]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
cab9fccaec30d56fffaced41f36a973549a1e7fb
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18
19 #include <linux/kvm.h>
20
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
25 #include "gdbstub.h"
26
27 //#define DEBUG_KVM
28
29 #ifdef DEBUG_KVM
30 #define dprintf(fmt, ...) \
31 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
32 #else
33 #define dprintf(fmt, ...) \
34 do { } while (0)
35 #endif
36
37 #ifdef KVM_CAP_EXT_CPUID
38
39 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
40 {
41 struct kvm_cpuid2 *cpuid;
42 int r, size;
43
44 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
45 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
46 cpuid->nent = max;
47 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
48 if (r == 0 && cpuid->nent >= max) {
49 r = -E2BIG;
50 }
51 if (r < 0) {
52 if (r == -E2BIG) {
53 qemu_free(cpuid);
54 return NULL;
55 } else {
56 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
57 strerror(-r));
58 exit(1);
59 }
60 }
61 return cpuid;
62 }
63
64 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
65 {
66 struct kvm_cpuid2 *cpuid;
67 int i, max;
68 uint32_t ret = 0;
69 uint32_t cpuid_1_edx;
70
71 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
72 return -1U;
73 }
74
75 max = 1;
76 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
77 max *= 2;
78 }
79
80 for (i = 0; i < cpuid->nent; ++i) {
81 if (cpuid->entries[i].function == function) {
82 switch (reg) {
83 case R_EAX:
84 ret = cpuid->entries[i].eax;
85 break;
86 case R_EBX:
87 ret = cpuid->entries[i].ebx;
88 break;
89 case R_ECX:
90 ret = cpuid->entries[i].ecx;
91 break;
92 case R_EDX:
93 ret = cpuid->entries[i].edx;
94 if (function == 0x80000001) {
95 /* On Intel, kvm returns cpuid according to the Intel spec,
96 * so add missing bits according to the AMD spec:
97 */
98 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
99 ret |= cpuid_1_edx & 0xdfeff7ff;
100 }
101 break;
102 }
103 }
104 }
105
106 qemu_free(cpuid);
107
108 return ret;
109 }
110
111 #else
112
113 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
114 {
115 return -1U;
116 }
117
118 #endif
119
120 static void kvm_trim_features(uint32_t *features, uint32_t supported)
121 {
122 int i;
123 uint32_t mask;
124
125 for (i = 0; i < 32; ++i) {
126 mask = 1U << i;
127 if ((*features & mask) && !(supported & mask)) {
128 *features &= ~mask;
129 }
130 }
131 }
132
133 int kvm_arch_init_vcpu(CPUState *env)
134 {
135 struct {
136 struct kvm_cpuid2 cpuid;
137 struct kvm_cpuid_entry2 entries[100];
138 } __attribute__((packed)) cpuid_data;
139 uint32_t limit, i, j, cpuid_i;
140 uint32_t unused;
141
142 env->mp_state = KVM_MP_STATE_RUNNABLE;
143
144 kvm_trim_features(&env->cpuid_features,
145 kvm_arch_get_supported_cpuid(env, 1, R_EDX));
146
147 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
148 kvm_trim_features(&env->cpuid_ext_features,
149 kvm_arch_get_supported_cpuid(env, 1, R_ECX));
150 env->cpuid_ext_features |= i;
151
152 kvm_trim_features(&env->cpuid_ext2_features,
153 kvm_arch_get_supported_cpuid(env, 0x80000001, R_EDX));
154 kvm_trim_features(&env->cpuid_ext3_features,
155 kvm_arch_get_supported_cpuid(env, 0x80000001, R_ECX));
156
157 cpuid_i = 0;
158
159 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
160
161 for (i = 0; i <= limit; i++) {
162 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
163
164 switch (i) {
165 case 2: {
166 /* Keep reading function 2 till all the input is received */
167 int times;
168
169 c->function = i;
170 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
171 KVM_CPUID_FLAG_STATE_READ_NEXT;
172 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
173 times = c->eax & 0xff;
174
175 for (j = 1; j < times; ++j) {
176 c = &cpuid_data.entries[cpuid_i++];
177 c->function = i;
178 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
179 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
180 }
181 break;
182 }
183 case 4:
184 case 0xb:
185 case 0xd:
186 for (j = 0; ; j++) {
187 c->function = i;
