1);
102 }
103 }
104 return cpuid;
105 }
106
107 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
108 * for all entries.
109 */
110 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
111 {
112 struct kvm_cpuid2 *cpuid;
113 int max = 1;
114 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
115 max *= 2;
116 }
117 return cpuid;
118 }
119
120 struct kvm_para_features {
121 int cap;
122 int feature;
123 } para_features[] = {
124 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
125 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
126 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
127 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
128 { -1, -1 }
129 };
130
131 static int get_para_features(KVMState *s)
132 {
133 int i, features = 0;
134
135 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
136 if (kvm_check_extension(s, para_features[i].cap)) {
137 features |= (1 << para_features[i].feature);
138 }
139 }
140
141 return features;
142 }
143
144
145 /* Returns the value for a specific register on the cpuid entry
146 */
147 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
148 {
149 uint32_t ret = 0;
150 switch (reg) {
151 case R_EAX:
152 ret = entry->eax;
153 break;
154 case R_EBX:
155 ret = entry->ebx;
156 break;
157 case R_ECX:
158 ret = entry->ecx;
159 break;
160 case R_EDX:
161 ret = entry->edx;
162 break;
163 }
164 return ret;
165 }
166
167 /* Find matching entry for function/index on kvm_cpuid2 struct
168 */
169 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
170 uint32_t function,
171 uint32_t index)
172 {
173 int i;
174 for (i = 0; i < cpuid->nent; ++i) {
175 if (cpuid->entries[i].function == function &&
176 cpuid->entries[i].index == index) {
177 return &cpuid->entries[i];
178 }
179 }
180 /* not found: */
181 return NULL;
182 }
183
184 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
185 uint32_t index, int reg)
186 {
187 struct kvm_cpuid2 *cpuid;
188 uint32_t ret = 0;
189 uint32_t cpuid_1_edx;
190 bool found = false;
191
192 cpuid = get_supported_cpuid(s);
193
194 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
195 if (entry) {
196 found = true;
197 ret = cpuid_entry_get_reg(entry, reg);
198 }
199
200 /* Fixups for the data returned by KVM, below */
201
202 if (function == 1 && reg == R_EDX) {
203 /* KVM before 2.6.30 misreports the following features */
204 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
205 } else if (function == 1 && reg == R_ECX) {
206 /* We can set the hypervisor flag, even if KVM does not return it on
207 * GET_SUPPORTED_CPUID
208 */
209 ret |= CPUID_EXT_HYPERVISOR;
210 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
211 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
212 * and the irqchip is in the kernel.
213 */
214 if (kvm_irqchip_in_kernel() &&
215 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
216 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
217 }
218
219 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
220 * without the in-kernel irqchip
221 */
222 if (!kvm_irqchip_in_kernel()) {
223 ret &= ~CPUID_EXT_X2APIC;
224 }
225 } else if (function == 0x80000001 && reg == R_EDX) {
226 /* On Intel, kvm returns cpuid according to the Intel spec,
227 * so add missing bits according to the AMD spec:
228 */
229 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
230 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
231 }
232
233 g_free(cpuid);
234
235 /* fallback for older kernels */
236 if ((function == KVM_CPUID_FEATURES) && !found) {
237 ret = get_para_features(s);
238 }
239
240 return ret;
241 }
242
243 typedef struct HWPoisonPage {
244 ram_addr_t ram_addr;
245 QLIST_ENTRY(HWPoisonPage) list;
246 } HWPoisonPage;
247
248 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
249 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
250
251 static void kvm_unpoison_all(void *param)
252 {
253 HWPoisonPage *page, *next_page;
254
255 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
256 QLIST_REMOVE(page, list);
257 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
258 g_free(page);
259 }
260 }
261
262 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
263 {
264 HWPoisonPage *page;
265
266 QLIST_FOREACH(page, &hwpoison_page_list, list) {
267 if (page->ram_addr == ram_addr) {
268 return;
269 }
270 }
271 page = g_malloc(sizeof(HWPoisonPage));
272 page->ram_addr = ram_addr;
273 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
274 }
275
276 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
277 int *max_banks)
278 {
279 int r;
280
281 r = kvm_check_extension(s, KVM_CAP_MCE);
282 if (r > 0) {
283 *max_banks = r;
284 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
285 }
286 return -ENOSYS;
287 }
288
289 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
290 {
291 CPUX86State *env = &cpu->env;
292 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
293 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
294 uint64_t mcg_status = MCG_STATUS_MCIP;
295
296 if (code == BUS_MCEERR_AR) {
297 status |= MCI_STATUS_AR | 0x134;
298 mcg_status |= MCG_STATUS_EIPV;
299 } else {
300 status |= 0xc0;
301 mcg_status |= MCG_STATUS_RIPV;
302 }
303 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
304 (MCM_ADDR_PHYS << 6) | 0xc,
305 cpu_x86_support_mca_broadcast(env) ?
306 MCE_INJECT_BROADCAST : 0);
307 }
308
309 static void hardware_memory_error(void)
310 {
311 fprintf(stderr, "Hardware memory error!\n");
312 exit(1);
313 }
314
315 int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
316 {
317 X86CPU *cpu = X86_CPU(c);
318 CPUX86State *env = &cpu->env;
319 ram_addr_t ram_addr;
320 hwaddr paddr;
321
322 if ((env->mcg_cap & MCG_SER_P) && addr
323 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
324 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
325 !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
326 fprintf(stderr, "Hardware memory error for memory used by "
327 "QEMU itself instead of guest system!\n");
328 /* Hope we are lucky for AO MCE */
329 if (code == BUS_MCEERR_AO) {
330 return 0;
331 } else {
332 hardware_memory_error();
333 }
334 }
335 kvm_hwpoison_page_add(ram_addr);
336 kvm_mce_inject(cpu, paddr, code);
337 } else {
338 if (code == BUS_MCEERR_AO) {
339 return 0;
340 } else if (code == BUS_MCEERR_AR) {
341 hardware_memory_error();
342 } else {
343 return 1;
344 }
345 }
346 return 0;
347 }
348
349 int kvm_arch_on_sigbus(int code, void *addr)
350 {
351 X86CPU *cpu = X86_CPU(first_cpu);
352
353 if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
354 ram_addr_t ram_addr;
355 hwaddr paddr;
356
357 /* Hope we are lucky for AO MCE */
358 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
359 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state,
360 addr, &paddr)) {
361 fprintf(stderr, "Hardware memory error for memory used by "
362 "QEMU itself instead of guest system!: %p\n", addr);
363 return 0;
364 }
365 kvm_hwpoison_page_add(ram_addr);
366 kvm_mce_inject(X86_CPU(first_cpu), paddr, code);
367 } else {
368 if (code == BUS_MCEERR_AO) {
369 return 0;
370 } else if (code == BUS_MCEERR_AR) {
371 hardware_memory_error();
372 } else {
373 return 1;
374 }
375 }
376 return 0;
377 }
378
379 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
380 {
381 CPUX86State *env = &cpu->env;
382
383 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
384 unsigned int bank, bank_num = env->mcg_cap & 0xff;
385 struct kvm_x86_mce mce;
386
387 env->exception_injected = -1;
388
389 /*
390 * There must be at least one bank in use if an MCE is pending.
391 * Find it and use its values for the event injection.
392 */
393 for (bank = 0; bank < bank_num; bank++) {
394 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
395 break;
396 }
397 }
398 assert(bank < bank_num);
399
400 mce.bank = bank;
401 mce.status = env->mce_banks[bank * 4 + 1];
402 mce.mcg_status = env->mcg_status;
403 mce.addr = env->mce_banks[bank * 4 + 2];
404 mce.misc = env->mce_banks[bank * 4 + 3];
405
406 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
407 }
408 return 0;
409 }
410
411 static void cpu_update_state(void *opaque, int running, RunState state)
412 {
413 CPUX86State *env = opaque;
414
415 if (running) {
416 env->tsc_valid = false;
417 }
418 }
419
420 unsigned long kvm_arch_vcpu_id(CPUState *cs)
421 {
422 X86CPU *cpu = X86_CPU(cs);
423 return cpu->env.cpuid_apic_id;
424 }
425
426 #define KVM_MAX_CPUID_ENTRIES 100
427
428 int kvm_arch_init_vcpu(CPUState *cs)
429 {
430 struct {
431 struct kvm_cpuid2 cpuid;
432 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
433 } QEMU_PACKED cpuid_data;
434 X86CPU *cpu = X86_CPU(cs);
435 CPUX86State *env = &cpu->env;
436 uint32_t limit, i, j, cpuid_i;
437 uint32_t unused;
438 struct kvm_cpuid_entry2 *c;
439 uint32_t signature[3];
440 int r;
441
442 cpuid_i = 0;
443
444 /* Paravirtualization CPUIDs */
445 c = &cpuid_data.entries[cpuid_i++];
446 memset(c, 0, sizeof(*c));
447 c->function = KVM_CPUID_SIGNATURE;
448 if (!hyperv_enabled()) {
449 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
450 c->eax = 0;
451 } else {
452 memcpy(signature, "Microsoft Hv", 12);
453 c->eax = HYPERV_CPUID_MIN;
454 }
455 c->ebx = signature[0];
456 c->ecx = signature[1];
457 c->edx = signature[2];
458
459 c = &cpuid_data.entries[cpuid_i++];
460 memset(c, 0, sizeof(*c));
461 c->function = KVM_CPUID_FEATURES;
462 c->eax = env->features[FEAT_KVM];
463
464 if (hyperv_enabled()) {
465 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
466 c->eax = signature[0];
467
468 c = &cpuid_data.entries[cpuid_i++];
469 memset(c, 0, sizeof(*c));
470 c->function = HYPERV_CPUID_VERSION;
471 c->eax = 0x00001bbc;
472 c->ebx = 0x00060001;
473
474 c = &cpuid_data.entries[cpuid_i++];
475 memset(c, 0, sizeof(*c));
476 c->function = HYPERV_CPUID_FEATURES;
477 if (hyperv_relaxed_timing_enabled()) {
478 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
479 }
480 if (hyperv_vapic_recommended()) {
481 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
482 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
483 }
484
485 c = &cpuid_data.entries[cpuid_i++];
486 memset(c, 0, sizeof(*c));
487 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
488 if (hyperv_relaxed_timing_enabled()) {
489 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
490 }
491 if (hyperv_vapic_recommended()) {
492 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
493 }
494 c->ebx = hyperv_get_spinlock_retries();
495
496 c = &cpuid_data.entries[cpuid_i++];
497 memset(c, 0, sizeof(*c));
498 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
499 c->eax = 0x40;
500 c->ebx = 0x40;
501
502 c = &cpuid_data.entries[cpuid_i++];
503 memset(c, 0, sizeof(*c));
504 c->function = KVM_CPUID_SIGNATURE_NEXT;
505 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
506 c->eax = 0;
507 c->ebx = signature[0];
508 c->ecx = signature[1];
509 c->edx = signature[2];
510 }
511
512 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
513
514 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
515
516 has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME);
517
518 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
519
520 for (i = 0; i <= limit; i++) {
521 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
522 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
523 abort();
524 }
525 c = &cpuid_data.entries[cpuid_i++];
526
527 switch (i) {
528 case 2: {
529 /* Keep reading function 2 till all the input is received */
530 int times;
531
532 c->function = i;
533 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
534 KVM_CPUID_FLAG_STATE_READ_NEXT;
535 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
536 times = c->eax & 0xff;
537
538 for (j = 1; j < times; ++j) {
539 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
540 fprintf(stderr, "cpuid_data is full, no space for "
541 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
542 abort();
543 }
544 c = &cpuid_data.entries[cpuid_i++];
545 c->function = i;
546 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
547 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
548 }
549 break;
550 }
551 case 4:
552 case 0xb:
553 case 0xd:
554 for (j = 0; ; j++) {
555 if (i == 0xd && j == 64) {
556 break;
557 }
558 c->function = i;
559 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
560 c->index = j;
561 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
562
563 if (i == 4 && c->eax == 0) {
564 break;
565 }
566 if (i == 0xb && !(c->ecx & 0xff00)) {
567 break;
568 }
569 if (i == 0xd && c->eax == 0) {
570 continue;
571 }
572 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
573 fprintf(stderr, "cpuid_data is full, no space for "
574 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
575 abort();
576 }
577 c = &cpuid_data.entries[cpuid_i++];
578 }
579 break;
580 default:
581 c->function = i;
582 c->flags = 0;
583 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
584 break;
585 }
586 }
587
588 if (limit >= 0x0a) {
589 uint32_t ver;
590
591 cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused);
592 if ((ver & 0xff) > 0) {
593 has_msr_architectural_pmu = true;
594 num_architectural_pmu_counters = (ver & 0xff00) >> 8;
595
596 /* Shouldn't be more than 32, since that's the number of bits
597 * available in EBX to tell us _which_ counters are available.
598 * Play it safe.
599 */
600 if (num_architectural_pmu_counters > MAX_GP_COUNTERS) {
601 num_architectural_pmu_counters = MAX_GP_COUNTERS;
602 }
603 }
604 }
605
606 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
607
608 for (i = 0x80000000; i <= limit; i++) {
609 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
610 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
611 abort();
612 }
613 c = &cpuid_data.entries[cpuid_i++];
614
615 c->function = i;
616 c->flags = 0;
617 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
618 }
619
620 /* Call Centaur's CPUID instructions they are supported. */
621 if (env->cpuid_xlevel2 > 0) {
622 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
623
624 for (i = 0xC0000000; i <= limit; i++) {
625 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
626 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
627 abort();
628 }
629 c = &cpuid_data.entries[cpuid_i++];
630
631 c->function = i;
632 c->flags = 0;
633 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
634 }
635 }
636
637 cpuid_data.cpuid.nent = cpuid_i;
638
639 if (((env->cpuid_version >> 8)&0xF) >= 6
640 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
641 (CPUID_MCE | CPUID_MCA)
642 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
643 uint64_t mcg_cap;
644 int banks;
645 int ret;
646
647 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
648 if (ret < 0) {
649 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
650 return ret;
651 }
652
653 if (banks > MCE_BANKS_DEF) {
654 banks = MCE_BANKS_DEF;
655 }
656 mcg_cap &= MCE_CAP_DEF;
657 mcg_cap |= banks;
658 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap);
659 if (ret < 0) {
660 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
661 return ret;
662 }
663
664 env->mcg_cap = mcg_cap;
665 }
666
667 qemu_add_vm_change_state_handler(cpu_update_state, env);
668
669 cpuid_data.cpuid.padding = 0;
670 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
671 if (r) {
672 return r;
673 }
674
675 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL);
676 if (r && env->tsc_khz) {
677 r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz);
678 if (r < 0) {
679 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
680 return r;
681 }
682 }
683
684 if (kvm_has_xsave()) {
685 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
686 }
687
688 return 0;
689 }
690
691 void kvm_arch_reset_vcpu(CPUState *cs)
692 {
693 X86CPU *cpu = X86_CPU(cs);
694 CPUX86State *env = &cpu->env;
695
696 env->exception_injected = -1;
697 env->interrupt_injected = -1;
698 env->xcr0 = 1;
699 if (kvm_irqchip_in_kernel()) {
700 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
701 KVM_MP_STATE_UNINITIALIZED;
702 } else {
703 env->mp_state = KVM_MP_STATE_RUNNABLE;
704 }
705 }
706
707 static int kvm_get_supported_msrs(KVMState *s)
708 {
709 static int kvm_supported_msrs;
710 int ret = 0;
711
712 /* first time */
713 if (kvm_supported_msrs == 0) {
714 struct kvm_msr_list msr_list, *kvm_msr_list;
715
716 kvm_supported_msrs = -1;
717
718 /* Obtain MSR list from KVM. These are the MSRs that we must
719 * save/restore */
720 msr_list.nmsrs = 0;
721 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
722 if (ret < 0 && ret != -E2BIG) {
723 return ret;
724 }
725 /* Old kernel modules had a bug and could write beyond the provided
726 memory. Allocate at least a safe amount of 1K. */
727 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
728 msr_list.nmsrs *
729 sizeof(msr_list.indices[0])));
730
731 kvm_msr_list->nmsrs = msr_list.nmsrs;
732 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
733 if (ret >= 0) {
734 int i;
735
736 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
737 if (kvm_msr_list->indices[i] == MSR_STAR) {
738 has_msr_star = true;
739 continue;
740 }
741 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
742 has_msr_hsave_pa = true;
743 continue;
744 }
745 if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
746 has_msr_tsc_adjust = true;
747 continue;
748 }
749 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
750 has_msr_tsc_deadline = true;
751 continue;
752 }
753 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
754 has_msr_misc_enable = true;
755 continue;
756 }
757 }
758 }
759
760 g_free(kvm_msr_list);
761 }
762
763 return ret;
764 }
765
766 int kvm_arch_init(KVMState *s)
767 {
768 uint64_t identity_base = 0xfffbc000;
769 uint64_t shadow_mem;
770 int ret;
771 struct utsname utsname;
772
773 ret = kvm_get_supported_msrs(s);
774 if (ret < 0) {
775 return ret;
776 }
777
778 uname(&utsname);
779 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
780
781 /*
782 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
783 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
784 * Since these must be part of guest physical memory, we need to allocate
785 * them, both by setting their start addresses in the kernel and by
786 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
787 *
788 * Older KVM versions may not support setting the identity map base. In
789 * that case we need to stick with the default, i.e. a 256K maximum BIOS
790 * size.