188 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
189 c->index = j;
190 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
191
192 if (i == 4 && c->eax == 0)
193 break;
194 if (i == 0xb && !(c->ecx & 0xff00))
195 break;
196 if (i == 0xd && c->eax == 0)
197 break;
198
199 c = &cpuid_data.entries[cpuid_i++];
200 }
201 break;
202 default:
203 c->function = i;
204 c->flags = 0;
205 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
206 break;
207 }
208 }
209 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
210
211 for (i = 0x80000000; i <= limit; i++) {
212 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
213
214 c->function = i;
215 c->flags = 0;
216 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
217 }
218
219 cpuid_data.cpuid.nent = cpuid_i;
220
221 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
222 }
223
224 static int kvm_has_msr_star(CPUState *env)
225 {
226 static int has_msr_star;
227 int ret;
228
229 /* first time */
230 if (has_msr_star == 0) {
231 struct kvm_msr_list msr_list, *kvm_msr_list;
232
233 has_msr_star = -1;
234
235 /* Obtain MSR list from KVM. These are the MSRs that we must
236 * save/restore */
237 msr_list.nmsrs = 0;
238 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
239 if (ret < 0)
240 return 0;
241
242 /* Old kernel modules had a bug and could write beyond the provided
243 memory. Allocate at least a safe amount of 1K. */
244 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
245 msr_list.nmsrs *
246 sizeof(msr_list.indices[0])));
247
248 kvm_msr_list->nmsrs = msr_list.nmsrs;
249 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
250 if (ret >= 0) {
251 int i;
252
253 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
254 if (kvm_msr_list->indices[i] == MSR_STAR) {
255 has_msr_star = 1;
256 break;
257 }
258 }
259 }
260
261 free(kvm_msr_list);
262 }
263
264 if (has_msr_star == 1)
265 return 1;
266 return 0;
267 }
268
269 int kvm_arch_init(KVMState *s, int smp_cpus)
270 {
271 int ret;
272
273 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
274 * directly. In order to use vm86 mode, a TSS is needed. Since this
275 * must be part of guest physical memory, we need to allocate it. Older
276 * versions of KVM just assumed that it would be at the end of physical
277 * memory but that doesn't work with more than 4GB of memory. We simply
278 * refuse to work with those older versions of KVM. */
279 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
280 if (ret <= 0) {
281 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
282 return ret;
283 }
284
285 /* this address is 3 pages before the bios, and the bios should present
286 * as unavaible memory. FIXME, need to ensure the e820 map deals with
287 * this?
288 */
289 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
290 }
291
292 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
293 {
294 lhs->selector = rhs->selector;
295 lhs->base = rhs->base;
296 lhs->limit = rhs->limit;
297 lhs->type = 3;
298 lhs->present = 1;
299 lhs->dpl = 3;
300 lhs->db = 0;
301 lhs->s = 1;
302 lhs->l = 0;
303 lhs->g = 0;
304 lhs->avl = 0;
305 lhs->unusable = 0;
306 }
307
308 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
309 {
310 unsigned flags = rhs->flags;
311 lhs->selector = rhs->selector;
312 lhs->base = rhs->base;
313 lhs->limit = rhs->limit;
314 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
315 lhs->present = (flags & DESC_P_MASK) != 0;
316 lhs->dpl = rhs->selector & 3;
317 lhs->db = (flags >> DESC_B_SHIFT) & 1;
318 lhs->s = (flags & DESC_S_MASK) != 0;
319 lhs->l = (flags >> DESC_L_SHIFT) & 1;
320 lhs->g = (flags & DESC_G_MASK) != 0;
321 lhs->avl = (flags & DESC_AVL_MASK) != 0;
322 lhs->unusable = 0;
323 }
324
325 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
326 {
327 lhs->selector = rhs->selector;
328 lhs->base = rhs->base;
329 lhs->limit = rhs->limit;
330 lhs->flags =
331 (rhs->type << DESC_TYPE_SHIFT)
332 | (rhs->present * DESC_P_MASK)
333 | (rhs->dpl << DESC_DPL_SHIFT)
334 | (rhs->db << DESC_B_SHIFT)
335 | (rhs->s * DESC_S_MASK)
336 | (rhs->l << DESC_L_SHIFT)