791 */
792 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
793 /* Allows up to 16M BIOSes. */
794 identity_base = 0xfeffc000;
795
796 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
797 if (ret < 0) {
798 return ret;
799 }
800 }
801
802 /* Set TSS base one page after EPT identity map. */
803 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
804 if (ret < 0) {
805 return ret;
806 }
807
808 /* Tell fw_cfg to notify the BIOS to reserve the range. */
809 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
810 if (ret < 0) {
811 fprintf(stderr, "e820_add_entry() table is full\n");
812 return ret;
813 }
814 qemu_register_reset(kvm_unpoison_all, NULL);
815
816 shadow_mem = qemu_opt_get_size(qemu_get_machine_opts(),
817 "kvm_shadow_mem", -1);
818 if (shadow_mem != -1) {
819 shadow_mem /= 4096;
820 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
821 if (ret < 0) {
822 return ret;
823 }
824 }
825 return 0;
826 }
827
828 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
829 {
830 lhs->selector = rhs->selector;
831 lhs->base = rhs->base;
832 lhs->limit = rhs->limit;
833 lhs->type = 3;
834 lhs->present = 1;
835 lhs->dpl = 3;
836 lhs->db = 0;
837 lhs->s = 1;
838 lhs->l = 0;
839 lhs->g = 0;
840 lhs->avl = 0;
841 lhs->unusable = 0;
842 }
843
844 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
845 {
846 unsigned flags = rhs->flags;
847 lhs->selector = rhs->selector;
848 lhs->base = rhs->base;
849 lhs->limit = rhs->limit;
850 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
851 lhs->present = (flags & DESC_P_MASK) != 0;
852 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
853 lhs->db = (flags >> DESC_B_SHIFT) & 1;
854 lhs->s = (flags & DESC_S_MASK) != 0;
855 lhs->l = (flags >> DESC_L_SHIFT) & 1;
856 lhs->g = (flags & DESC_G_MASK) != 0;
857 lhs->avl = (flags & DESC_AVL_MASK) != 0;
858 lhs->unusable = 0;
859 lhs->padding = 0;
860 }
861
862 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
863 {
864 lhs->selector = rhs->selector;
865 lhs->base = rhs->base;
866 lhs->limit = rhs->limit;
867 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
868 (rhs->present * DESC_P_MASK) |
869 (rhs->dpl << DESC_DPL_SHIFT) |
870 (rhs->db << DESC_B_SHIFT) |
871 (rhs->s * DESC_S_MASK) |
872 (rhs->l << DESC_L_SHIFT) |
873 (rhs->g * DESC_G_MASK) |
874 (rhs->avl * DESC_AVL_MASK);
875 }
876
877 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
878 {
879 if (set) {
880 *kvm_reg = *qemu_reg;
881 } else {
882 *qemu_reg = *kvm_reg;
883 }
884 }
885
886 static int kvm_getput_regs(X86CPU *cpu, int set)
887 {
888 CPUX86State *env = &cpu->env;
889 struct kvm_regs regs;
890 int ret = 0;
891
892 if (!set) {
893 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
894 if (ret < 0) {
895 return ret;
896 }
897 }
898
899 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
900 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
901 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
902 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
903 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
904 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
905 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
906 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
907 #ifdef TARGET_X86_64
908 kvm_getput_reg(&regs.r8, &env->regs[8], set);
909 kvm_getput_reg(&regs.r9, &env->regs[9], set);
910 kvm_getput_reg(&regs.r10, &env->regs[10], set);
911 kvm_getput_reg(&regs.r11, &env->regs[11], set);
912 kvm_getput_reg(&regs.r12, &env->regs[12], set);
913 kvm_getput_reg(&regs.r13, &env->regs[13], set);
914 kvm_getput_reg(&regs.r14, &env->regs[14], set);
915 kvm_getput_reg(&regs.r15, &env->regs[15], set);
916 #endif
917
918 kvm_getput_reg(&regs.rflags, &env->eflags, set);
919 kvm_getput_reg(&regs.rip, &env->eip, set);
920
921 if (set) {
922 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
923 }
924
925 return ret;
926 }
927
928 static int kvm_put_fpu(X86CPU *cpu)
929 {
930 CPUX86State *env = &cpu->env;
931 struct kvm_fpu fpu;
932 int i;
933
934 memset(&fpu, 0, sizeof fpu);
935 fpu.fsw = env->fpus & ~(7 << 11);
936 fpu.fsw |= (env->fpstt & 7) << 11;
937 fpu.fcw = env->fpuc;
938 fpu.last_opcode = env->fpop;
939 fpu.last_ip = env->fpip;
940 fpu.last_dp = env->fpdp;
941 for (i = 0; i < 8; ++i) {
942 fpu.ftwx |= (!env->fptags[i]) << i;
943 }
944 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
945 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
946 fpu.mxcsr = env->mxcsr;
947
948 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
949 }
950
951 #define XSAVE_FCW_FSW 0
952 #define XSAVE_FTW_FOP 1
953 #define XSAVE_CWD_RIP 2
954 #define XSAVE_CWD_RDP 4
955 #define XSAVE_MXCSR 6
956 #define XSAVE_ST_SPACE 8
957 #define XSAVE_XMM_SPACE 40
958 #define XSAVE_XSTATE_BV 128
959 #define XSAVE_YMMH_SPACE 144
960
961 static int kvm_put_xsave(X86CPU *cpu)
962 {
963 CPUX86State *env = &cpu->env;
964 struct kvm_xsave* xsave = env->kvm_xsave_buf;
965 uint16_t cwd, swd, twd;
966 int i, r;
967
968 if (!kvm_has_xsave()) {
969 return kvm_put_fpu(cpu);
970 }
971
972 memset(xsave, 0, sizeof(struct kvm_xsave));
973 twd = 0;
974 swd = env->fpus & ~(7 << 11);
975 swd |= (env->fpstt & 7) << 11;
976 cwd = env->fpuc;
977 for (i = 0; i < 8; ++i) {
978 twd |= (!env->fptags[i]) << i;
979 }
980 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
981 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
982 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
983 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
984 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
985 sizeof env->fpregs);
986 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
987 sizeof env->xmm_regs);
988 xsave->region[XSAVE_MXCSR] = env->mxcsr;
989 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
990 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
991 sizeof env->ymmh_regs);
992 r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
993 return r;
994 }
995
996 static int kvm_put_xcrs(X86CPU *cpu)
997 {
998 CPUX86State *env = &cpu->env;
999 struct kvm_xcrs xcrs;
1000
1001 if (!kvm_has_xcrs()) {
1002 return 0;
1003 }
1004
1005 xcrs.nr_xcrs = 1;
1006 xcrs.flags = 0;
1007 xcrs.xcrs[0].xcr = 0;
1008 xcrs.xcrs[0].value = env->xcr0;
1009 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
1010 }
1011
1012 static int kvm_put_sregs(X86CPU *cpu)
1013 {
1014 CPUX86State *env = &cpu->env;
1015 struct kvm_sregs sregs;
1016
1017 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
1018 if (env->interrupt_injected >= 0) {
1019 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
1020 (uint64_t)1 << (env->interrupt_injected % 64);
1021 }
1022
1023 if ((env->eflags & VM_MASK)) {
1024 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1025 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1026 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1027 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1028 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1029 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
1030 } else {
1031 set_seg(&sregs.cs, &env->segs[R_CS]);
1032 set_seg(&sregs.ds, &env->segs[R_DS]);
1033 set_seg(&sregs.es, &env->segs[R_ES]);
1034 set_seg(&sregs.fs, &env->segs[R_FS]);
1035 set_seg(&sregs.gs, &env->segs[R_GS]);
1036 set_seg(&sregs.ss, &env->segs[R_SS]);
1037 }
1038
1039 set_seg(&sregs.tr, &env->tr);
1040 set_seg(&sregs.ldt, &env->ldt);
1041
1042 sregs.idt.limit = env->idt.limit;
1043 sregs.idt.base = env->idt.base;
1044 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
1045 sregs.gdt.limit = env->gdt.limit;
1046 sregs.gdt.base = env->gdt.base;
1047 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
1048
1049 sregs.cr0 = env->cr[0];
1050 sregs.cr2 = env->cr[2];
1051 sregs.cr3 = env->cr[3];
1052 sregs.cr4 = env->cr[4];
1053
1054 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
1055 sregs.apic_base = cpu_get_apic_base(env->apic_state);
1056
1057 sregs.efer = env->efer;
1058
1059 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
1060 }
1061
1062 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1063 uint32_t index, uint64_t value)
1064 {
1065 entry->index = index;
1066 entry->data = value;
1067 }
1068
1069 static int kvm_put_msrs(X86CPU *cpu, int level)
1070 {
1071 CPUX86State *env = &cpu->env;
1072 struct {
1073 struct kvm_msrs info;
1074 struct kvm_msr_entry entries[100];
1075 } msr_data;
1076 struct kvm_msr_entry *msrs = msr_data.entries;
1077 int n = 0, i;
1078
1079 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1080 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1081 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1082 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1083 if (has_msr_star) {
1084 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1085 }
1086 if (has_msr_hsave_pa) {
1087 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1088 }
1089 if (has_msr_tsc_adjust) {
1090 kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1091 }
1092 if (has_msr_tsc_deadline) {
1093 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1094 }
1095 if (has_msr_misc_enable) {
1096 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1097 env->msr_ia32_misc_enable);
1098 }
1099 #ifdef TARGET_X86_64
1100 if (lm_capable_kernel) {
1101 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1102 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1103 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1104 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1105 }
1106 #endif
1107 if (level == KVM_PUT_FULL_STATE) {
1108 /*
1109 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1110 * writeback. Until this is fixed, we only write the offset to SMP
1111 * guests after migration, desynchronizing the VCPUs, but avoiding
1112 * huge jump-backs that would occur without any writeback at all.
1113 */
1114 if (smp_cpus == 1 || env->tsc != 0) {
1115 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1116 }
1117 }
1118 /*
1119 * The following MSRs have side effects on the guest or are too heavy
1120 * for normal writeback. Limit them to reset or full state updates.
1121 */
1122 if (level >= KVM_PUT_RESET_STATE) {
1123 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1124 env->system_time_msr);
1125 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1126 if (has_msr_async_pf_en) {
1127 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1128 env->async_pf_en_msr);
1129 }
1130 if (has_msr_pv_eoi_en) {
1131 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1132 env->pv_eoi_en_msr);
1133 }
1134 if (has_msr_kvm_steal_time) {
1135 kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME,
1136 env->steal_time_msr);
1137 }
1138 if (has_msr_architectural_pmu) {
1139 /* Stop the counter. */
1140 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
1141 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, 0);
1142
1143 /* Set the counter values. */
1144 for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1145 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR0 + i,
1146 env->msr_fixed_counters[i]);
1147 }
1148 for (i = 0; i < num_architectural_pmu_counters; i++) {
1149 kvm_msr_entry_set(&msrs[n++], MSR_P6_PERFCTR0 + i,
1150 env->msr_gp_counters[i]);
1151 kvm_msr_entry_set(&msrs[n++], MSR_P6_EVNTSEL0 + i,
1152 env->msr_gp_evtsel[i]);
1153 }
1154 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_STATUS,
1155 env->msr_global_status);
1156 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1157 env->msr_global_ovf_ctrl);
1158
1159 /* Now start the PMU. */
1160 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL,
1161 env->msr_fixed_ctr_ctrl);
1162 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL,
1163 env->msr_global_ctrl);
1164 }
1165 if (hyperv_hypercall_available()) {
1166 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1167 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1168 }
1169 if (hyperv_vapic_recommended()) {
1170 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1171 }
1172 kvm_msr_entry_set(&msrs[n++], MSR_IA32_FEATURE_CONTROL, env->msr_ia32_feature_control);
1173 }
1174 if (env->mcg_cap) {
1175 int i;
1176
1177 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1178 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1179 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1180 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1181 }
1182 }
1183
1184 msr_data.info.nmsrs = n;
1185
1186 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1187
1188 }
1189
1190
1191 static int kvm_get_fpu(X86CPU *cpu)
1192 {
1193 CPUX86State *env = &cpu->env;
1194 struct kvm_fpu fpu;
1195 int i, ret;
1196
1197 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
1198 if (ret < 0) {
1199 return ret;
1200 }
1201
1202 env->fpstt = (fpu.fsw >> 11) & 7;
1203 env->fpus = fpu.fsw;
1204 env->fpuc = fpu.fcw;
1205 env->fpop = fpu.last_opcode;
1206 env->fpip = fpu.last_ip;
1207 env->fpdp = fpu.last_dp;
1208 for (i = 0; i < 8; ++i) {
1209 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1210 }
1211 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1212 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1213 env->mxcsr = fpu.mxcsr;
1214
1215 return 0;
1216 }
1217
1218 static int kvm_get_xsave(X86CPU *cpu)
1219 {
1220 CPUX86State *env = &cpu->env;
1221 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1222 int ret, i;
1223 uint16_t cwd, swd, twd;
1224
1225 if (!kvm_has_xsave()) {
1226 return kvm_get_fpu(cpu);
1227 }
1228
1229 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
1230 if (ret < 0) {
1231 return ret;
1232 }
1233
1234 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1235 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1236 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1237 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1238 env->fpstt = (swd >> 11) & 7;
1239 env->fpus = swd;
1240 env->fpuc = cwd;
1241 for (i = 0; i < 8; ++i) {
1242 env->fptags[i] = !((twd >> i) & 1);
1243 }
1244 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1245 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1246 env->mxcsr = xsave->region[XSAVE_MXCSR];
1247 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1248 sizeof env->fpregs);
1249 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1250 sizeof env->xmm_regs);
1251 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1252 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1253 sizeof env->ymmh_regs);
1254 return 0;
1255 }
1256
1257 static int kvm_get_xcrs(X86CPU *cpu)
1258 {
1259 CPUX86State *env = &cpu->env;
1260 int i, ret;
1261 struct kvm_xcrs xcrs;
1262
1263 if (!kvm_has_xcrs()) {
1264 return 0;
1265 }
1266
1267 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
1268 if (ret < 0) {
1269 return ret;
1270 }
1271
1272 for (i = 0; i < xcrs.nr_xcrs; i++) {
1273 /* Only support xcr0 now */
1274 if (xcrs.xcrs[0].xcr == 0) {
1275 env->xcr0 = xcrs.xcrs[0].value;
1276 break;
1277 }
1278 }
1279 return 0;
1280 }
1281
1282 static int kvm_get_sregs(X86CPU *cpu)
1283 {
1284 CPUX86State *env = &cpu->env;
1285 struct kvm_sregs sregs;
1286 uint32_t hflags;
1287 int bit, i, ret;
1288
1289 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1290 if (ret < 0) {
1291 return ret;
1292 }
1293
1294 /* There can only be one pending IRQ set in the bitmap at a time, so try
1295 to find it and save its number instead (-1 for none). */
1296 env->interrupt_injected = -1;
1297 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1298 if (sregs.interrupt_bitmap[i]) {