337 | (rhs->g * DESC_G_MASK)
338 | (rhs->avl * DESC_AVL_MASK);
339 }
340
341 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
342 {
343 if (set)
344 *kvm_reg = *qemu_reg;
345 else
346 *qemu_reg = *kvm_reg;
347 }
348
349 static int kvm_getput_regs(CPUState *env, int set)
350 {
351 struct kvm_regs regs;
352 int ret = 0;
353
354 if (!set) {
355 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
356 if (ret < 0)
357 return ret;
358 }
359
360 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
361 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
362 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
363 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
364 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
365 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
366 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
367 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
368 #ifdef TARGET_X86_64
369 kvm_getput_reg(&regs.r8, &env->regs[8], set);
370 kvm_getput_reg(&regs.r9, &env->regs[9], set);
371 kvm_getput_reg(&regs.r10, &env->regs[10], set);
372 kvm_getput_reg(&regs.r11, &env->regs[11], set);
373 kvm_getput_reg(&regs.r12, &env->regs[12], set);
374 kvm_getput_reg(&regs.r13, &env->regs[13], set);
375 kvm_getput_reg(&regs.r14, &env->regs[14], set);
376 kvm_getput_reg(&regs.r15, &env->regs[15], set);
377 #endif
378
379 kvm_getput_reg(&regs.rflags, &env->eflags, set);
380 kvm_getput_reg(&regs.rip, &env->eip, set);
381
382 if (set)
383 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
384
385 return ret;
386 }
387
388 static int kvm_put_fpu(CPUState *env)
389 {
390 struct kvm_fpu fpu;
391 int i;
392
393 memset(&fpu, 0, sizeof fpu);
394 fpu.fsw = env->fpus & ~(7 << 11);
395 fpu.fsw |= (env->fpstt & 7) << 11;
396 fpu.fcw = env->fpuc;
397 for (i = 0; i < 8; ++i)
398 fpu.ftwx |= (!env->fptags[i]) << i;
399 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
400 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
401 fpu.mxcsr = env->mxcsr;
402
403 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
404 }
405
406 static int kvm_put_sregs(CPUState *env)
407 {
408 struct kvm_sregs sregs;
409
410 memcpy(sregs.interrupt_bitmap,
411 env->interrupt_bitmap,
412 sizeof(sregs.interrupt_bitmap));
413
414 if ((env->eflags & VM_MASK)) {
415 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
416 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
417 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
418 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
419 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
420 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
421 } else {
422 set_seg(&sregs.cs, &env->segs[R_CS]);
423 set_seg(&sregs.ds, &env->segs[R_DS]);
424 set_seg(&sregs.es, &env->segs[R_ES]);
425 set_seg(&sregs.fs, &env->segs[R_FS]);
426 set_seg(&sregs.gs, &env->segs[R_GS]);
427 set_seg(&sregs.ss, &env->segs[R_SS]);
428
429 if (env->cr[0] & CR0_PE_MASK) {
430 /* force ss cpl to cs cpl */
431 sregs.ss.selector = (sregs.ss.selector & ~3) |
432 (sregs.cs.selector & 3);
433 sregs.ss.dpl = sregs.ss.selector & 3;
434 }
435 }
436
437 set_seg(&sregs.tr, &env->tr);
438 set_seg(&sregs.ldt, &env->ldt);
439
440 sregs.idt.limit = env->idt.limit;
441 sregs.idt.base = env->idt.base;
442 sregs.gdt.limit = env->gdt.limit;
443 sregs.gdt.base = env->gdt.base;
444
445 sregs.cr0 = env->cr[0];
446 sregs.cr2 = env->cr[2];
447 sregs.cr3 = env->cr[3];
448 sregs.cr4 = env->cr[4];
449
450 sregs.cr8 = cpu_get_apic_tpr(env);
451 sregs.apic_base = cpu_get_apic_base(env);
452
453 sregs.efer = env->efer;
454
455 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
456 }
457
458 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
459 uint32_t index, uint64_t value)
460 {
461 entry->index = index;
462 entry->data = value;
463 }
464
465 static int kvm_put_msrs(CPUState *env)
466 {
467 struct {
468 struct kvm_msrs info;
469 struct kvm_msr_entry entries[100];
470 } msr_data;
471 struct kvm_msr_entry *msrs = msr_data.entries;
472 int n = 0;
473