1299 bit = ctz64(sregs.interrupt_bitmap[i]);
1300 env->interrupt_injected = i * 64 + bit;
1301 break;
1302 }
1303 }
1304
1305 get_seg(&env->segs[R_CS], &sregs.cs);
1306 get_seg(&env->segs[R_DS], &sregs.ds);
1307 get_seg(&env->segs[R_ES], &sregs.es);
1308 get_seg(&env->segs[R_FS], &sregs.fs);
1309 get_seg(&env->segs[R_GS], &sregs.gs);
1310 get_seg(&env->segs[R_SS], &sregs.ss);
1311
1312 get_seg(&env->tr, &sregs.tr);
1313 get_seg(&env->ldt, &sregs.ldt);
1314
1315 env->idt.limit = sregs.idt.limit;
1316 env->idt.base = sregs.idt.base;
1317 env->gdt.limit = sregs.gdt.limit;
1318 env->gdt.base = sregs.gdt.base;
1319
1320 env->cr[0] = sregs.cr0;
1321 env->cr[2] = sregs.cr2;
1322 env->cr[3] = sregs.cr3;
1323 env->cr[4] = sregs.cr4;
1324
1325 env->efer = sregs.efer;
1326
1327 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1328
1329 #define HFLAG_COPY_MASK \
1330 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1331 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1332 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1333 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1334
1335 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1336 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1337 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1338 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1339 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1340 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1341 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1342
1343 if (env->efer & MSR_EFER_LMA) {
1344 hflags |= HF_LMA_MASK;
1345 }
1346
1347 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1348 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1349 } else {
1350 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1351 (DESC_B_SHIFT - HF_CS32_SHIFT);
1352 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1353 (DESC_B_SHIFT - HF_SS32_SHIFT);
1354 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1355 !(hflags & HF_CS32_MASK)) {
1356 hflags |= HF_ADDSEG_MASK;
1357 } else {
1358 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1359 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1360 }
1361 }
1362 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1363
1364 return 0;
1365 }
1366
1367 static int kvm_get_msrs(X86CPU *cpu)
1368 {
1369 CPUX86State *env = &cpu->env;
1370 struct {
1371 struct kvm_msrs info;
1372 struct kvm_msr_entry entries[100];
1373 } msr_data;
1374 struct kvm_msr_entry *msrs = msr_data.entries;
1375 int ret, i, n;
1376
1377 n = 0;
1378 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1379 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1380 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1381 msrs[n++].index = MSR_PAT;
1382 if (has_msr_star) {
1383 msrs[n++].index = MSR_STAR;
1384 }
1385 if (has_msr_hsave_pa) {
1386 msrs[n++].index = MSR_VM_HSAVE_PA;
1387 }
1388 if (has_msr_tsc_adjust) {
1389 msrs[n++].index = MSR_TSC_ADJUST;
1390 }
1391 if (has_msr_tsc_deadline) {
1392 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1393 }
1394 if (has_msr_misc_enable) {
1395 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1396 }
1397 msrs[n++].index = MSR_IA32_FEATURE_CONTROL;
1398
1399 if (!env->tsc_valid) {
1400 msrs[n++].index = MSR_IA32_TSC;
1401 env->tsc_valid = !runstate_is_running();
1402 }
1403
1404 #ifdef TARGET_X86_64
1405 if (lm_capable_kernel) {
1406 msrs[n++].index = MSR_CSTAR;
1407 msrs[n++].index = MSR_KERNELGSBASE;
1408 msrs[n++].index = MSR_FMASK;
1409 msrs[n++].index = MSR_LSTAR;
1410 }
1411 #endif
1412 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1413 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1414 if (has_msr_async_pf_en) {
1415 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1416 }
1417 if (has_msr_pv_eoi_en) {
1418 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1419 }
1420 if (has_msr_kvm_steal_time) {
1421 msrs[n++].index = MSR_KVM_STEAL_TIME;
1422 }
1423 if (has_msr_architectural_pmu) {
1424 msrs[n++].index = MSR_CORE_PERF_FIXED_CTR_CTRL;
1425 msrs[n++].index = MSR_CORE_PERF_GLOBAL_CTRL;
1426 msrs[n++].index = MSR_CORE_PERF_GLOBAL_STATUS;
1427 msrs[n++].index = MSR_CORE_PERF_GLOBAL_OVF_CTRL;
1428 for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1429 msrs[n++].index = MSR_CORE_PERF_FIXED_CTR0 + i;
1430 }
1431 for (i = 0; i < num_architectural_pmu_counters; i++) {
1432 msrs[n++].index = MSR_P6_PERFCTR0 + i;
1433 msrs[n++].index = MSR_P6_EVNTSEL0 + i;
1434 }
1435 }
1436
1437 if (env->mcg_cap) {
1438 msrs[n++].index = MSR_MCG_STATUS;
1439 msrs[n++].index = MSR_MCG_CTL;
1440 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1441 msrs[n++].index = MSR_MC0_CTL + i;
1442 }
1443 }
1444
1445 msr_data.info.nmsrs = n;
1446 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
1447 if (ret < 0) {
1448 return ret;
1449 }
1450
1451 for (i = 0; i < ret; i++) {
1452 uint32_t index = msrs[i].index;
1453 switch (index) {
1454 case MSR_IA32_SYSENTER_CS:
1455 env->sysenter_cs = msrs[i].data;
1456 break;
1457 case MSR_IA32_SYSENTER_ESP:
1458 env->sysenter_esp = msrs[i].data;
1459 break;
1460 case MSR_IA32_SYSENTER_EIP:
1461 env->sysenter_eip = msrs[i].data;
1462 break;
1463 case MSR_PAT:
1464 env->pat = msrs[i].data;
1465 break;
1466 case MSR_STAR:
1467 env->star = msrs[i].data;
1468 break;
1469 #ifdef TARGET_X86_64
1470 case MSR_CSTAR:
1471 env->cstar = msrs[i].data;
1472 break;
1473 case MSR_KERNELGSBASE:
1474 env->kernelgsbase = msrs[i].data;
1475 break;
1476 case MSR_FMASK:
1477 env->fmask = msrs[i].data;
1478 break;
1479 case MSR_LSTAR:
1480 env->lstar = msrs[i].data;
1481 break;
1482 #endif
1483 case MSR_IA32_TSC:
1484 env->tsc = msrs[i].data;
1485 break;
1486 case MSR_TSC_ADJUST:
1487 env->tsc_adjust = msrs[i].data;
1488 break;
1489 case MSR_IA32_TSCDEADLINE:
1490 env->tsc_deadline = msrs[i].data;
1491 break;
1492 case MSR_VM_HSAVE_PA:
1493 env->vm_hsave = msrs[i].data;
1494 break;
1495 case MSR_KVM_SYSTEM_TIME:
1496 env->system_time_msr = msrs[i].data;
1497 break;
1498 case MSR_KVM_WALL_CLOCK:
1499 env->wall_clock_msr = msrs[i].data;
1500 break;
1501 case MSR_MCG_STATUS:
1502 env->mcg_status = msrs[i].data;
1503 break;
1504 case MSR_MCG_CTL:
1505 env->mcg_ctl = msrs[i].data;
1506 break;
1507 case MSR_IA32_MISC_ENABLE:
1508 env->msr_ia32_misc_enable = msrs[i].data;
1509 break;
1510 case MSR_IA32_FEATURE_CONTROL:
1511 env->msr_ia32_feature_control = msrs[i].data;
1512 default:
1513 if (msrs[i].index >= MSR_MC0_CTL &&
1514 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1515 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1516 }
1517 break;
1518 case MSR_KVM_ASYNC_PF_EN:
1519 env->async_pf_en_msr = msrs[i].data;
1520 break;
1521 case MSR_KVM_PV_EOI_EN:
1522 env->pv_eoi_en_msr = msrs[i].data;
1523 break;
1524 case MSR_KVM_STEAL_TIME:
1525 env->steal_time_msr = msrs[i].data;
1526 break;
1527 case MSR_CORE_PERF_FIXED_CTR_CTRL:
1528 env->msr_fixed_ctr_ctrl = msrs[i].data;
1529 break;
1530 case MSR_CORE_PERF_GLOBAL_CTRL:
1531 env->msr_global_ctrl = msrs[i].data;
1532 break;
1533 case MSR_CORE_PERF_GLOBAL_STATUS:
1534 env->msr_global_status = msrs[i].data;
1535 break;
1536 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
1537 env->msr_global_ovf_ctrl = msrs[i].data;
1538 break;
1539 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
1540 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
1541 break;
1542 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
1543 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
1544 break;
1545 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
1546 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
1547 break;
1548 }
1549 }
1550
1551 return 0;
1552 }
1553
1554 static int kvm_put_mp_state(X86CPU *cpu)
1555 {
1556 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
1557
1558 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1559 }
1560
1561 static int kvm_get_mp_state(X86CPU *cpu)
1562 {
1563 CPUState *cs = CPU(cpu);
1564 CPUX86State *env = &cpu->env;
1565 struct kvm_mp_state mp_state;
1566 int ret;
1567
1568 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
1569 if (ret < 0) {
1570 return ret;
1571 }
1572 env->mp_state = mp_state.mp_state;
1573 if (kvm_irqchip_in_kernel()) {
1574 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1575 }
1576 return 0;
1577 }
1578
1579 static int kvm_get_apic(X86CPU *cpu)
1580 {
1581 CPUX86State *env = &cpu->env;
1582 DeviceState *apic = env->apic_state;
1583 struct kvm_lapic_state kapic;
1584 int ret;
1585
1586 if (apic && kvm_irqchip_in_kernel()) {
1587 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
1588 if (ret < 0) {
1589 return ret;
1590 }
1591
1592 kvm_get_apic_state(apic, &kapic);
1593 }
1594 return 0;
1595 }
1596
1597 static int kvm_put_apic(X86CPU *cpu)
1598 {
1599 CPUX86State *env = &cpu->env;
1600 DeviceState *apic = env->apic_state;
1601 struct kvm_lapic_state kapic;
1602
1603 if (apic && kvm_irqchip_in_kernel()) {
1604 kvm_put_apic_state(apic, &kapic);
1605
1606 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
1607 }
1608 return 0;
1609 }
1610
1611 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
1612 {
1613 CPUX86State *env = &cpu->env;
1614 struct kvm_vcpu_events events;
1615
1616 if (!kvm_has_vcpu_events()) {
1617 return 0;
1618 }
1619
1620 events.exception.injected = (env->exception_injected >= 0);
1621 events.exception.nr = env->exception_injected;
1622 events.exception.has_error_code = env->has_error_code;
1623 events.exception.error_code = env->error_code;
1624 events.exception.pad = 0;
1625
1626 events.interrupt.injected = (env->interrupt_injected >= 0);
1627 events.interrupt.nr = env->interrupt_injected;
1628 events.interrupt.soft = env->soft_interrupt;
1629
1630 events.nmi.injected = env->nmi_injected;
1631 events.nmi.pending = env->nmi_pending;
1632 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1633 events.nmi.pad = 0;
1634
1635 events.sipi_vector = env->sipi_vector;
1636
1637 events.flags = 0;
1638 if (level >= KVM_PUT_RESET_STATE) {
1639 events.flags |=
1640 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1641 }
1642
1643 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1644 }
1645
1646 static int kvm_get_vcpu_events(X86CPU *cpu)
1647 {
1648 CPUX86State *env = &cpu->env;
1649 struct kvm_vcpu_events events;
1650 int ret;
1651
1652 if (!kvm_has_vcpu_events()) {
1653 return 0;
1654 }
1655
1656 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1657 if (ret < 0) {
1658 return ret;
1659 }
1660 env->exception_injected =
1661 events.exception.injected ? events.exception.nr : -1;
1662 env->has_error_code = events.exception.has_error_code;
1663 env->error_code = events.exception.error_code;
1664
1665 env->interrupt_injected =
1666 events.interrupt.injected ? events.interrupt.nr : -1;
1667 env->soft_interrupt = events.interrupt.soft;
1668
1669 env->nmi_injected = events.nmi.injected;
1670 env->nmi_pending = events.nmi.pending;
1671 if (events.nmi.masked) {
1672 env->hflags2 |= HF2_NMI_MASK;
1673 } else {
1674 env->hflags2 &= ~HF2_NMI_MASK;
1675 }
1676
1677 env->sipi_vector = events.sipi_vector;
1678
1679 return 0;
1680 }
1681
1682 static int kvm_guest_debug_workarounds(X86CPU *cpu)
1683 {
1684 CPUState *cs = CPU(cpu);
1685 CPUX86State *env = &cpu->env;
1686 int ret = 0;
1687 unsigned long reinject_trap = 0;
1688
1689 if (!kvm_has_vcpu_events()) {
1690 if (env->exception_injected == 1) {
1691 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1692 } else if (env->exception_injected == 3) {
1693 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1694 }
1695 env->exception_injected = -1;
1696 }
1697
1698 /*
1699 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1700 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1701 * by updating the debug state once again if single-stepping is on.
1702 * Another reason to call kvm_update_guest_debug here is a pending debug
1703 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1704 * reinject them via SET_GUEST_DEBUG.
1705 */
1706 if (reinject_trap ||
1707 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
1708 ret = kvm_update_guest_debug(env, reinject_trap);
1709 }
1710 return ret;
1711 }
1712
1713 static int kvm_put_debugregs(X86CPU *cpu)
1714 {
1715 CPUX86State *env = &cpu->env;
1716 struct kvm_debugregs dbgregs;
1717 int i;
1718
1719 if (!kvm_has_debugregs()) {
1720 return 0;
1721 }
1722
1723 for (i = 0; i < 4; i++) {
1724 dbgregs.db[i] = env->dr[i];
1725 }
1726 dbgregs.dr6 = env->dr[6];
1727 dbgregs.dr7 = env->dr[7];
1728 dbgregs.flags = 0;
1729
1730 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
1731 }
1732
1733 static int kvm_get_debugregs(X86CPU *cpu)
1734 {
1735 CPUX86State *env = &cpu->env;
1736 struct kvm_debugregs dbgregs;
1737 int i, ret;
1738
1739 if (!kvm_has_debugregs()) {
1740 return 0;
1741 }
1742
1743 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
1744 if (ret < 0) {
1745 return ret;
1746 }
1747 for (i = 0; i < 4; i++) {
1748 env->dr[i] = dbgregs.db[i];
1749 }
1750 env->dr[4] = env->dr[6] = dbgregs.dr6;
1751 env->dr[5] = env->dr[7] = dbgregs.dr7;
1752
1753 return 0;
1754 }
1755
1756 int kvm_arch_put_registers(CPUState *cpu, int level)
1757 {
1758 X86CPU *x86_cpu = X86_CPU(cpu);
1759 int ret;
1760
1761 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
1762
1763 ret = kvm_getput_regs(x86_cpu, 1);
1764 if (ret < 0) {
1765 return ret;
1766 }
1767 ret = kvm_put_xsave(x86_cpu);
1768 if (ret < 0) {
1769 return ret;
1770 }
1771 ret = kvm_put_xcrs(x86_cpu);
1772 if (ret < 0) {
1773 return ret;
1774 }
1775 ret = kvm_put_sregs(x86_cpu);
1776 if (ret < 0) {
1777 return ret;
1778 }
1779 /* must be before kvm_put_msrs */
1780 ret = kvm_inject_mce_oldstyle(x86_cpu);
1781 if (ret < 0) {
1782 return ret;
1783 }
1784 ret = kvm_put_msrs(x86_cpu, level);
1785 if (ret < 0) {
1786 return ret;
1787 }
1788 if (level >= KVM_PUT_RESET_STATE) {
1789 ret = kvm_put_mp_state(x86_cpu);
1790 if (ret < 0) {
1791 return ret;
1792 }
1793 ret = kvm_put_apic(x86_cpu);
1794 if (ret < 0) {
1795 return ret;
1796 }
1797 }
1798 ret = kvm_put_vcpu_events(x86_cpu, level);
1799 if (ret < 0) {
1800 return ret;
1801 }
1802 ret = kvm_put_debugregs(x86_cpu);
1803 if (ret < 0) {
1804 return ret;
1805 }
1806 /* must be last */
1807 ret = kvm_guest_debug_workarounds(x86_cpu);
1808 if (ret < 0) {
1809 return ret;
1810 }
1811 return 0;
1812 }
1813
1814 int kvm_arch_get_registers(CPUState *cs)
1815 {
1816 X86CPU *cpu = X86_CPU(cs);
1817 int ret;
1818
1819 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
1820
1821 ret = kvm_getput_regs(cpu, 0);
1822 if (ret < 0) {
1823 return ret;
1824 }
1825 ret = kvm_get_xsave(cpu);
1826 if (ret < 0) {
1827 return ret;
1828 }
1829 ret = kvm_get_xcrs(cpu);
1830 if (ret < 0) {
1831 return ret;
1832 }
1833 ret = kvm_get_sregs(cpu);
1834 if (ret < 0) {
1835 return ret;
1836 }
1837 ret = kvm_get_msrs(cpu);
1838 if (ret < 0) {
1839 return ret;
1840 }
1841 ret = kvm_get_mp_state(cpu);
1842 if (ret < 0) {
1843 return ret;
1844 }
1845 ret = kvm_get_apic(cpu);
1846 if (ret < 0) {
1847 return ret;
1848 }
1849 ret = kvm_get_vcpu_events(cpu);
1850 if (ret < 0) {
1851 return ret;
1852 }
1853 ret = kvm_get_debugregs(cpu);
1854 if (ret < 0) {
1855 return ret;
1856 }
1857 return 0;
1858 }
1859
1860 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1861 {
1862 X86CPU *x86_cpu = X86_CPU(cpu);
1863 CPUX86State *env = &x86_cpu->env;
1864 int ret;
1865
1866 /* Inject NMI */