474 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
475 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
476 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
477 if (kvm_has_msr_star(env))
478 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
479 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
480 #ifdef TARGET_X86_64
481 /* FIXME if lm capable */
482 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
483 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
484 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
485 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
486 #endif
487 msr_data.info.nmsrs = n;
488
489 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
490
491 }
492
493
494 static int kvm_get_fpu(CPUState *env)
495 {
496 struct kvm_fpu fpu;
497 int i, ret;
498
499 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
500 if (ret < 0)
501 return ret;
502
503 env->fpstt = (fpu.fsw >> 11) & 7;
504 env->fpus = fpu.fsw;
505 env->fpuc = fpu.fcw;
506 for (i = 0; i < 8; ++i)
507 env->fptags[i] = !((fpu.ftwx >> i) & 1);
508 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
509 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
510 env->mxcsr = fpu.mxcsr;
511
512 return 0;
513 }
514
515 static int kvm_get_sregs(CPUState *env)
516 {
517 struct kvm_sregs sregs;
518 uint32_t hflags;
519 int ret;
520
521 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
522 if (ret < 0)
523 return ret;
524
525 memcpy(env->interrupt_bitmap,
526 sregs.interrupt_bitmap,
527 sizeof(sregs.interrupt_bitmap));
528
529 get_seg(&env->segs[R_CS], &sregs.cs);
530 get_seg(&env->segs[R_DS], &sregs.ds);
531 get_seg(&env->segs[R_ES], &sregs.es);
532 get_seg(&env->segs[R_FS], &sregs.fs);
533 get_seg(&env->segs[R_GS], &sregs.gs);
534 get_seg(&env->segs[R_SS], &sregs.ss);
535
536 get_seg(&env->tr, &sregs.tr);
537 get_seg(&env->ldt, &sregs.ldt);
538
539 env->idt.limit = sregs.idt.limit;
540 env->idt.base = sregs.idt.base;
541 env->gdt.limit = sregs.gdt.limit;
542 env->gdt.base = sregs.gdt.base;
543
544 env->cr[0] = sregs.cr0;
545 env->cr[2] = sregs.cr2;
546 env->cr[3] = sregs.cr3;
547 env->cr[4] = sregs.cr4;
548
549 cpu_set_apic_base(env, sregs.apic_base);
550
551 env->efer = sregs.efer;
552 //cpu_set_apic_tpr(env, sregs.cr8);
553
554 #define HFLAG_COPY_MASK ~( \
555 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
556 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
557 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
558 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
559
560
561
562 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
563 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
564 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
565 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
566 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
567 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
568 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
569
570 if (env->efer & MSR_EFER_LMA) {
571 hflags |= HF_LMA_MASK;
572 }
573
574 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
575 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
576 } else {
577 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
578 (DESC_B_SHIFT - HF_CS32_SHIFT);
579 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
580 (DESC_B_SHIFT - HF_SS32_SHIFT);
581 if (!(env->cr[0] & CR0_PE_MASK) ||
582 (env->eflags & VM_MASK) ||
583 !(hflags & HF_CS32_MASK)) {
584 hflags |= HF_ADDSEG_MASK;
585 } else {
586 hflags |= ((env->segs[R_DS].base |
587 env->segs[R_ES].base |
588 env->segs[R_SS].base) != 0) <<
589 HF_ADDSEG_SHIFT;
590 }
591 }
592 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
593
594 return 0;
595 }
596
597 static int kvm_get_msrs(CPUState *env)
598 {
599 struct {
600 struct kvm_msrs info;
601 struct kvm_msr_entry entries[100];
602 } msr_data;
603 struct kvm_msr_entry *msrs = msr_data.entries;
604 int ret, i, n;
605
606 n = 0;
607 msrs[n++].index = MSR_IA32_SYSENTER_CS;
608 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
609 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
610 if (kvm_has_msr_star(env))
611 msrs[n++].index = MSR_STAR;
612 msrs[n++].index = MSR_IA32_TSC;
613 #ifdef TARGET_X86_64
614 /* FIXME lm_capable_kernel */
615 msrs[n++].index = MSR_CSTAR;
616 msrs[n++].index = MSR_KERNELGSBASE;
617 msrs[n++].index = MSR_FMASK;
618 msrs[n++].index = MSR_LSTAR;
619 #endif
620 msr_data.info.nmsrs = n;
621 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
622 if (ret < 0)
623 return ret;
624
625 for (i = 0; i < ret; i++) {
626 switch (msrs[i].index) {
627 case MSR_IA32_SYSENTER_CS:
628 env->sysenter_cs = msrs[i].data;
629 break;
630 case MSR_IA32_SYSENTER_ESP:
631 env->sysenter_esp = msrs[i].data;
632 break;
633 case MSR_IA32_SYSENTER_EIP:
634 env->sysenter_eip = msrs[i].data;
635 break;
636 case MSR_STAR:
637 env->star = msrs[i].data;
638 break;
639 #ifdef TARGET_X86_64
640 case MSR_CSTAR:
641 env->cstar = msrs[i].data;
642 break;
643 case MSR_KERNELGSBASE:
644 env->kernelgsbase = msrs[i].data;
645 break;
646 case MSR_FMASK:
647 env->fmask = msrs[i].data;
648 break;
649 case MSR_LSTAR:
650 env->lstar = msrs[i].data;
651 break;
652 #endif
653 case MSR_IA32_TSC:
654 env->tsc = msrs[i].data;
655 break;
656 }
657 }
658
659 return 0;
660 }
661
662 int kvm_arch_put_registers(CPUState *env)
663 {
664 int ret;
665
666 ret = kvm_getput_regs(env, 1);
667 if (ret < 0)
668 return ret;
669
670 ret = kvm_put_fpu(env);
671 if (ret < 0)
672 return ret;
673
674 ret = kvm_put_sregs(env);
675 if (ret < 0)
676 return ret;
677
678 ret = kvm_put_msrs(env);
679 if (ret < 0)
680 return ret;
681
682 ret = kvm_put_mp_state(env);
683 if (ret < 0)
684 return ret;
685
686 ret = kvm_get_mp_state(env);
687 if (ret < 0)
688 return ret;
689
690 return 0;
691 }
692
693 int kvm_arch_get_registers(CPUState *env)
694 {
695 int ret;
696
697 ret = kvm_getput_regs(env, 0);
698 if (ret < 0)
699 return ret;
700
701 ret = kvm_get_fpu(env);
702 if (ret < 0)
703 return ret;
704
705 ret = kvm_get_sregs(env);
706 if (ret < 0)
707 return ret;
708
709 ret = kvm_get_msrs(env);
710 if (ret < 0)
711 return ret;
712
713 return 0;
714 }
715
716 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
717 {
718 /* Try to inject an interrupt if the guest can accept it */
719 if (run->ready_for_interrupt_injection &&
720 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
721 (env->eflags & IF_MASK)) {
722 int irq;
723
724 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
725 irq = cpu_get_pic_interrupt(env);
726 if (irq >= 0) {
727 struct kvm_interrupt intr;
728 intr.irq = irq;
729 /* FIXME: errors */
730 dprintf("injected interrupt %d\n", irq);
731 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
732 }
733 }
734
735 /* If we have an interrupt but the guest is not ready to receive an
736 * interrupt, request an interrupt window exit. This will
737 * cause a return to userspace as soon as the guest is ready to
738 * receive interrupts. */
739 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
740 run->request_interrupt_window = 1;
741 else
742 run->request_interrupt_window = 0;
743
744 dprintf("setting tpr\n");
745 run->cr8 = cpu_get_apic_tpr(env);
746
747 return 0;
748 }
749
750 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
751 {
752 if (run->if_flag)
753 env->eflags |= IF_MASK;
754 else
755 env->eflags &= ~IF_MASK;
756
757 cpu_set_apic_tpr(env, run->cr8);
758 cpu_set_apic_base(env, run->apic_base);
759
760 return 0;
761 }
762
763 static int kvm_handle_halt(CPUState *env)
764 {
765 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
766 (env->eflags & IF_MASK)) &&
767 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
768 env->halted = 1;
769 env->exception_index = EXCP_HLT;
770 return 0;
771 }
772
773 return 1;
774 }
775
776 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
777 {
778 int ret = 0;
779
780 switch (run->exit_reason) {
781 case KVM_EXIT_HLT:
782 dprintf("handle_hlt\n");
783 ret = kvm_handle_halt(env);
784 break;
785 }
786
787 return ret;
788 }
789
790 #ifdef KVM_CAP_SET_GUEST_DEBUG
791 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