1867 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
1868 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
1869 DPRINTF("injected NMI\n");
1870 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
1871 if (ret < 0) {
1872 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1873 strerror(-ret));
1874 }
1875 }
1876
1877 if (!kvm_irqchip_in_kernel()) {
1878 /* Force the VCPU out of its inner loop to process any INIT requests
1879 * or pending TPR access reports. */
1880 if (cpu->interrupt_request &
1881 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1882 cpu->exit_request = 1;
1883 }
1884
1885 /* Try to inject an interrupt if the guest can accept it */
1886 if (run->ready_for_interrupt_injection &&
1887 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
1888 (env->eflags & IF_MASK)) {
1889 int irq;
1890
1891 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
1892 irq = cpu_get_pic_interrupt(env);
1893 if (irq >= 0) {
1894 struct kvm_interrupt intr;
1895
1896 intr.irq = irq;
1897 DPRINTF("injected interrupt %d\n", irq);
1898 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
1899 if (ret < 0) {
1900 fprintf(stderr,
1901 "KVM: injection failed, interrupt lost (%s)\n",
1902 strerror(-ret));
1903 }
1904 }
1905 }
1906
1907 /* If we have an interrupt but the guest is not ready to receive an
1908 * interrupt, request an interrupt window exit. This will
1909 * cause a return to userspace as soon as the guest is ready to
1910 * receive interrupts. */
1911 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
1912 run->request_interrupt_window = 1;
1913 } else {
1914 run->request_interrupt_window = 0;
1915 }
1916
1917 DPRINTF("setting tpr\n");
1918 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1919 }
1920 }
1921
1922 void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
1923 {
1924 X86CPU *x86_cpu = X86_CPU(cpu);
1925 CPUX86State *env = &x86_cpu->env;
1926
1927 if (run->if_flag) {
1928 env->eflags |= IF_MASK;
1929 } else {
1930 env->eflags &= ~IF_MASK;
1931 }
1932 cpu_set_apic_tpr(env->apic_state, run->cr8);
1933 cpu_set_apic_base(env->apic_state, run->apic_base);
1934 }
1935
1936 int kvm_arch_process_async_events(CPUState *cs)
1937 {
1938 X86CPU *cpu = X86_CPU(cs);
1939 CPUX86State *env = &cpu->env;
1940
1941 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
1942 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1943 assert(env->mcg_cap);
1944
1945 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
1946
1947 kvm_cpu_synchronize_state(cs);
1948
1949 if (env->exception_injected == EXCP08_DBLE) {
1950 /* this means triple fault */
1951 qemu_system_reset_request();
1952 cs->exit_request = 1;
1953 return 0;
1954 }
1955 env->exception_injected = EXCP12_MCHK;
1956 env->has_error_code = 0;
1957
1958 cs->halted = 0;
1959 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1960 env->mp_state = KVM_MP_STATE_RUNNABLE;
1961 }
1962 }
1963
1964 if (kvm_irqchip_in_kernel()) {
1965 return 0;
1966 }
1967
1968 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
1969 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
1970 apic_poll_irq(env->apic_state);
1971 }
1972 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1973 (env->eflags & IF_MASK)) ||
1974 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
1975 cs->halted = 0;
1976 }
1977 if (cs->interrupt_request & CPU_INTERRUPT_INIT) {
1978 kvm_cpu_synchronize_state(cs);
1979 do_cpu_init(cpu);
1980 }
1981 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
1982 kvm_cpu_synchronize_state(cs);
1983 do_cpu_sipi(cpu);
1984 }
1985 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
1986 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
1987 kvm_cpu_synchronize_state(cs);
1988 apic_handle_tpr_access_report(env->apic_state, env->eip,
1989 env->tpr_access_type);
1990 }
1991
1992 return cs->halted;
1993 }
1994
1995 static int kvm_handle_halt(X86CPU *cpu)
1996 {
1997 CPUState *cs = CPU(cpu);
1998 CPUX86State *env = &cpu->env;
1999
2000 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
2001 (env->eflags & IF_MASK)) &&
2002 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2003 cs->halted = 1;
2004 return EXCP_HLT;
2005 }
2006
2007 return 0;
2008 }
2009
2010 static int kvm_handle_tpr_access(X86CPU *cpu)
2011 {
2012 CPUX86State *env = &cpu->env;
2013 CPUState *cs = CPU(cpu);
2014 struct kvm_run *run = cs->kvm_run;
2015
2016 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
2017 run->tpr_access.is_write ? TPR_ACCESS_WRITE
2018 : TPR_ACCESS_READ);
2019 return 1;
2020 }
2021
2022 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2023 {
2024 static const uint8_t int3 = 0xcc;
2025
2026 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
2027 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
2028 return -EINVAL;
2029 }
2030 return 0;
2031 }
2032
2033 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2034 {
2035 uint8_t int3;
2036
2037 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
2038 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
2039 return -EINVAL;
2040 }
2041 return 0;
2042 }
2043
2044 static struct {
2045 target_ulong addr;
2046 int len;
2047 int type;
2048 } hw_breakpoint[4];
2049
2050 static int nb_hw_breakpoint;
2051
2052 static int find_hw_breakpoint(target_ulong addr, int len, int type)
2053 {
2054 int n;
2055
2056 for (n = 0; n < nb_hw_breakpoint; n++) {
2057 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
2058 (hw_breakpoint[n].len == len || len == -1)) {
2059 return n;
2060 }
2061 }
2062 return -1;
2063 }
2064
2065 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
2066 target_ulong len, int type)
2067 {
2068 switch (type) {
2069 case GDB_BREAKPOINT_HW:
2070 len = 1;
2071 break;
2072 case GDB_WATCHPOINT_WRITE:
2073 case GDB_WATCHPOINT_ACCESS:
2074 switch (len) {
2075 case 1:
2076 break;
2077 case 2:
2078 case 4:
2079 case 8:
2080 if (addr & (len - 1)) {
2081 return -EINVAL;
2082 }
2083 break;
2084 default:
2085 return -EINVAL;
2086 }
2087 break;
2088 default:
2089 return -ENOSYS;
2090 }
2091
2092 if (nb_hw_breakpoint == 4) {
2093 return -ENOBUFS;
2094 }
2095 if (find_hw_breakpoint(addr, len, type) >= 0) {
2096 return -EEXIST;
2097 }
2098 hw_breakpoint[nb_hw_breakpoint].addr = addr;
2099 hw_breakpoint[nb_hw_breakpoint].len = len;
2100 hw_breakpoint[nb_hw_breakpoint].type = type;
2101 nb_hw_breakpoint++;
2102
2103 return 0;
2104 }
2105
2106 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
2107 target_ulong len, int type)
2108 {
2109 int n;
2110
2111 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
2112 if (n < 0) {
2113 return -ENOENT;
2114 }
2115 nb_hw_breakpoint--;
2116 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
2117
2118 return 0;
2119 }
2120
2121 void kvm_arch_remove_all_hw_breakpoints(void)
2122 {
2123 nb_hw_breakpoint = 0;
2124 }
2125
2126 static CPUWatchpoint hw_watchpoint;
2127
2128 static int kvm_handle_debug(X86CPU *cpu,
2129 struct kvm_debug_exit_arch *arch_info)
2130 {
2131 CPUState *cs = CPU(cpu);
2132 CPUX86State *env = &cpu->env;
2133 int ret = 0;
2134 int n;
2135
2136 if (arch_info->exception == 1) {
2137 if (arch_info->dr6 & (1 << 14)) {
2138 if (cs->singlestep_enabled) {
2139 ret = EXCP_DEBUG;
2140 }
2141 } else {
2142 for (n = 0; n < 4; n++) {
2143 if (arch_info->dr6 & (1 << n)) {
2144 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
2145 case 0x0:
2146 ret = EXCP_DEBUG;
2147 break;
2148 case 0x1:
2149 ret = EXCP_DEBUG;
2150 env->watchpoint_hit = &hw_watchpoint;
2151 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2152 hw_watchpoint.flags = BP_MEM_WRITE;
2153 break;
2154 case 0x3:
2155 ret = EXCP_DEBUG;
2156 env->watchpoint_hit = &hw_watchpoint;