792 {
793 const static uint8_t int3 = 0xcc;
794
795 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
796 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
797 return -EINVAL;
798 return 0;
799 }
800
801 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
802 {
803 uint8_t int3;
804
805 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
806 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
807 return -EINVAL;
808 return 0;
809 }
810
811 static struct {
812 target_ulong addr;
813 int len;
814 int type;
815 } hw_breakpoint[4];
816
817 static int nb_hw_breakpoint;
818
819 static int find_hw_breakpoint(target_ulong addr, int len, int type)
820 {
821 int n;
822
823 for (n = 0; n < nb_hw_breakpoint; n++)
824 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
825 (hw_breakpoint[n].len == len || len == -1))
826 return n;
827 return -1;
828 }
829
830 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
831 target_ulong len, int type)
832 {
833 switch (type) {
834 case GDB_BREAKPOINT_HW:
835 len = 1;
836 break;
837 case GDB_WATCHPOINT_WRITE:
838 case GDB_WATCHPOINT_ACCESS:
839 switch (len) {
840 case 1:
841 break;
842 case 2:
843 case 4:
844 case 8:
845 if (addr & (len - 1))
846 return -EINVAL;
847 break;
848 default:
849 return -EINVAL;
850 }
851 break;
852 default:
853 return -ENOSYS;
854 }
855
856 if (nb_hw_breakpoint == 4)
857 return -ENOBUFS;
858
859 if (find_hw_breakpoint(addr, len, type) >= 0)
860 return -EEXIST;
861
862 hw_breakpoint[nb_hw_breakpoint].addr = addr;
863 hw_breakpoint[nb_hw_breakpoint].len = len;
864 hw_breakpoint[nb_hw_breakpoint].type = type;
865 nb_hw_breakpoint++;
866
867 return 0;
868 }
869
870 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
871 target_ulong len, int type)
872 {
873 int n;
874
875 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
876 if (n < 0)
877 return -ENOENT;
878
879 nb_hw_breakpoint--;
880 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
881
882 return 0;
883 }
884
885 void kvm_arch_remove_all_hw_breakpoints(void)
886 {
887 nb_hw_breakpoint = 0;
888 }
889
890 static CPUWatchpoint hw_watchpoint;
891
892 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
893 {
894 int handle = 0;
895 int n;
896
897 if (arch_info->exception == 1) {
898 if (arch_info->dr6 & (1 << 14)) {
899 if (cpu_single_env->singlestep_enabled)
900 handle = 1;
901 } else {
902 for (n = 0; n < 4; n++)
903 if (arch_info->dr6 & (1 << n))
904 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
905 case 0x0:
906 handle = 1;
907 break;
908 case 0x1:
909 handle = 1;
910 cpu_single_env->watchpoint_hit = &hw_watchpoint;
911 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
912 hw_watchpoint.flags = BP_MEM_WRITE;
913 break;
914 case 0x3:
915 handle = 1;
916 cpu_single_env->watchpoint_hit = &hw_watchpoint;
917 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
918 hw_watchpoint.flags = BP_MEM_ACCESS;
919 break;
920 }
921 }
922 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
923 handle = 1;
924
925 if (!handle)
926 kvm_update_guest_debug(cpu_single_env,
927 (arch_info->exception == 1) ?
928 KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
929
930 return handle;
931 }
932
933 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
934 {
935 const uint8_t type_code[] = {
936 [GDB_BREAKPOINT_HW] = 0x0,
937 [GDB_WATCHPOINT_WRITE] = 0x1,
938 [GDB_WATCHPOINT_ACCESS] = 0x3
939 };
940 const uint8_t len_code[] = {
941 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
942 };
943 int n;
944
945 if (kvm_sw_breakpoints_active(env))
946 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
947
948 if (nb_hw_breakpoint > 0) {
949 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
950 dbg->arch.debugreg[7] = 0x0600;
951 for (n = 0; n < nb_hw_breakpoint; n++) {
952 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
953 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
954 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
955 (len_code[hw_breakpoint[n].len] << (18 + n*4));
956 }
957 }
958 }
959 #endif /* KVM_CAP_SET_GUEST_DEBUG */