2157 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2158 hw_watchpoint.flags = BP_MEM_ACCESS;
2159 break;
2160 }
2161 }
2162 }
2163 }
2164 } else if (kvm_find_sw_breakpoint(CPU(cpu), arch_info->pc)) {
2165 ret = EXCP_DEBUG;
2166 }
2167 if (ret == 0) {
2168 cpu_synchronize_state(CPU(cpu));
2169 assert(env->exception_injected == -1);
2170
2171 /* pass to guest */
2172 env->exception_injected = arch_info->exception;
2173 env->has_error_code = 0;
2174 }
2175
2176 return ret;
2177 }
2178
2179 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
2180 {
2181 const uint8_t type_code[] = {
2182 [GDB_BREAKPOINT_HW] = 0x0,
2183 [GDB_WATCHPOINT_WRITE] = 0x1,
2184 [GDB_WATCHPOINT_ACCESS] = 0x3
2185 };
2186 const uint8_t len_code[] = {
2187 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2188 };
2189 int n;
2190
2191 if (kvm_sw_breakpoints_active(cpu)) {
2192 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2193 }
2194 if (nb_hw_breakpoint > 0) {
2195 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2196 dbg->arch.debugreg[7] = 0x0600;
2197 for (n = 0; n < nb_hw_breakpoint; n++) {
2198 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2199 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2200 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2201 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2202 }
2203 }
2204 }
2205
2206 static bool host_supports_vmx(void)
2207 {
2208 uint32_t ecx, unused;
2209
2210 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2211 return ecx & CPUID_EXT_VMX;
2212 }
2213
2214 #define VMX_INVALID_GUEST_STATE 0x80000021
2215
2216 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2217 {
2218 X86CPU *cpu = X86_CPU(cs);
2219 uint64_t code;
2220 int ret;
2221
2222 switch (run->exit_reason) {
2223 case KVM_EXIT_HLT:
2224 DPRINTF("handle_hlt\n");
2225 ret = kvm_handle_halt(cpu);
2226 break;
2227 case KVM_EXIT_SET_TPR:
2228 ret = 0;
2229 break;
2230 case KVM_EXIT_TPR_ACCESS:
2231 ret = kvm_handle_tpr_access(cpu);
2232 break;
2233 case KVM_EXIT_FAIL_ENTRY:
2234 code = run->fail_entry.hardware_entry_failure_reason;
2235 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2236 code);
2237 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2238 fprintf(stderr,
2239 "\nIf you're running a guest on an Intel machine without "
2240 "unrestricted mode\n"
2241 "support, the failure can be most likely due to the guest "
2242 "entering an invalid\n"
2243 "state for Intel VT. For example, the guest maybe running "
2244 "in big real mode\n"
2245 "which is not supported on less recent Intel processors."
2246 "\n\n");
2247 }
2248 ret = -1;
2249 break;
2250 case KVM_EXIT_EXCEPTION:
2251 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2252 run->ex.exception, run->ex.error_code);
2253 ret = -1;
2254 break;
2255 case KVM_EXIT_DEBUG:
2256 DPRINTF("kvm_exit_debug\n");
2257 ret = kvm_handle_debug(cpu, &run->debug.arch);
2258 break;
2259 default:
2260 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2261 ret = -1;
2262 break;
2263 }
2264
2265 return ret;
2266 }
2267
2268 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
2269 {
2270 X86CPU *cpu = X86_CPU(cs);
2271 CPUX86State *env = &cpu->env;
2272
2273 kvm_cpu_synchronize_state(cs);
2274 return !(env->cr[0] & CR0_PE_MASK) ||
2275 ((env->segs[R_CS].selector & 3) != 3);
2276 }
2277
2278 void kvm_arch_init_irq_routing(KVMState *s)
2279 {
2280 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2281 /* If kernel can't do irq routing, interrupt source
2282 * override 0->2 cannot be set up as required by HPET.
2283 * So we have to disable it.
2284 */
2285 no_hpet = 1;
2286 }
2287 /* We know at this point that we're using the in-kernel
2288 * irqchip, so we can use irqfds, and on x86 we know
2289 * we can use msi via irqfd and GSI routing.
2290 */
2291 kvm_irqfds_allowed = true;
2292 kvm_msi_via_irqfd_allowed = true;
2293 kvm_gsi_routing_allowed = true;
2294 }
2295
2296 /* Classic KVM device assignment interface. Will remain x86 only. */
2297 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2298 uint32_t flags, uint32_t *dev_id)
2299 {
2300 struct kvm_assigned_pci_dev dev_data = {
2301 .segnr = dev_addr->domain,
2302 .busnr = dev_addr->bus,
2303 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2304 .flags = flags,
2305 };
2306 int ret;
2307
2308 dev_data.assigned_dev_id =
2309 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2310
2311 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2312 if (ret < 0) {
2313 return ret;
2314 }
2315
2316 *dev_id = dev_data.assigned_dev_id;
2317
2318 return 0;
2319 }
2320
2321 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2322 {
2323 struct kvm_assigned_pci_dev dev_data = {
2324 .assigned_dev_id = dev_id,
2325 };
2326
2327 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2328 }
2329
2330 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2331 uint32_t irq_type, uint32_t guest_irq)
2332 {
2333 struct kvm_assigned_irq assigned_irq = {
2334 .assigned_dev_id = dev_id,
2335 .guest_irq = guest_irq,
2336 .flags = irq_type,
2337 };
2338
2339 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2340 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2341 } else {
2342 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2343 }
2344 }
2345
2346 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2347 uint32_t guest_irq)
2348 {
2349 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2350 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2351
2352 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2353 }
2354
2355 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2356 {
2357 struct kvm_assigned_pci_dev dev_data = {
2358 .assigned_dev_id = dev_id,
2359 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2360 };
2361
2362 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2363 }
2364
2365 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2366 uint32_t type)
2367 {
2368 struct kvm_assigned_irq assigned_irq = {
2369 .assigned_dev_id = dev_id,
2370 .flags = type,
2371 };
2372
2373 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2374 }
2375
2376 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2377 {
2378 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2379 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2380 }
2381
2382 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2383 {
2384 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2385 KVM_DEV_IRQ_GUEST_MSI, virq);
2386 }
2387
2388 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2389 {
2390 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2391 KVM_DEV_IRQ_HOST_MSI);
2392 }
2393
2394 bool kvm_device_msix_supported(KVMState *s)
2395 {
2396 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2397 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2398 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2399 }
2400
2401 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2402 uint32_t nr_vectors)
2403 {
2404 struct kvm_assigned_msix_nr msix_nr = {
2405 .assigned_dev_id = dev_id,
2406 .entry_nr = nr_vectors,
2407 };
2408
2409 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2410 }
2411
2412 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2413 int virq)
2414 {
2415 struct kvm_assigned_msix_entry msix_entry = {
2416 .assigned_dev_id = dev_id,
2417 .gsi = virq,
2418 .entry = vector,
2419 };
2420
2421 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2422 }
2423
2424 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2425 {
2426 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2427 KVM_DEV_IRQ_GUEST_MSIX, 0);
2428 }
2429
2430 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2431 {
2432 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2433 KVM_DEV_IRQ_HOST_MSIX);
2434 }